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8.1 The no-slip condition

U

Ue /e

Figure 8.1  Slip versus no-slip flow near a solid surface.

Mean free path in a gas.

A = ____1___5
J2nno
Slip velocity.
oU
vslip = C)\'a—y

At ordinary temperatures and pressures the mean
free path is very small.
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8.2 The equations of motion

Steady 2-D flow.

apU+ opV _ 0
0x dy
H(pUU+P-1,) . A(pUV -1,))
ox dy
d(pVU - rxy) N d(pVV + P — ryy) _ 0
dx dy

o(phU+Q,) d(phV +Q,) 9P P
+ _ (U—— 4 V—)
dx dy dx dy

—1:Q—g+‘c?——q—r?—‘—/+rQ—‘f =0
(xxax xyay) (xyax yyay) B
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8.3 Plane, Compressible Couette Flow

Us
— -

L7774 Too

U(y) d

T, T, Oy

VLLLL L L L L L L L L L] >‘x

Figure 8.2  Flow produced between two parallel plates in relative motion

The upper wall moves at a velocity U.. while the lower
wall is at rest. The temperature of the upper wall is T .

The flow is assumed to be steady and extends to plus
and minus infinity in the x-direction. Therefore the
velocity and temperature only depend on .
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dy
d(phU 4@ ) . I(ppV +Q,) 9P
X e, - X ay)
—(r 9 + T Q—q)—(r — + T : =0
0x XY 9y ox Yoyl
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The equations of motion reduce to.

o”rxy _ 0

0y
ﬁ’
0y
dy

Both the pressure and shearing stress are uniform throughout the

flow. The shearing stress is related to the velocity through the
Newtonian constitutive relation.

du

= T = constant
w

=0

Tyy = ud—y

Where 7, is the shear stress at the lower wall.

10/11/20
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For gases the viscosity depends only on temperature.

no= u(r)

Since the pressure is uniform the density depends only on
temperature according to the perfect gas law.

P

p(y) = RTO)

The solution for the velocity profile can be written as an integral.

Y dy
U(y) = Y
=5 o BT

To determine the velocity profile we need to know how
the viscosity depends on temperature.

10/11/20
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The temperature distribution across the channel can be
determined from the energy equation. The heat flux is
given by
dT
= —K——
Q, &

The coefficient of heat conductivity, like the viscosity
is also only a function of temperature.

Kk = k(T)

The Prandtl number is very nearly constant for
gases. In many cases the Prandtl number can be
taken to be one.

P — E.R.il
r K
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The energy equation is

d

—(— +t. U) =0
Integrating

—Qy+er = -0,

where the integral has been evaluated on the lower wall.

10
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Now insert the expressions for the shear stress and heat flux

where the heat capacity has been assumed constant.
Integrate from the lower wall.

1 2 dy
C(T-T.)+=P.U" = -Q va—
p w 2°r wro‘u(T)

Where T,, is the temperature of the lower wall. Note that
the integral on the right can be replaced by the velocity.

11
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The result is the so-called energy integral.

0
C(T-T )+1PU = —P.U

Ty

At the upper wall the temperature is T.. and this can be
used to evaluate the lower wall temperature.

2

c,T, = C,T, P—U QWU
plw + 2+TE;;OO

12
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Suppose the lower wall is insulated so that q,, = 0. What
temperature does the lower wall reach? This is called the
adiabatic wall recovery temperature.

P
r 2
T,,= Too+2C U,
P
Introduce the Mach number M.=U./a.
T
wa y—1 2
— =1+ P|— M
- () Mo

Note that the recovery temperature equals the stagnation
temperature only for a Prandtl number of one.

For Air Pr=0.73.
Recall

10/11/20 ©
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The recovery factor

T,,~Te
T, -T,

oo

=r

In the case of Couette flow for a perfect gas with
constant C,

Tye=Tw _
T, -T, '

00

The heat transfer and shear stress are related by

Qw Cp(Tw_ Twa)

TWUOO PrUi

In order to transfer heat into the fluid the lower wall

temperature must exceed the recovery temperature.

14
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The last equation can be rearranged to read

T Q
w — ZPr w
The friction coefficient is T,
C, =
;o 02
ZpOO oo

The Stanton number is defined as

S, = i
t p U C(T.-T. )
oo~ oo w wa
C (T, -T
Using these definitions the relation qu"} _ S > 7 IS expressed as
w eo pP.U,

10/11/20 In general, for compressible flow near a wall, heat transfer and friction are coupled. 15
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8.3.3 The velocity distribution in Couette flow.

Now that the relation between temperature and velocity is known we can
integrate the momentum relation for the stress. We use the energy integral
written in terms of T., .

[
2

2

Qw 2
Cp(T—Too) = PrT—(UOO—U)+ Pr(Uoo -U")

w

with some rearrangement

2
T g, 2 U y—I\ 2( U
— = 1+P— (y—])Moo<]——0:) +Pr<—2—)MOO(]———2)

T
oo oow

The momentum equation is

dU
‘u(T)d_y =T

w

or

U
ja W)U = 1,y

16
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In gases the viscosity dependence on temperature is well approximated by
Sutherland's law.

T'+Tg

For Air the Sutherland reference temperature is 110.4K.

An approximation that is often used is

®
ﬁz(%) 05<w<1.0
[ r

For Air the exponent 0.76 is a reasonably accurate approximation to
Sutherland's law.

17
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The momentum equation is

f;’(z + PrUQV; (r- DM3(1- ) + P (157) Mi(l—%))w‘w "

X "y

The shear stress is evaluated by integrating over the full height of the channel.

U. Q _ 2 w T
[1+P7 (y—])M2<I—£ +P<u)M2 Y| av = 24a
0 Ut o\" [ 2 ) Ve T .

00
w o0

The simplest case and a reasonable approximation correspondsto w=1 .
In this case the integral can be carried out.

Ty

U v—I\,,2/U 1;/U\3
= — +P (I—=\M [=——=(— =
v v’ U " () °°(Uoo 3<Uw)> 20

18
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The shear stress is found by evaluating at U/U..=1.

‘L'

HooU o

d = 1+P<y31)M

(00

The velocity profile is

U y— 1 U]
U+P<2) U3Um)

1+P (V31)Mfo

QUi

At high Mach number the velocity profile is independent of Mach number
and Prandtl number.

Jm (3 = ()3

19
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0.2 0.4 0.6 0.8 1.0
U/U

oo

Figure 8.3  Velocity distribution in plane Couette flow for an adiabatic
lower wall and o = 1.

20
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C, = ud R =
f Uio e 0

T PLU 4

1
7P

the wall friction coefficient for an adiabatic wall is determined in terms of the Prandtl,
Reynolds and Mach numbers.

