
Chapter 8 - Viscous flow along a wall
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8.1  The no-slip condition

Mean free path in a gas.

Slip velocity.

At ordinary temperatures and pressures the mean 
free path is very small.10/11/20 3



8.2  The equations of motion

Steady 2-D flow.
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8.3  Plane, Compressible Couette Flow

The upper wall moves at a velocity U∞ while the lower 
wall is at rest. The temperature of the upper wall is T∞ .

The flow is assumed to be steady and extends to plus 
and minus infinity in the x-direction. Therefore the 
velocity and temperature only depend on y.
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Both the pressure and shearing stress are uniform throughout the 
flow. The shearing stress is related to the velocity through the 
Newtonian constitutive relation.

The equations of motion reduce to.

Where       is the shear stress at the lower wall. 
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For gases the viscosity depends only on temperature.

Since the pressure is uniform the density depends only on 
temperature according to the perfect gas law.

The solution for the velocity profile can be written as an integral.

To determine the velocity profile we need to know how 
the viscosity depends on temperature.
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The temperature distribution across the channel can be 
determined from the energy equation. The heat flux is 
given by

The coefficient of heat conductivity, like the viscosity 
is also only a function of temperature.

The Prandtl number is very nearly constant for 
gases. In many cases the Prandtl number can be 
taken to be one.
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The energy equation is

Integrating

where the integral has been evaluated on the lower wall.
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Now insert the expressions for the shear stress and heat flux

where the heat capacity has been assumed constant. 
Integrate from the lower wall.

Where Tw is the temperature of the lower wall. Note that 
the integral on the right can be replaced by the velocity.

κ dT
dy

+ µU dU
dy

= µ d
dy

1
Pr
CpT + 1

2
U 2⎛

⎝⎜
⎞
⎠⎟
= −Qw
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The result is the so-called energy integral.

At the upper wall the temperature is T∞ and this can be 
used to evaluate the lower wall temperature. 
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8.9.1  The recovery temperature

Suppose the lower wall is insulated so that qw = 0.  What 
temperature does the lower wall reach? This is called the 
adiabatic wall recovery temperature.

Introduce the Mach number M∞=U∞/a∞

Note that the recovery temperature equals the stagnation 
temperature only for a Prandtl number of one. 

For Air Pr = 0.73.
Recall

10/11/20 13



The recovery factor

In the case of Couette flow for a perfect gas with 
constant Cp

The heat transfer and shear stress are related by

In order to transfer heat into the fluid the lower wall 
temperature must exceed the recovery temperature. 
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The Stanton number is defined as

The friction coefficient is

Using these definitions the relation is expressed as

In general, for compressible flow near a wall, heat transfer and friction are coupled.

The last equation can be rearranged to read
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8.3.3  The velocity distribution in Couette flow.

Now that the relation between temperature and velocity is known we can 
integrate the momentum relation for the stress. We use the energy integral 
written in terms of T∞ .

with some rearrangement

The momentum equation is

or
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In gases the viscosity dependence on temperature is well approximated by 
Sutherland's law. 

An approximation that is often used is

For Air the exponent 0.76 is a reasonably accurate approximation to 
Sutherland's law. 

For Air the Sutherland reference temperature is 110.4K.
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The shear stress is evaluated by integrating over the full height of the channel.

The momentum equation is

Qw = 0

The simplest case and a reasonable approximation corresponds to .
In this case the integral can be carried out.
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The shear stress is found by evaluating at U/U∞=1.

The velocity profile is

At high Mach number the velocity profile is independent of Mach number 
and Prandtl number.
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In terms of the friction coefficient and Reynolds number

the wall friction coefficient for an adiabatic wall is determined in terms of the Prandtl, 
Reynolds and Mach numbers. 

Qw = 0

The Reynolds number can be expressed as
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Carry out the indicated integration

Evaluate at the upper wall
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ω = 1For an non-adiabatic wall with 
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The friction coefficient with heat transfer becomes

Evaluate the velocity at the upper wall to determine the shear stress
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8.4  The viscous boundary layer on a wall

The figure depicts the flow at low Reynolds number less than 100 or so.

