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Fundamentals of Compressible Flow

Chapter 6 - Several forms of the equations of motion
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6.1 The Navier-Stokes equations

Assume a Newtonian stress rate-of-strain relation and a linear thermally conductive 
medium. The conservation equations become

(6.1)
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If the density is constant the previous system of equations reduces to

in the absence of body forces.

6.1.1 The incompressible Navier-Stokes equations

(6.2)
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(6.3)

(6.4)

(6.5)

6.2 The momentum equation in terms of vorticity

(6.6)

Assume the two viscosities are constant - this is reasonable 
if the Mach number is not too large. The momentum equation 
can be written.

The vorticity is

Vector identities

Now the momentum equation can be written
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(6.7)

(6.8)

(6.9)

(6.10)

6.3 The momentum equation in terms of entropy
Use the Gibbs equation to replace the gradient of the pressure.

The inviscid form of the equation is (Crocco's equation)

If the flow is steady and inviscid

If the stagnation enthalpy and entropy are constant
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6.4 Inviscid, Irrotational, homentropic flow

These equations are the starting point for a small disturbance analysis that leads 
to the equations that govern the propagation of sound. We will come back to the 
topic of acoustics in Chapter 13.
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If the flow is steady the equations become

Use

and

To generate

The stagnation enthalpy and entropy are constant everywhere in the flow.
10/6/20 7



Continuity

The problem reduces to a single equation for the velocity vector.
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6.5 The Velocity Potential

For irrotational flow the velocity field can be expressed in terms of a scalar potential.

Substitute into the equation derived previously for the velocity

Steady, irrotational, homentropic flow is governed by the full potential equation
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The momentum equation for irrotational flow including the gravitational potential is

6.5.1 Unsteady potential flow

Substitute the velocity potential

If the flow is inviscid and homentropic the momentum equation reduces to
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If the flow is calorically perfect

The unsteady Bernoulli integral

The equations for inviscid, homentropic, unsteady flow with gravity are
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These equations can also be reduced to a single equation for the velocity potential.

(6.17)

(6.18)
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6.5.2 Incompressible irrotational flow

The momentum equation in the absence of gravity reduces to

Introduce the scalar potential again

The incompressible Bernoulli integral

The velocity field satisfies Laplace’s equation.

(6.19)

(6.20)

(6.21)

(6.22)
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6.6 The vorticity equation

Take the curl of the momentum equation.

This becomes

Use vector identities to rearrange

(6.23)

(6.24)

(6.25)
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For inviscid, homentropic flow

Vortex stretching term

(6.26)
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For viscous, incompressible flow

In two dimensions the flow satisfies the convective diffusion equation.

This is the same equation satisfied by the temperature.

(6.27)

(6.28)

(6.29)
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6.7 Fluid flow in three dimensions, the dual stream function

The particle path equations

If we eliminate time between these three equations the result 
is two families of stream-function surfaces.

These are integrals of the first order PDE

(6.30)

(6.31)

(6.32)

(6.33)
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The velocity vector lies along the line of intersection of the two surfaces.

(6.34)
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6.8 The vector potential

The velocity field of an incompressible flow can be 
represented by the curl of a vector potential.

The vorticity and vector potential are 
related by a vector Poisson equation.

Where we have used the vector identity.

The vector potential is related to the dual stream-functions.

(6.35)

(6.36)

(6.37)

(6.38)
10/6/20 19



6.9 Incompressible flow with mass and vorticity sources

A general incompressible flow containing mass sources and distributed vorticity can be 
constructed from a superposition of the fields generated by a scalar and a vector potential. 

Where the potentials satisfy the Poisson equation. (6.39)

(6.40)
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6.10 Turbulent flow

Recall the equations of motion.
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Decompose each flow variable into a mean and fluctuating part.

Consider N realizations of the flow. The mean of any flow variable is defined as

For any term that is linear in the fluctuations the average is
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Nonlinear terms are more complex.

Nonzero correlations of fluctuations are effective turbulent stresses 
known as Reynolds stresses.

0 0 0
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Time dependent terms are ensemble averaged in the same way.
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Incompressible flow - Navier Stokes Equations.

Incompressible flow - Reynolds Averaged Navier Stokes Equations (RANS).

A model relating the Reynolds stresses to the mean flow is needed to close 
the equations.
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