. 1+p (L),
£ R Q, =0

e

C

The Reynolds number can be expressed as

1 2
=P U
R = Pl od B 2P e _ dynamic pressure at the upper plate
€ U, ;7 Uy, characteristic shear stress

10/11/20 21



TSTANFORD

AERONAUTICS &
ASTRONAUTICS

10/11/20

For an non-adiabatic wall with

UT

oo W

Carry out the indicated integration

w=1

. 2
U“(HPF L (y—l)Mi[l—ﬂlm(V—l)Mi(l—Uz

22
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~ 2l 1+(y—_1)RMi Ly +(V—_1jPrM§, QL #0
R\ 2 2 T 3 .

Evaluate the velocity at the upper wall to determine the shear stress

1+ P (Y_I)Mi+}’r(—y_l)Mi= rud
Uz, \ 2 3 uU.

Using E

The friction coefficient with heat transfer becomes

23
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| U(y)
0
T, Qw Ty
—
—>]
3 |

Figure 8.4: Low Reynolds number flow about a thin flat plate of length L. Rer is less than
a hundred or so. The parabolic envelope which extends upstream of the leading edge roughly

delineates the region of rotational flow produced as a consequence of the no slip condition
on the plate.

PLU L Reference: Boundary
R [ = — Layer Theory by
€ U, Schlichting

The figure depicts the flow at low Reynolds number less than 100 or so.
10/11/20
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- - T~ = o
—>
_>
—>
—P>
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L

Figure 8.5: High Reynolds number flow developing from the leading edge of a flat plate of
length L. Rej, is several hundred or more .

As the Reynolds number is increased to several hundred or more the velocity profile near the wall
becomes quite thin and the guiding effect of the plate leads to a situation where the vertical velocity

is small compared to the horizontal velocity.

5 v () 90) () _90) oU 9V
-« 1 —« 1 « U—= ~V—= —
L U dx 0y dx dy 0x dy
Viscous terms in the equations ol J’U pwaZ U, ]
of motion are comparable to the pU ~U—F = ~U— = s
convective terms. dx dy L 0 L (R,;)

10/11/20 25
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First consider the y - momentum equation.

d(pVU - rxy) N
ox dy

HpVV +P-1,) iy

Using the approximations just discussed this equation reduces to.

d(P — ryy) _
dy

Integrate from the wall to the edge of the boundary layer.

P(x,y) = 7,,(x,) + P, (x)

Substitute for the pressure in the x - momentum equation.

oU oU dPe 0 arxy
U—+pV— = - + — +
P 0x P dy dx ax(rxx tyy) dy

26
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The energy equation

d(phU + Q) N d(phV + Qy) B
dy

0x
9P 9 U U
U+ v (v Ly r )
< ox aly)) (rxxax Txy ay>

( ' 8V>

“ax T oy

simplifies to

oh __oh 90, dP, 4
U—+pV—+—-U—+U— - -
PUax TP dy  dy dx ax(rxx t)’)’)

a(VTyy)_a(UTxx)—T w _ 0
0y 0x Xy dy

27
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Neglect the normal stress terms.

c?pU+ pv _ 0
ox ady

where

T, =T, +T, = U——+T,

Y Yllaminar Ylturbulent dy Ylturbulent
U,(x),T,(x),P,(x)
T

Poo
P. YA Uly) .

Uy ) Tw Qw rw X cC

Figure 8.6  High Reynolds number flow developing from the leading edge

of a semi-infinite flat plate. 28
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Newtonian stress.

2
Ty = 2US;- (3“‘ “v) 0;iS kk

xy = M dy 9dx _May

Fourier's law.

The laminar compressible boundary layer equations.

opU + apV _

0
ox ady

dP
oU U e 80U
PUG TPV 5y = ¥ (”aJ

ay

9T 9T dP, 5/, aT
pUCpa +pVCpa—y = UE'F ay(K ay)

29
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Measures of boundary layer thickness.

Displacement thickness

d
0 peUe

Momentum thickness

30
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8.5 The compressible von Karman integral equation

Uelx) Po(%)
Y ’ Tw
4 ) Cr=1 172
/ > u(y) | PO 5(x) gPeUe
— & rrrrrrrterrrrrrrrirrrrrrrrirrrrrrre x

Figure 8.7: Boundary layer velocity and density profiles.
OpU  0pV
ox oy 7

opU? 0pUV  dP, B OTzy

8x+ Oy +dx oy =0

Integrate the boundary layer equations with respect to y
P )iy + | (—)d 0
/0 ( Oz ) T ay )"
d(x) 2 §(x) d(x) §(z)
[ Car)oe [ G [ (&)= (G )=
0 8$ 0 3y 0 dx 0 8y

do o 1dU.  9dp.  Cf
%+(20+5)Ue dx +,0e de 2
de 9 o 1 dUe_Cf
%+((2—Me)9+6)Ue =
d6 0 dU, C
5* el . 2 7 e:_f
Shape factor HZ; dx + (2 Me +H) U, dx 2

31
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8.6 The laminar incompressible boundary layer

The equations of motion reduce to

dU + av 0
ox dy
dP 2 u
U%]Jrv‘;—U:—ld—;Jrv(uZ]) =y
Y Y dy
Boundary conditions
U0) = V(0) = 0 U@®) = U,
The pressure
dP dU
1 2 19" ¢ e
P, = P, (x)+ épUe(x) => odx T _UeW

32
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0
U = a_"” V = ——l/j
ay ax

The continuity equation is identically satisfied and the momentum equation becomes:

dU,
Boundary conditions
y(x,0)=0 v, (x,0)=0 v, (=)=,

10/11/20 33
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The zero pressure gradient, incompressible boundary layer.

VVy V.V, =V¥,,

Similarity variables

1/2 U_\"”
=(2vU Flo o= =
v =(2vU.x) " F(a) y(zvx)
Velocity components
U 1% v \1/2

Reynolds number is based on distance from the leading edge

R = =

ex vV

34
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Vorticity
_av_au_ (&)’”F
~ dx 9y ©\2vx ao.
Derivatives U
Iny = _ZaFaa
U, 1/2
Yy = U°°<§_v_)_c) Foa
12

Yyyy = Fyx! aaa
Substitute into the stream function equation and simplify

U, 1/2 v’

m) Faa = VmFaaa

e U 5\ v (172
oF o2 Faa) V(273

-F (aF, )+ (aF, -F)F,, = F_,q

(aFa—F)) Uw(

_aFaFaa_FFaa+aFaFaa—Faaa =0

35
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F +FF__ =0

aoo oaa

Boundary conditions

F(0) =0  F(0)

0 F (o) =1

) 10 05

z 08 04

F 2 Fa0.6 Faao.3

04 02

! 02 0.1

0 00 0.
S B S S S— R S R S S— . (R T R B W—

o (04 (04

Figure 8.8: Solution of the Blasius equation (8.102) for the stream function velocity and
stress (or vorticity) profile in a zero pressure gradient laminar boundary layer.