Reference: Boundary 
Layer Theory by 
Schlichting
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As the Reynolds number is increased to several hundred or more the velocity profile near the wall 
becomes quite thin and the guiding effect of the plate leads to a situation where the vertical velocity 
is small compared to the horizontal velocity.

ρU ∂U
∂x

≈ µ ∂2U
∂y2    ⇒

Viscous terms in the equations 
of motion are comparable to the 
convective terms.
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First consider the y - momentum equation.

Using the approximations just discussed this equation reduces to.

Integrate from the wall to the edge of the boundary layer.

Substitute for the pressure in the x - momentum equation.
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The energy equation

simplifies to
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Neglect the normal stress terms. 

where

10/11/20 28



Newtonian stress. 

Fourier's law. 

The laminar compressible boundary layer equations. 
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Measures of boundary layer thickness. 

Displacement thickness

Momentum thickness
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8.5 The compressible von Karman integral equation

Integrate the boundary layer equations with respect to y

Shape factor10/11/20 31



8.6  The laminar incompressible boundary layer

The equations of motion reduce to

Boundary conditions

The pressure

ν = µ
ρ
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Introduce the stream function

The continuity equation is identically satisfied and the momentum equation becomes:

U =
∂ψ
∂y

V = −
∂ψ
∂x

ψ yψ xy −ψ xψ yy =Ue
dUe

dx
+ νψ yyy

ψ x,0( ) = 0 ψ y x,0( ) = 0 ψ y x,∞( ) =Ue

Boundary conditions
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The zero pressure gradient, incompressible boundary layer. 

Similarity variables

Velocity components

Reynolds number is based on distance from the leading edge

ψ yψ xy −ψ xψ yy = νψ yyy

ψ = 2νU∞x( )1/2 F α( ) α = y
U∞

2νx
⎛
⎝⎜

⎞
⎠⎟
1/2
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Vorticity

Derivatives

Substitute into the stream function equation and simplify
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The Blasius equation

Boundary conditions
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Friction coefficient

Normal velocity at the edge of the layer

Boundary layer thickness

Boundary layer shape factor

H = δ *

θ
= 2.5916

Cf =
2
Rex

Fαα 0( )
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The Blasius equation can be expressed as

Let

Let Then

Vorticity at the edge of the layer decays exponentially with distance from the wall. This supports 
the approach where we divide the flow into separate regions of rotational and irrotational flow.
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Numerical solution
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Another perspective:  Use the dilational symmetry of the problem

ψ yψ xy −ψ xψ yy = νψ yyy

ψ x,0( ) = 0 ψ y x,0( ) = 0 ψ y x,∞( ) =Ue

Transform the governing equation

 x = eax  y = e
by  ψ = ecψ

 
ψ y ψ xy − ψ x ψ yy −ν ψ yyy = e

2c−a−2bψ yψ xy − e
2c−a−2bψ xψ yy −νe

c−3bψ yyy = 0

The equation is invariant if and only if

 x = eax  y = e
by  ψ = ea−bψ
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Transform boundary curves and boundary functions

  
ψ x,0( ) = 0 all x ⇒ ea−bψ eax,0( ) = 0⇒ψ x,0( ) = 0 all x

  
ψ y x,0( ) = 0 all x ⇒ ea−2bψ y e

ax,0( ) = 0⇒ψ y x,0( ) = 0 all x

  
ψ y x,∞( ) =U∞ all x

⇒ ea−2bψ y e
ax,∞( ) =U∞ all x

At the wall

At y→∞

The freestream boundary condition is invariant if and only if a = 2b
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The governing equations and boundary conditions are invariant under the group:

 x = e2bx  y = e
by  ψ = ebψ

The infinitesimal transformation. Expand near b = 0

ξ = 2x ζ = y η =ψ

Characteristic equations

dx
2x

=
dy
y
=
dψ
ψ

Invariants α =
y
x

F =
ψ
x

Since the governing equations 
and boundary conditions are 
invariant under the group we can 
expect that the solution will also
be invariant under the group.

We can expect the solution to be of the form

ψ = xF α( )
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The Blasius equation is invariant under a dilation group and 
this group can be used to generate the solution in one step!

 
Fα α 0[ ] = e−3b 0.2( )     ⇒      Fα α 0[ ] = 0.46965
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8.7 Falkner-Skan laminar boundary layers

Substitute. 

Free stream velocity . 
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Apply a three-parameter dilation group to the equation. 

For invariance we require the parameters to be related as follows 

Boundary functions and boundary curves must also be invariant.
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Free stream boundary condition.

For invariance

The group that leaves the problem as a whole invariant is

The solution should be invariant under the same group
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In summary 

Allow for a virtual origin in x 

Dimensionless similarity variables 
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The Falkner-Skan equation. 

H =
δ *

θ

δ *

x + x0

M x + x0( )β+1
ν

⎛

⎝
⎜

⎞

⎠
⎟

1/2

θ
x + x0

M x + x0( )β+1
ν

⎛

⎝
⎜

⎞

⎠
⎟

1/2
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8.8 Thwaites' method for approximate calculation of boundary layer parameters.

From the momentum equation

From the von Karman equation

Nondimensionalize using θ Ueand 

Thwaites argued that there should exist a universal function relating m and l(m).

Define
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L m( ) = 0.45 + 6m
Thwaites suggests using 
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Thwaites functions can be calculated explicitly for the Falkner-Skan boundary layers
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N. Curle adjusted Thwaites' functions slightly especially near separation.

Several researchers of the era suggest using   

which is consistent with the friction coefficient for the Blasius case  

L(m)
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The von Karman equation becomes  

which integrates to  
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The procedure for using Thwaite’s method is as follows.

1) Use Ue x( )  to determine θ 2 x( ).
At a given x

2) The parameter m is determined from

                     m = −θ
2

ν
dUe

dx
.

3) The functions l m( )  and H m( )  are determined from Curl's data.

4) The friction coefficient is determined from

                     Cf =
2ν
Ueθ

l m( ).

5) The displacement thickness, δ * m( ),  is determined from H m( ).
The process is repeated while progressing along the wall to 
increasing values of x. Separation of the boundary layer is assumed 
to have occurred if a point is reached where l(m)=0.
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Example - surface velocity from the potential flow about a circular cylinder.

Thwaites' method gives a finite momentum thickness at the forward stagnation point. This is useful in a 
wing leading edge calculation.
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The parameter m.
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8.9  Compressible laminar boundary layers

The boundary layer admits an energy integral very similar to the one for Couette flow.

Let .   Substitute into the energy equation.

Use the momentum equation to simplify. Introduce the Prandtl number
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Adiabatic wall, Prandtl number equals one. 

Stagnation temperature is constant through the boundary layer.

Non-adiabatic wall, zero pressure gradient, Prandtl number equals one. 
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8.10  Mapping a compressible to an incompressible boundary layer

Assume flow at the edge of the compressible boundary layer is isentropic.
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Assume viscosity is linearly proportional to temperature

Viscosity of the virtual flow is the viscosity of the gas evaluated at 
the stagnation temperature of the gas.
Continuity and momentum equations

Transformation of coordinates between the real and virtual flow

TS - Sutherland 
reference 
temperature, 
110K for Air.
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Partial derivatives

= ??

Introduce the stream function for steady compressible flow. Let

Real and virtual stream functions have the same value.
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Partial derivatives of the stream function from the chain rule.

Velocities

Partial derivatives of U from the chain rule.
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Convective terms of the momentum equation

Cancel terms
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Pressure gradient term

Now
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At the edge of the boundary layer

Now
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Note that

Where we have used
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Viscous term. Note
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The boundary layer momentum equation becomes
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Drop the common multiplying factors
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Now the momentum equation is expressed entirely in tildaed variables. 