10/11/20 36
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C. - Ty _ 0.664

[ 2 R
(1/2)pU, Rex

Normal velocity at the edge of the layer

Ve 08604

U, A/R>€x

Boundary layer thickness o, = 4906/ 2 = 3.469

0099  4.906 5 17208 0 0.664

© R F R 5 R,

Boundary layer shape factor

H = o =2.5916
0

10/11/20
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Let T = F_,

The Blasius equation can be expressed as

dv
T

= —Fdo

2

Vorticity at the edge of the layer decays exponentially with distance from the wall. This supports

the approach where we divide the flow into separate regions of rotational and irrotational flow.

38
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1 -
Free
stream
0.8
FOC
0.6
0.4}
0.2}
Wall
1 " 2 4 4 3 L 2 e a2 2 1 i " e i a
1 2 3 ' 4 5

Fig. 10.4. The Blasius velocity profile.

10/11/20 39
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Numerical solution

1} Tog = 0.46965
Iteration 3 A . 04
o= Y
0.8 i *
£ Iteration 2 7, = 0.3
0.6 Iteration 1 ? Ty = 0.2
0.4¢t
0.2
a

1 2 3 g 5
Fig. 10.5. Iteration process leading to the correct match with the free-stream boundary
condition limy_, o Fy = 1.

40
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Another perspective: Use the dilational symmetry of the problem
VW -V W, =VY,,

w(x,0)=0 w,(x,0)=0 v, (x.00) =,

Transform the governing equation

a ~ b

X=ex y=e’y U =ey

~ o~ ~ o~ ~ 2c—a-2b 2c—a-2b

ViV ViV — VW =€ VYo —¢ Yy, —ve "y, =0

The equation is invariant if and only if

2c —a —2b =c— 3b.

a b ~ a—b

XxX=e'x y=ey Y=y

41
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Transform boundary curves and boundary functions
=0 = e’y=0 = y=0.
At the wall

l/7()2’0) = O|all$c = ea—bl//(eax’o) =0= II/(X,O) =0

all x

1/7)7 ()’Z’O) = O all x = ea_Zblljy (eax,()) - O = I//y (x’()) = O all x
At Yy —> oo
1/7)7 (jz’oo) = U°° all x = ea_zbl/jy (eax,oo) = U°° all x

The freestream boundary condition is invariant if and only if a =2b

42
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The governing equations and boundary conditions are invariant under the group:

~ 2b ~ ~
X=e"x y=e"y v =ey

The infinitesimal transformation. Expand near b =0

E=2x =y n=wv

Characteristic equations

dx _dy dy . . .
=—= Since the governing equations
2x y 4 and boundary conditions are
invariant under the group we can

Invariants o= R F = v expect that the solution will also

x/; \/; be invariant under the group.

We can expect the solution to be of the form
v =xF(a)

43
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ASTRONAUTICS this group can be used to generate the solution in one step!

a@ = eba,

F =e¢PF,
=2
Fd——e Fa,

1 =¢"%(0.566067) = b= —0.28455

Ty = 0.46965
Fg 10 Target
1?&(5,) solution
0.8}
9 = 0.2
0.6 Initial
F (@) guess
0.4¢
0.2¢
o

Fig. 10.6. Mapping of an initial guess to the correct solution along the pathlines of the
dilation group of the Blasius equation.

F_[0]=e(02) = F_[0]=0.46965

10/11/20
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du,
VyWyy =W Wyy ~ U = V¥ = 0.

Free stream velocity .

Ue = Mxﬁ
M = L] _'B/T
Substitute.
2 (2B-1)
VyWry = UxWyy —BM x VY = 0

10/11/20



Tf;%ﬁgg&g Apply a three-parameter dilation group to the equation.

ASTRONAUTICS

For invariance we require the parameters to be related as follows
2c—a-2b = c-3b = (2B-1)a.

Boundary functions and boundary curves must also be invariant.

&:eby=0$y=0

P(% 0) = e‘plex, 0) = 0= y(x,0) = 0

c-b

Ps5(5,0) = ¢ Py (e"5,0) = 0=y (x,0) = 0

10/11/20
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Free stream boundary condition.

For invariance

c—b = Ba

The group that leaves the problem as a whole invariant is

2 1+p

b
= 7Py &zeby @zel—ﬁ’t/}

The solution should be invariant under the same group

47
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In summary

dU

e

VyWay = Px¥yy U, dx V¥yyy

Allow for a virtual origin in x
U = M(x+x )'8
e 0

it =P

Dimensionless similarity variables

1
M\ 2 y
a =
(2'\’) (x + xo)(]_ﬁ)/Z
F = v
(x+ xO)(I NN

0.

48
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(x+x) P TUF (1 + BYF - (1~ p)aF,) -

F oI+ B)F (1= B)aF ,) ~2B—F 00) = 0
The Falkner-Skan equation.
2
F,o,,tU+BFF_  —2B(F,) +2B =0

F[0]=0 ; F,[0]=0 ; F o] = I

B =05

dU,/dx<0 dU,/dx>0
4 -

B = —0.0904

(zero shear stress)

B = -007
5

M (x + X, )ﬁ+l

/
X+ x,

0

0

~

|

%

M(x+x0)ﬁ :

1 2 3 4 5 6 02 1

-0.0904 B XX

Figure 8.9: Falkner-Skan velocity profiles.

Figure 8.10: Falkner-Skan boundary layer parameters versus [3.

|

14

]1/2

" ]1/2
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Honeycomb
Settling
length

An experimental flow with zero skin friction
throughout its region of pressure rise

By B. S. STRATFORD
National Gas Turbine Establishment, Farnborough

(Received 17 July 1958)

A flow has been produced having effectively zero skin friction throughout its
region of pressure rise, which extended for a distance of 3ft. No fundamental
difficulty was encountered in establishing the flow and it had, moreover, a good
margin of stability. The dynamic head in the zero skin friction boundary layer
was found to be linear at the wall (i.e. u oc y}), as predicted theoretically in the
previous paper (Stratford 1959).

The flow appears to achieve any specified pressure rise in the shortest possible
distance and with probably the least possible dissipation of energy for a given
initial boundary layer. Thus an aerofoil which could utilize it immediately after
transition from laminar flow would be expected to have a very low drag. A design
pressure distribution (besides having the usual safety margin against stall)
should have a slightly more gradual start to the pressure rise than in the present
experiment, as small errors close to the discontinuity can cause difficulty.

JFM Vol 5

Bol:ndnry
yer
obstruction Test wall

1:0/ c’ ="
(x = 0-98x;)
B = - | 1
Transition
Entry and contraction - T‘e‘s L lcn:gth ——{,__lengths = /e Cp=012 —
(of square section) ¢ 4 ) and fan g fi" -
g o8 Ho— Gy =0200 —
3] !
S £ / ||
cale —————ts T2 /
0 Ift 2ft g - ! ) l i
s Uj S |F
Ficure 1. Plan-section sketch of the wind tunnel. = ‘o6 C,=0399 __
i
Test wall E y C,= 0489 —
AL O |
E o /
l }[ jf lo— C, = 0624 —
—_—— 7 T~
D 4 j ; = /?c,;f'm
. - ?
= = z > 4 ?;/ ]
T e e e L / %
H Iswl::: tprg:rx:lrsc station The ‘oppos_ite wall’ was placed along . ?/9// -
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0 5in. 101  and of variable divergence; the top 2:0 3.0 40 5.0
and bottom walls were diverged
sutﬁcicm.ly [ gcmin the central —_— .-
flow 2-dimensional. Distance from the wall (in.)

Fiaure 2. Design of the test section.

10/11/20

Ficure 8. The dynamic head profiles. The full line profiles represent total pressure minus
static pressure at the wall. Where the static pressure varies across the boundary layer the
true dynamic head is represented by the broken lines. The C,, values refer to the wall.
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: 2 U,dU
From the momentum equation Yy = __°_¢
3 2 v dx
Y lyzo
2
i ou (2+H)6—({—edUe+Zf@
From the von Karman equation 3y b0 v dx v dx
(ei)@iq _ o4V
Nondimensionalize using 6 and U, Y, 5)’2 y=0 v dx
2dU, U, 40°
(_Q_QQ =(2+H)Q— e+——9d0
U,) dy v dx 2vdx
=0
2\ .2
Define m= 22U I(m) = (—@->él—]
Ue J 2 Ue dy
y y = 0 y = 0

Thwaites argued that there should exist a universal function relating m and /(m).

Uedd”

= 22+ Hym + l(m)) = L(m)
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Figure 8.14: Data on skin friction collected by Thwaites: 1 (m) , shape factor H (m) and
10/11/20 L (m) for a variety of boundary layer solutions.
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o 2
Faaa(O)(f F (1 —Fa)da) =
0

m =
04
I(m) = Faa(O)f F (I1-F )da
0
(04
(I-F)da
0
H(m) = =
OFa(] ~-F )da
dU,/dx <0 dU,/dx>0
0.10 ——,
| 0.4
e ~.
0.05 E. 03 Se .
m | e t(m) :
0.00 — 02
* 0.1 *
-005 | ...
Lo "-....j 00
om0t i -0.10  -005 000 4 005
02100 02 04,06 08 10 B =004
—-0.0904 ﬁ

Figure 8.15: The variable m defined in (8.154) versus the free stream wvelocity exponent
for Falkner-Skan boundary layers.
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0.10

—%.IO

Thwaites functions can be calculated explicitly for the Falkner-Skan boundary layers

a 2
—ZﬂU F (1 —Fa)da)
0

-0.05

000 s 005 !
B =-0.0904

0.10

Figure 8.16: Thwaites functions for the Falkner-Skan solutions (8.157).

53



FSTANFORD

AERONAUTICS &
ASTRONAUTICS

10/11/20

N. Curle adjusted Thwaites' functions slightly especially near separation.

—0-25
—0-20
—0-14
—0-12
—0-10
—0-080
—0-064
—0-048
—0-032
—0-016

+0-016
0-032

Falkner-Skan solution

Universal functions for Thwaites’s method

1(m) H(m) m I(m) H(m)
0-500 2-00 0-040 0-153 2-81
0-463 2-07 0-048 0-138 2-87
0-404 2-18 0-056 0-122 2-94
0-382 2-23 0-060 0-113 2-99
0-359 2:28 0-064 0-104 3-04
0-333 2-34 0-068 0-095 3:09
0-313 2-39 0-072 0-085 3-15
0-291 2-44 0-076 0-072 3-22
0-268 2-49 0-080 0-056 3-30
0-244 2:55 0-084 0-038 3-39
0-220 2-61 0-086 0-027 3-44
0-195 2-67 0-088 0-015 3-49
0-168 2-75 0-090 0 3-55

Figure 8.18: Curle’s functions for Thwaites’ method.

R — 1 Thwaiic's — 53
method
0.5 Falkner-Skan solution Curle’s
L ( m) method
0.0

" | Thwaite's method and
{ Curle’s method coincide

-0.5)

N

et

0 25 -020 —0.15 —0.10 —0.05 000 005 0.10 = 25 -0.20 ~0.15 -0.10 -0.05 0.00 0.05 0.10
m m

L(m)

Figure 8.17: Comparison between Curle’s functions and Thwaite’s functions.

Several researchers of the era suggest using

L(m) = 0441 + 6m .

which is consistent with the friction coefficient for the Blasius case 54
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The von Karman equation becomes

d(@z Hz)dUe

) = 0#1-6(%) o

U

which integrates to

95



TSTANFORD

AERONAUTICS &
ASTRONAUTICS

10/11/20

The procedure for using Thwaite’s method is as follows.
1) Use U, (x) to determine 67 (x).
At a given x

2) The parameter m is determined from
G,
v odx

m =

3) The functions /(m) and H (m) are determined from Curl's data.

4) The friction coefficient is determined from

PAY

Cf = ﬁl(m)

e

5) The displacement thickness, & (m), is determined from H (m).

The process is repeated while progressing along the wall to
increasing values of x. Separation of the boundary layer is assumed
to have occurred if a point is reached where /(m)=0.

The key references used in this section are

1) Thwaites, B. 1948 Approximate calculations of the laminar boundary layer, VII

International Congress of Applied Mechanics, London. Also Aeronautical Quar-
terly Vol. 1, page 245, 1949.

2) Curle, N. 1962 The Laminar Boundary Layer Equations, Clarendon Press.
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Ve _,
U_ S’”(R)

)
/ R = ZSm
U, X P ¢=x/R

Figure 9.19 Example for Thwaites’ method.

(2=, - o f W (9)do
in

Thwaites' method gives a finite momentum thickness at the forward stagnation point. This is useful in a
wing leading edge calculation.

lim R _ 0441 441 Fag = 0341
¢ — 0 0 6
10/11/20 57
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g°dU, 02 d(Us  0882Cos(¢) . 5 ..
m = —— = -3 R,z 7| = Sin” (¢ )d¢
v dx R) TedglU 6
o Sin"(¢) JO
04—
: 10
0.3] /
02 (m(9)) ;
0.1, 103280 6
| $=103.28 R
0.0; / 4
o o :
~02 $=103.28°
i 0 L L L
t 0.0 0.5 1.0 1.5 20 t
0.0 0.5 10 ¢ 1.5 20 in /4 0 /4
Figure 8.20: Thwaites’ functions for the freestream distribution (8.163). Figure 8.21: Friction coefficient for the freestream distribution (8.163).

Figure 8.22: Boundary layer thicknesses and shape factor for the freestream distribution

10/11/20 (8.163). 58
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The boundary layer admits an energy integral very similar to the one for Couette flow.

opU  0pV
ox + oy 0
oU ou dP., 0 oU
pUa—erpVay + " By (uay)—O (8.170)

oT oT dP. 0 [ OT oU \ 2
pUCp%—i-pVCpa—y—Udm ~ oy (h: )—,u(—) = 0.