=0
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For an adiabatic wall, and a Prandtl number of one the factor in brackets 
is one and the equation maps exactly to the incompressible form. 

with boundary conditions

Skin friction
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In order to solve for the physical velocity profiles we need to determine the temperature in 
the boundary layer. Look at the case

The energy equation was integrated earlier

Use and

We need to relate wall normal coordinates in the real and virtual flow
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The spatial similarity variable in the virtual flow is
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Spatial similarity variables in the two flows are related by

The thickness of the compressible layer increases with Mach number.
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Now
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Impirical relations for the thickness of the  incompressible case, useful over 
a limited range of Reynolds number.

Or for a wider range of 
Reynolds number

8.11  Turbulent boundary layers
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Rδ = 9000

Rδ = 26000

side view – light sheet

View from below a 
glass wall.

Turbulent boundary layer visualization

10/11/20 82



Turbulent boundary layer data – P.S. Klebanoff NACA 1247, 1955

Rex = 4.2 ×10
6
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The incompressible wall friction coefficient
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An impirical form of the velocity profile; the so-called 1/7th power law

The problem with this profile is that it fails to capture one of the most important features 
of the turbulent boundary layer profile which is that the actual shape of the profile 
depends on Reynolds number.

A much better, though still impirical, relation is the law of the wake developed by Don 
Coles at Caltech coupled with the universal law of the wall. In this approach the velocity 
profile is normalized by the wall friction velocity.

Define dimensionless wall variables

Reference: D. Coles, 
The Law of the Wake 
in the Turbulent 
Boundary Layer, J. 
Fluid Mech. Vol 1, 
1956
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The thickness of the boundary layer in wall units is

and

Once the Reynolds number is known most of the important properties of the 
boundary layer are known.
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Velocity profile

Viscous sublayer - wall to A

Buffer layer - A to B

Logarithmic and outer layer - B to C to D

C = 5.1 κ = 0.4
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Measurements of velocity in the logarithmic layer can be used to infer the skin 
friction from the law of the wall. 

C increase with increasing roughness Reynolds number 

Res =
ksu

*

ν
< 3

Res =
ksu

*

ν
> 100

Hydraulically smooth

Fully rough

ks Roughness height
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Separating turbulent boundary layer
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The Princeton 
Superpipe (PSP) 

Facility
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Velocity profiles

u
u0

y /δ

Re = 20,000

Re = 20,000,000

Laminar case
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Velocity profiles – near wall

u
u0

y /δ

Re = 20,000

Re = 20,000,000
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8.12  Transformation between flat plate and curved wall boundary layers

Boundary layer equations
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Transform variables by adding an arbitrary function of x to the y coordinate

 
ρ U ∂ U

∂x
+ ρ V ∂ U

∂y
+
∂ Pe
∂x

−
∂ τ xy
∂y

= ρU ∂U
∂x

−
dg
dx

∂U
∂y

⎛
⎝⎜

⎞
⎠⎟
+ ρ V +U

dg
dx

⎛
⎝⎜

⎞
⎠⎟
∂U
∂y

+
∂Pe
∂x

−
∂τ xy
∂y

= ρU ∂U
∂x

+ ρV ∂U
∂y

+
∂Pe
∂x

−
∂τ xy
∂y
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Insert the transformations of variables and derivatives into the equations of motion. The result 
is that the equations are mapped to themselves.
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Viscous-inciscid interaction algorithm

in Figure 8.30
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δ

Ue x( )

x

8.13 Head’s method for approximate calculation of turbulent boundary layer characteristics

At any position x the area flow in the boundary layer is 

Q = U dy
0

δ

∫
This can be arranged to read

Q = U dy
0

δ

∫ = Ue dy0

δ

∫ − Ue 1−
U
Ue

⎛
⎝⎜

⎞
⎠⎟
dy

0

δ

∫ =Ue δ −δ *( )
Entrainment velocity

Ve =
d
dx

Ue δ −δ *( )( ) Reference: M.R. Head, Entrainment in 
the Turbulent Boundary Layer, Aero. 
Res. Council. R&M 3152, 196010/11/20 99