Let T = T(U) . Substitute into the energy equation.

Use the momentum equation to simplify. Introduce the Prandtl number
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oU oU\ ,dT _dP. 0 ( dToU U\’
U—+pV— — — —— == ) —pul=—) = 171
(p oz 3y> deU v dez Oy (HdU 8y> ,u( 3y) 0 (8.171)

Use the momentum equation to replace the factor in parentheses on the left hand side of
(8.171)

dP O (0U\),dT L dP. dT 0 (0U\  &T(U\'_ (0UN'
dr Oy ’uﬁy Pau dr  dU Oy \' Oy dU2 \ Oy - oy )
which we can write as

dP, dT dl’" o Kk \ oU d?>T oU \?
— - - | = i — ) =0. (8.1
(C’p U+U)+Cp U ((,u C’p) 5 )-I—(h: U2+u) ( f ) 0. (8.173)

Introduce the Prandtl number (8.13) which can be assumed to be constant independent of
position in the boundary layer. The energy equation becomes

dP, dT dT (P.—1\ 6 [ oU d2T oU\ 2

There are several important cases to consider.
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Adiabatic wall, Prandtl number equals one.

1 2
Twa—T - E—C——U
p
1 2
Twa = Te+ZTUe
P
ZIKE - ]+<———-}’_I>M2 - E’_e
Te 2 ¢ Te

Stagnation temperature is constant through the boundary layer.

Non-adiabatic wall, zero pressure gradient, Prandtl number equals one.

T, = Too+2—é—U002+TQg U,
p wp 0,
Cf - 2St % pooUoon(Tw_Twa)
T-T T U”
2 (B -2
T, T, U, \2C,T,)U, U,
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8.10 Mapping a compressible to an incompressible boundary layer

U,(x), T,(x),P.(x) U, (%), Po(%)

- <
=
l
~N
e

pUdy = [ p,Udy | . -
p(y) 0 0’ § U®y) )
s ¥ rrrrrrrr — x rr ¥ rrrrrrrr —

Real compressible flow Virtual incompressible flow

Figure 8.23: Mapping of a compressible to an incompressible flow.

Assume flow at the edge of the compressible boundary layer is isentropic.

_ y =1\, 2/ 01 P TAYV/ (=1 a2/ (y=1)
pt—pe(1+<2>M§> Ith(T—t) =(a_,)

e (4 e
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Sutherland, W. (1893), "The viscosity of gases and molecular force", Philosophical Magazine, S. 5, 36, pp. 507-531 (1893).

Assume viscosity is linearly proportional to temperature

— = O T T+T
Uy r, &
T,+Tg
Viscosity of the virtual flow is the viscosity of the gas evaluated at = (—T’—”) (T :T )
the stagnation temperature of the gas.
Continuity and momentum equations ItP, =1t
opU vV _ , T - Sutherland
ox dy reference
dP ot temperature,
oUu oUu 1“%e 109/ U\ 1%"xy :
UtV = o h +pay<p, ay) oo 110K for Air.

Transformation of coordinates between the real and virtual flow

X/P (a

- of (Fe(_e))dx' _ D
0 t at éZ.JOE-D&

g
$ 1.50E-05

.D0E-05 +
c

.06
-20

Dynamic Viscos

ity of Air at 1 atm as a Function of Temperature

.00E-06

|

i Dynamic Viscosity of Air at STP
1
|
|
1
1

1.85x 10° Pa sec

0

t
20

t t t t t t t t |
40 60 80 100 120 140 160 180 200 63
Temperature (Celsius)
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Partial derivatives

0x _ _ P,(a,
5ol

t

dx
—_— = = 0
0y fy
dy _
ox Ex
=77

0y _ ., - [Ze)(L
dy 8y = (aj(p)

Introduce the stream function for steady compressible flow. Let

d 0
pU = pt% pV = _pta_l.i)

Real and virtual stream functions have the same value.

Y(x,y) = (x(x), ¥(x, ¥))
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Partial derivatives of the stream function from the chain rule.

op _ dPox Yoy _ dpdx 3oy
dx  9xdx dydx  dxdx dydx

0y _ Yoy opoy _ iy
dy dxdy 0dydy  dyady

U=p_ta_”’=(a_e) :(61_3)(7
p dy a a,

t
P P, Pa P
v oo Py P ( )amp EITER

Velocities

|
2|,

p 0x p\P,a,|ox pdyox

Partial derivatives of U from the chain rule.

U _ 9 awdx+i e} o)y _
9x  ox a dy | dx a, ay)ox

10/11/20 dy  ox\\a,)dy)dy dy\\a,
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Convective terms of the momentum equation

dy

3 2 ~ 2
of Fef % (L )a“(6w>2+6w6w L [%) a0 (079 a3) _
P,\a 0x \dy 0y 0xdy at Iy \ 5 29x

Cancel terms

oU oU
iy = =
Uax * ay

P g3 2.
O(Fe(z_e) )((e%) 8x<81317)) +%);5c% (z;)

I\t 4

§’z|€-z
S——
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Pressure gradient term

dpP, 2yP, (a\Y~1 jda,;x P,(a\\ 2YP, (a\Y~1 ;da,
— _ =0 —_— —
dx (y-1) ; a

Now
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At the edge of the boundary layer

Now
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Note that
2
2 v — ]
2(y—1)(at) ]yPt(aeY !
U > = +——2 — =
Zae a, pae a4
2y 2
a\? P a\Y-1/a\v-1
Uz(v-l)(_z) &fy__e_l_(_t) (_f) _
242 \%) P Pegl\%) \%
2 (y-1),,2
4
(&) a + > U
2
e a

Where we have used

_ 2v/(y-1)
P,/P, = (a,/a,)
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Viscous term. Note  p7 = P/R = Pe/R

3
19 1Pe(6) 6 /-
53\ rbutend = %P \a) 550 arputend
PIY\ Vlturbulent p;P\a;] dy turbulent
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The boundary layer momentum equation becomes

dP 0t
U.(&]+V.(1J+£._e_li<ual]) ! Xy
0x dy pdx pady

3 ~ ~
of Fef@) Ve 0% (o
P |a,) |\ 559505
1
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Drop the common multiplying factors

2 (y=-1),,2
b R e
dy 0xdy 65)2 0x a, af ¢ dx
3.
Kef 07 19 ,~
vy _ L9 =0
pt( 35’3) ptay(rxy’turbulent)
~ a,
u, = —U
a, °©
fjdf]e at2 1 Yy —1 UZUdUe
“dx  |a, =) (9 + (57) Vo) Vez
ae
4
f_’ UdUe
) Yedx
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Now the momentum equation is expressed entirely in tildaed variables.

2 (y-1),,2 N
~ 2~ ~\ .~ U
0P 9% - 0’ D\ 9 B ¢ T 7 dU,
9y 0x9y 552 dx 2 ¢ dx
t
3~
u ~
o) 5 ) =
Py 3y P0y turbulent
= ¥ v o= 9w
ay 0x
2 (y-1),2 .
(0324 (D)) - | | e
0x oy 2 (y=-1),, 2| ¢dx
a, += U,
(2T Lo )
tas,z ptaS’ xy‘turbulent =0
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For an adiabatic wall, and a Prandtl number of one the factor in brackets
is one and the equation maps exactly to the incompressible form.

- ol N~y - dU ’f
(Ua(f+(alf)v)—Ue—,£—vt ¢y —i-‘?:(%x | ) =0
0x ay dx 85/2 P,ay Ylturbulent
with boundary conditions
U) =0 V(0) = 0 Uu®) = U,
Skin friction
1((& 5)
&f _ %W _ o e Pe w _ ipept( ‘Cw ) _ lic
(1/2)p,0. (1/2)(& p E)ZUZ opP\(1/2)p,07) T’
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For an adiabatic wall and P, = 1 the factor in brackets is equal to one. In this case the
momentum equation maps exactly to the incompressible form

-0U - (0U - dUL, *U\ 108 .
(U% +V (a_g)) o Ue% U (6_g2) o Ea_g (szlturbulent) =0 (8228)

with boundary conditions

U(0)=0
V(0)=0 (8.229)
U (5) =T,

The implication of (8.228) and (8.229) is that the effects of compressibility on the boundary
layer can be almost completely accounted for by the scaling of coordinates presented in
(8.197) which is driven in the y direction by the decrease in density near the wall due to
heating and in the z direction by the isentropic changes in free stream temperature and
boundary layer pressure due to flow acceleration or deceleration imposed by the surrounding
potential flow.
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ASTRONAUTICS the boundary layer. Look at the case
dU /dx = 0 T"xy’ =0
e turbulent
1l .2
The energy equation was integrated earlier 7 =T,- Z_C_U
p
T y—1\ 2 U\?
r = e (- ()
T 2 ¢ U
e
Use u/u,=U0/U, and pT =p,T,

We need to relate wall normal coordinates in the real and virtual flow

o= (@R =GR ez
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The spatial similarity variable in the virtual flow is

~

i i Ue 1/2
=y 2v X

a4
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Spatial similarity variables in the two flows are related by

o = (1 (552 (2)

Ql
[0\

Il
A
S
N
AN
Ny
I
“
A
AN
\O

a, = 3469+ 1.67912(1-;-—1)M

The thickness of the compressible layer increases with Mach number.
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Now

15

Figure 8.24: Compressible boundary layer profiles on an adiabatic plate for P, = 1, viscosity
exponent w =1 and v = 1.4.
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P, i uy) transition u®)
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' turbulent
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Figure 8.25: Sketch of boundary layer growth in the laminar and turbulent regions.

Impirical relations for the thickness of the incompressible case, useful over
a limited range of Reynolds number.

0 0.37 Or for a wider ran f 0 0.14
- = ge o .
x G(Ln(Rex))

R 15 Reynolds number x  In(R

ex ex)

10/11/20
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P, }; u(y) transition ve)
7 |/ .
* | giaturbulent
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_> —_ [

Figure 8.25: Sketch of boundary layer growth in the laminar and turbulent regions.
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Turbulent boundary layer visualization

side view — light sheet

View from below a
glass wall.

R, =9000

R, = 26000
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The incompressible wall friction coefficient

Transition depends on plate roughness,
free stream turbulence, etc.

Turbulent measurements

0.0005

0.0001

0.00005

10* 10° 10° 107 108 10°

R

ex

Figure 8.26: Laminar and turbulent wall friction coefficient in a zero pressure gradient flat

plate boundary layer.
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An impirical form of the velocity profile; the so-called 1/7th power law

£

e

1/7

The problem with this profile is that it fails to capture one of the most important features
of the turbulent boundary layer profile which is that the actual shape of the profile
depends on Reynolds number.

A much better, though still impirical, relation is the law of the wake developed by Don
Coles at Caltech coupled with the universal law of the wall. In this approach the velocity
profile is normalized by the wall friction velocity.

Reference: D. Coles,

= ftw T = M<9U
= [= p = M=
P <
The Law of the Wake

Define dimensionless wall variables in the Turbulent
Boundary Layer, J.

Fluid Mech. Vol 1,
+  yu* + U 1956
Y u*

Y
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+ ou*
8 = ==
A%
and
urt (T )1/2 ( f) (00592)“2 0172
U, pU 2 1/5 R1/10

ex

7/10

6T = Q& ¢ _
xU, v 175)| p1/10

ex ex

*Ux
+ duxYYe _( 0.37 )(0.172)Re - 00636R’
R

Once the Reynolds number is known most of the important properties of the
boundary layer are known.
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Velocity profile

0 0.2 04 0.6 08 1.0 5 10 50 100 500 1000

Y /6" y

Figure 8.27: Turbulent boundary layer velocity profile in linear and log-linear coordinates.
The Reynolds number is Re, = 106.

, +
Viscous sublayer -walltoA 0<y <7

U+=y+
+

Buffer layer-AtoB 7 <y <30

+ + —KC( KU+
e

+ 1 +2 1 +3 1 +.4
y = U +e ~1-xU " -3(U ") = 2(xU ") - 52(xU ))

Logarithmic and outer layer - B to C to D dP,/dx = 0,11 = 0.62

+
vt = ém@*pcu@smz(g;j) C=51 k=04
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Blasius solution

0'8.0 0.2 04 6 0.8 1.0

0
y'/8*

Figure 8.28: Incompressible turbulent boundary layer profiles at several Reynolds numbers
compared to the Blasius solution for a laminar boundary layer.

Measurements of velocity in the logarithmic layer can be used to infer the skin
friction from the law of the wall.

C increase with increasing roughness Reynolds number

U 1 y U* k Roughness height
U K v es v Hydraulically smooth
k *
R, = 5100 Fully rough
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Separating turbulent boundary layer

VERTICAL SCALE _ 24
HORIZONTAL SCALE 5 | I
]
MEAN VELOCITY
|
{75 185 195 205 2Ls 225 235 245 2577
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8.12 Transformation between flat plate and curved wall boundary layers

Boundary layer equations

dpU N apV _

0
0x dy
dP, ot
pU&+pVaU+ S .