Head defined the boundary layer shape factor

H1 =
δ −δ *( )
θ

His model consists of two assumptions:

1) Assume 

Ve
Ue

= 1
Ue

d
dx

Ue δ −δ *( )( ) = F H1( )
2) Assume 

H1 = G H( )

In addition he assumed that the skin friction followed the 
impirical formula due to Ludweig and Tillman

H = δ *

θ
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We will use F H1( ) = 0.0306
H1 − 3.0( )0.6169 G H( ) = 3.0445 + 0.8702

H −1.1( )1.2721

H1 =
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Calculation of Separation Points in Incompressible Turbulent Flows
T. CEBECI, G. J. MOSINSKIS, AND A. M. O. SMITH
Douglas Aircraft Company, Long Beach, Calif. 
J. AIRCRAFT VOL. 9, NO. 9

Also

Boundary Layer Theory  H. Schlichting

Recommend
Schlichting uses 0.0306

Several classical references recommend different functions for F and G

+3.3 is missing
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Cebeci - Schlichting 

G

H

dG
dH

H

Gap
Discontinuity

G

H

dG
dH

H
G H( ) = 3.0445 + 0.8702

H −1.1( )1.2721

dG
dH

= − 0.8702 ×1.2721
H −1.1( )2.2721

I prefer a single smooth function  
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Comparison

G dG
dH
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From Head’s paper
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Typical range of H vs Rex for turbulent boundary layers
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Recall the incompressible von Karman integral momentum equation

For given initial conditions on theta and H and known free stream velocity 
distribution Ue(x) this equation is solved along with the auxiliary equations

H1 = G H( ) = 3.0445 + 0.8702
H −1.1( )1.2721

1
Ue

d
dx

UeθH1( ) = F H1( ) = 0.0306
H1 − 3.0( )0.6169
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Expand the derivative of H

Recall the von Karman integral equation

Substitute into the equation for H.
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Express the equations in dimensionless terms using Rex ,  Rθ , and Cp .

Where

Substitute the Ludweig-Tillman relation for C f .  Solve the resulting pair 

of ODEs for Rθ Rex( )  and H Rex( ).
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Zero pressure gradient turbulent boundary layer Cp = 0

Ludweig-Tillman

Rθinitial = 0.664 Rxmin( )1/2

Rxmin = 10,000

H Rxmin( ) = 1.7028 / 0.664 = 2.59

Rθ

Rex Rex

Ln Rex( )

Ln Cf( )

Blasius

H

Cf =
0.0592
Rex

1/5
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Potential flow about a circular cylinder

Thwaites' method gives a finite momentum thickness at the forward stagnation point. This is useful in a wing 
leading edge calculation.
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Rθinitial =
0.664
12

Rcylinder
⎛
⎝⎜

⎞
⎠⎟
1/2

Rexmin = 10,000

H Rxmin( ) = 1.7028 / 0.664 = 2.59

Rθ

Rex Rex

Ln Rex( )

Ln Cf( )

H

Rex

Cf

Rcylinder =
U∞R
ν

= 105
φseparation = 151°
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Rθinitial =
0.664
12

Rcylinder
⎛
⎝⎜

⎞
⎠⎟
1/2

Rexmin = 10,000

H Rxmin( ) = 1.7028 / 0.664 = 2.59

Rθ

Rex Rex

Ln Rex( )

Ln Cf( )

H

Rex

Cf

Rcylinder =
U∞R
ν

= 107

φseparation = 166°
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8.14  Problems
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Note that in the compressible 
case there is frictional heating 
at the wall that will result in a 
non-zero V component at the 
wall.

W = 0
∂( )
∂x

= 0

∂( )
∂z

= 0
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Rankine Oval
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