0x dy dx dy

oT oT 4P, 90, oU
UC — +pVC —-U + -t — =0

P Pox P Poy dx 0y *xy 0y
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Transform variables by adding an arbitrary function of x to the y coordinate

%= 0U _ 3U _dgoU % _
y = y+g(x) 0x dx dx dy ) dy ay
U(%y) = Uxy) U _ U oT _ oT _dgdT
. dg(x) ay y 0x dx dxady
V(% 3) = V(xy)+ Uls y) == 25 .2y o7t
= 2 - 2 3y ay
p(x y) = p(xy) 05. 8y’ Y Y
Toy(6 ) = T(%y) dV  aV  dgaU 9y _ 99
~ —_— = _—t a.. a
~ ~ ) dy dxd y y
0,(%,3) = 0,(x ) Yoo ey S

P,(%) = P,(x) = = :

_~oU _-oU oP 0d7; oU dg ( dg\oU oP. Ot oU oU oP, 07
U 14 f———=pU| —-F— |+p|V+U +—~C-——=pU—+pV—+—=-—=
P ™ s o P (ax /75{) P /cffay o oy T Py T
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Insert the transformations of variables and derivatives into the equations of motion. The result
is that the equations are mapped to themselves.

dpU N apV _ dpU N apV _

0x Jy ox dy 0
O R RS A
pic, L s e, 2L gl 0y 2,20
pUCp%ﬂoVCp%—UC% +66—ny—txy%—g = 0

10/11/20

96



FSTANFORD

AERONAUTICS &
ASTRONAUTICS

Vxu = 0

U.(x), P.(x)

Vxu#0

Figure 8.30: Mapping of the boundary layer developing over an airfoil to the boundary layer
on a flat plate with the same pressure gradient.
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Viscous-inciscid interaction algorithm

An iterative algorithm can be used to determine the viscous flow over a complex
shape such as the airfoil showr in Figure 8.30 The procedure is

1) Solve for the potential flow over the airfoil.
2) Use the potential flow velocity at the airfoil surface as the U (x) for a bound-
ary layer calculation beginning at the leading edge.

3) Determine the displacement thickness of the boundary layer and use the data
to define a new airfoil shape. Repeat the potential flow calculation using the new

airfoil shape to determine a new U ,(x) .

4) Using the new U ,(x) repeat the boundary layer calculation.

A few iterations of this viscous-inviscid interaction procedure will converge to an
accurate solution for the viscous, compressible flow over the airfoil.
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U, (x)
—

I S

>

i i o T i i d i i i i i i i i i A i rrr v x

At any position x the area flow in the boundary layer is

- ['vd
Q=] Udy
This can be arranged to read

0=[Jvas=[lu.ar-[[v[1- - |av=U,(6-5)

e

Entrainment velocity

d * Reference: M.R. Head, Entrainment in
Ve — —(Ue (5 -0 )) the Turbulent Boundary Layer, Aero.
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Head defined the boundary layer shape factor

(6-5)
6

H, =

His model consists of two assumptions:

1) Assume
v, 1d £\\
U, U, e CACRLDIRICD
2) Assume 5°
H =G(H) H="-
0

In addition he assumed that the skin friction followed the
impirical formula due to Ludweig and Tillman

0.246
Cy = . 0.268 Ry =
100-678H (ero Re) v
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0-07
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]
o + X E‘CHUBRUERJ!(KLEBANOFFS
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conventional form parameter H.

0.8702
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G(H)=3.0445+
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Several classical references recommend different functions for F and G

Calculation of Separation Points in Incompressible Turbulent Flows
T. CEBECI, G. J. MOSINSKIS, AND A. M. O. SMITH

Douglas Aircraft Company, Long Beach, Calif.
J. AIRCRAFT VOL. 9, NO. 9

Also

Boundary Layer Theory H. Schlichting

Recommend

Entrainment Relation /

(1/u)(d/dx)(u.H,) = 0.0299(H, — 3.0)~0-616° (5)

Schlichting uses 0.0306

Shape Factor Relation +3.3 is missing
H; = G(H) where
| 0.8234(H — 1.1)~1-287 H<1.6
G(H) = o ©)
1.5501(H — 0.6778)3%°*+33 H=>1.6
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20 1.5 /—r 2.5 30 H
\ -10
15
G Gap . a6
5.1 dH ] . .
10 / 156 1.58 1.60 162 164 _30 Dlscontlnurty
5 ~—_ —-40
-50
1.0 1.5 20 2.5 30 H

| prefer a single smooth function

20
0.8702 . ; 2.5 3.0 H
N G(H)=3.0445+ TENG 10
G aG dG  0.8702x12721

10 dH d—H__ (H—l 1)2.2721

-30 '
5

—40
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Comparison
20 1.5 — 25 30
-10
15
G _dG -20
10 dH
-30
5
—40
1.0 1.5 20 2.5 3.0 =30
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From Head’s paper

2.3. Determination of Functions F and G. For this purpose the experimental data of Newman?
and of Schubauer and Klebanoff® have been usedf. In each case values of 3 were obtained from
tables of the measured profiles, & being arbitrarily defined as the value of y for which #/U = 0-995.

From the values of 8 and the corresponding values of H, 0, U and #, the quantities %—] Zi%r [U(s — §%)]

and H;_; were obtained and are shown plotted in Figs. 1 and 2. If the assumptions made in the

previous Sections had been correct, and if both the analysis and the experimental data had been

~entirely free from error then, of course, the points obtained from the two sets of results should have

coincided with common curves defining the two functions. In fact, however, as will be seen from
the Figures there is considerable scatter of the points, and in Fig. 1 there is a fairly marked and
consistent discrepancy between the two sets of results which makes the drawing of a hypothetical
common curve, representing the function F(H;_s), a somewhat arbitrary procedure. However,
such a curve has been drawn, its justification being found a poszeriorz, in the accuracy with which it
has enabled the form-parameter development to be predicted in the cases considered below. The
curve relating H;_s to the normal form parameter H is rather more accurately defined, although
here also there is some discrepancy between the two sets of results, and the values of H given by
Schubauer and Klebanoff for the region where the pressure gradient was favourable appear
somewhat high. '
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Typical range of H vs R for turbulent boundary layers

I 5
( 4 M‘: + N
"‘_,_i‘tbs +~.4_+_FL:
) J'*l]f J H.ﬂ*r:?t‘:»
+ R P
H | + EXPERIMENT (SMITH AND WALKERS) Rl
= PRESENT CALCULATION

'8 }= — — _ COLES®

o

)

| 2 3 4 5678310 20 30 40 20

REYNOLDS NUMBER (MILLIONS)

F16. 3. Flat-plate results compared with experiment.

10/11/20 106



TSTANFORD

AERONAUTICS &
ASTRONAUTICS

10/11/20

Recall the incompressible von Karman integral momentum equation

de gdU, C

av 7 -
7 + (2 + H)Ue e 5 (9.82)

For given initial conditions on theta and H and known free stream velocity
distribution U¢(x) this equation is solved along with the auxiliary equations

0.246 _
Cr = ot { U 0.268 Ry = IO/O
100678 (e Ry )
1 d 0.0306
——(UGOBH,)=F(H, )=
Ue dx( e 1) ( 1) (H1_3.O)0.6169
0.8702

H, =G(H)=3.0445+

1.2721

(H-1.1)
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Expand the derivative of H

G(H) db 1 dUe 0.0299
dH . o (9 )% o G (H) U_e dx + 9(G(H)—3.0)0'6169
dr %

Recall the von Karman integral equation

do 0 dU. Cy
%+(2+H) U. dx T2

Substitute into the equation for H.

G(H) du. _ G(H)C 0.0299
dH (1 + H) %% — (9 ) Qf + 6(G(H)—3.0)0-5169
dr e

dH
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Express the equations in dimensionless terms using R, , Ry, and C,.

P.—-P U, \* ] ]
o —temloo 4 Y potlu2_p L2
=T =1 ()
U, x Usot
Rep = =2 Ry =
14 1%

Substitute the Ludweig-Tillman relation for C,. Solve the resulting pair

of ODEs for R, (Rex) and H(Rex).

G (H) =

3045 + T

dRy 1 <2+H)R aCy 0.246
=3 0

dRez 2 \1-0C, dRey | 100678H(1 _ (,)0268 0268

(G(H) (1-|—H) dCp 0.246 X G(H) B 0.0299 )
dH 2 \1-Cp ) dRey ' 1006788 (1_C,)0 28R, 1268  (G(H)—3.00°1%R,
dR... 0.8702x1.2721

€T (H—1.1)0'2721
Where 0.8702
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Zero pressure gradient turbulent boundary layer C, = 0

12 30
100000 R, .. =0.664 ( Rxmin) H(R,,,)=17028/0.664 =259
25
80000 _
R =10,000 2o
6 60000 H
15
40000 10
20000 05
0 2><I107 4><'107 6><.107 8><.107 1x.108 ex 0 2x107 4x107 6x107 8x107 1x10® " “ex
0.0050 - 0.0592
- /5
R
Ln (Cf ) / ex
0.0030 /
Ludweig-Tillman
0.0020 /
Blasius
0.0015 L
n(R.)
10° 106 107 108 ex
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Ue . (X
g = 25in()

/ R —251
U, X ¢ ¢o=x/R

Figure 9.19 Example for Thwaites’ method.

(9% = 2L g
n

U, 2R

€ v

Thwaites' method gives a finite momentum thickness at the forward stagnation point. This is useful in a wing
leading edge calculation.

lim H) R, _ 0441 44] ¢ ¢ = 0441
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Heads method applied to flow about a circular cylinder

1000, 12 4
0.664 H(R,, )=17028/0.664=2.59
200! Oinitial ~— 12 Rcylinder 3l
Ryl R =10,000 H
2
400} _ U_.R ~10°
cylinder — Vv - _—
200 F | (pseparazi{m = 15 10
0 50000 100000 150000 200000 250000 Rex 0 50000 100000 150000 200000 _ 250000 Rex
0.05
0.01
(:y 0.04
f Ln (C f )
0.03
0.001
0.02
001 o
R L Ln(R,,)
0 50000 100000 150000 200000 250000 ex 5%10% 1x10° 2x10° ex
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20000 12 4
_{0.664 H(R,,;)=1.7028/0.664=2.59
15000 Oinitial ~— 12 cylinder 3
0 R =10,000 H
10000 2
U_R
cylinder =—= 107 | —
5000 V 1
Orparaion = 166°
JF;tEEK

0 50x10°1.0%x1071.5x1072.0x1072.5%1073.0x 10 0 50x10° 1.0x107 15x107 20x107 25x107 30x107 = ex

0.05

C 004 Ln(c )0.001
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8.14 Problems

Problem 1 - Figure 8.45 depicts Couette flow of an ideal gas between two infinite parallel
plates. The lower wall is adiabatic. Determine the entropy difference between the lower
and upper walls.

U,——»

H
————

.

<

Figure 8.45: Couette flow, adiabatic lower wall.
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Problem 2 - Figure 8.46 depicts Couette flow of helium gas between two infinite parallel
walls spaced 1 cm apart. The lower wall is adiabatic and the speed of the upper wall is
400 meters/sec. The temperature of the upper wall is 300K .

U
—_—

»

T,

N
-

Figure 8.46: Couette flow of helium, adiabatic lower wall.

Assume the viscosity depends linearly on temperature.

B/ oo =T /Tso (8.281)

Set up and solve the compressible flow equations for this simple flow. Note that the flow is
assumed to be steady and all flow variables depend only on the coordinate normal to the
wall.

1) Determine the speed of sound at the upper wall.
2) Determine the temperature of the lower wall.

3

)

)

) Determine the shear stress.

4) Is there work done on the flow? How much?

5) Determine the heat flux through the upper wall.

6) Sketch the distribution of stagnation temperature across the channel.
)

7) Sketch the distribution of entropy across the channel.
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Problem 3 - Figure 8.47 depicts Couette flow of a gas between two infinite parallel walls
spaced a distance d apart. The lower wall is adiabatic. The reference Mach number
is My = Uysx//YRTs . The viscosity is assumed to depend linearly on temperature
i/ oo = T /T and the reference Reynolds number is Re = pooUcod/ thoo-

Figure 8.47: Couette flow of an ideal gas, adiabatic lower wall.

Sketch how the friction coefficient C'y depends on Uy,. At what Mach number is the friction
coefficient an extremum? Is it a maximum or a minimum? Express your answer in terms
of v and the Prandtl number. What are the values for helium and air?
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Problem 4 - Figure 8.48 shows the unsteady flow produced by a flat plate set into motion
impulsively at velocity Uxo.

W=0

3() Note that in the compressible
y = =0 case there is frictional heating
20 _, at the wall that will result in a
I non-zero V component at the
wall.
. X

U

Figure 8.48: Impulsively started flat plate.

The plate extends to infinity in both directions and the flow is perfectly parallel. Simplify

the compressible flow equations. Solve for the velocity and vorticity in the incompressible
case.

Problem 5 - In the discussion of boundary layers we considered several definitions of the
thickness. How would you define a thickness based on the vorticity distribution? What
might be the advantage of such a definition?

Problem 6 - Use the Howarth-Stewartson transformation to generate the velocity and

temperature profiles in a laminar, compressible, zero pressure-gradient boundary layer at
a free stream Mach number My, = 8.
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Rankine Oval

Problem 7 - The 2-D stream function for potential flow over an eliptieally—shaped body
at zero angle of attack is produced by the superposition of a uniform flow plus a source
and a sink of equal strength. The stream function and flow pattern are

U =Uxy+ @ ArcTan (L> - QArcTan ( Y a) (8.282)

ﬂ T+ a

I
/’_’_._,_,.—“ ———
-————

—~————————— T .
I

—
———— T e —
—— -

Figure 8.49: Potential flow over a 2-D elliptical body.

Choose two aspect ratios for the ellipse (length/width = 2, length/width = 20).
1) Use the potential flow solution to determine the pressure coefficient on the body.

2) Use Thwaites’ method to calculate the properties of the laminar boundary layer up to
separation. How does the separation point depend on the aspect ratio of the ellipse? Use
the radius of curvature at the forward stagnation point to initiate the calculation.

3) Use Head’s method to do the same for a turbulent boundary layer. For a given aspect
ratio how does the separation point depend on the Reynolds number based on the length
of the body?
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