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Chapter 6 - Several forms of the equations of motion
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T : 6.1 The Navier-Stokes equations

ASTRONAUTICS

Assume a Newtonian stress rate-of-strain relation and a linear thermally conductive
medium. The conservation equations become

dp 0 B
;9'; + g;i(PU,-) =0

apU.

l

5 + axj(pUin + P6ij)— pG; -

d
;)};(ZuSU_((2/3)u-uv)6ljskk) -0

dple+k) 9
p(ea t+ ) , &Xi( pUh~K(JT /9x,))- pG,;U; -

J _
é;c-i(szjsij-((2/3)p—pv)6ijUjskk) =0
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The incompressible Navier-Stokes equations

If the density is constant the previous system of equations reduces to

oU;

8$Z‘ =0

8Uz 8 P M

o + 8—% (UZ'U]‘ + ;5@' — 2 (;) S@') =0 (6.2)

oT 0 k \ OT L B
N (UZT— (pC) 8%) . (,Tc) 55 = 0

in the absence of body forces.
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Rl’%ﬂf%? 6.2 The momentum equation in terms of vorticity

ASTRONAUTICS

Assume the two viscosities are constant - this is reasonable

if the Mach number is not too large. The momentum equation

can be written.
opU

_ _ 1 _
otV (pUU) + VP — V20 - (§u+uv)V(V-U)—pG=0 G =-V¥

The vorticity is

Q= VxU.
Vector identities

UeVU = (VxU)xU + V(—l-j——;—U)
Vx(VxT) = W(Vel)- VU

Now the momentum equation can be written

3U Ue

8 +p(.QxU)+pV(

)+ VP + pVV¥ -

4 _ _
(§#+'uv)‘7(VOU) +.[1VXQ = 0
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6.3 The momentum equation in terms of entropy
Use the Gibbs equation to replace the gradient of the pressure.

VP = pVh-pTVs

— 2
U = = U
§;+(QXU)+ V(h+—2—+ ‘I’)—TVs—

G))(fu + uv)V(V° T) + (5)%«‘2 0

Il

The inviscid form of the equation is (Crocco's equation)

_ 2 -
%(?]+(f2xi7)+ V(h+U7+'P)—TVs = 0,

If the flow is steady and inviscid

- — U2
(2xU) + V(h+7+‘l’)—TVs =0

If the stagnation enthalpy and entropy are constant

QxU =0



TSTANFORD

AERONAUTICS &

ASTRONAUTICS 6.4 Inviscid, Irrotational, homentropic flow

Hp+ ‘ (,OUk) =0

ot é’xk
IU; UrUph P
—+p ( ) + — =0
ot o"xi 2 axi
P ()
Py \Pg

These equations are the starting point for a small disturbance analysis that leads
to the equations that govern the propagation of sound. We will come back to the
topic of acoustics in Chapter 13.
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If the flow is steady the equations become

Ve (pU) = 0

LD 2 -
P _<£y
Py Po)

VP = a°Vp

Use

and

The stagnation enthalpy and entropy are constant everywhere in the flow.
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ASTRONAUTICS Continuity

l_]°Va2+(y—])a2V°(_] =0

(az) =h_U°U
y—1 ¢ 2

(r-1(n-L Y vev-7-v(LY) = 0

The problem reduces to a single equation for the velocity vector.
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Tmomwcs & 6.5 The Velocity Potential

ASTRONAUTICS
For irrotational flow the velocity field can be expressed in terms of a scalar potential.

U = V.

Substitute into the equation derived previously for the velocity

(y 1)(h _Q__Z_I_J)V U—U°V<

Steady, irrotational, homentropic flow is governed by the full potential equation

(_1) VD Vd?)%@ — Vch V<P)
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Tmomuncs & 6.5.1 Unsteady potential flow

ASTRONAUTICS
The momentum equation for irrotational flow including the gravitational potential is
— 2

oU U I\ (4 -
E+ V(h+7+ ??—TVS—(;)>(§M+MV) V(VeU) =0

Substitute the velocity potential

If the flow is inviscid and homentropic the momentum equation reduces to
2

V(a—cp+h+i+'lf) =0
ot 2
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The unsteady Bernoulli integral

2
oD U
—+h+ —+ ¥ = F(t
ot 2 (1)

If the flow is calorically perfect

2
a(p+ y£+g—+qf=F(t)
g y-1p 2

The equations for inviscid, homentropic, unsteady flow with gravity are

ZQE+————————V(D.VP+V2¢: 0

p ot Y
V(o"cb+ 4 I_’+VCD°VCD+W>=0
a y-1p 2

11



T STANFORD

AERONAUTICS &
ASTRONAUTICS

10/6/20

These equations can also be reduced to a single equation for the velocity potential.

F (s )_acp Vo »

(dF(’) D, - VO, V(D)+(y 1)(

Vo
V-
dt W)
Vo« (Ve + V Vq) V(D)

2
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6.5.2

Incompressible irrotational flow

The momentum equation in the absence of gravity reduces to

8U UU)V()

Introduce the scalar potential again

00 U P -0
a2 p '

The incompressible Bernoulli integral

2
o U P _
at+ > +5—F(t).

The velocity field satisfies Laplace’ s equation.

Vel = V& = 0
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6.6

The vorticity equation
Take the curl of the momentum equation.

2
Vx(aa—(tj+(QxU)+ V(h+—l-]2—- + ‘P)—TVs—-

BN+ )r -0+ ()oxa) = o

This becomes

%5;% Vx(@xT)- Vx(TVs)—

(gu + #V)Vx((é)V(Vo U)) N ,qu(G))fo)) _ 0

Use vector identities to rearrange
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For inviscid, homentropic flow

0Q

t

+UeVQ = (QeVNU-QVe

T

Vortex stretching term

U.
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For viscous, incompressible flow

V'a

—— = 24 UeVQ = (QeV)U +

I

In two dimensions the flow satisfies the convective diffusion equation.

”VZQ

Dt

This is the same equation satisfied by the temperature.

KVZT

Dt
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6.7 Fluid flow in three dimensions, the dual stream function

The particle path equations

dx o\
z - U('x))

dy _
dt

i ,

= V(x); i W(x).

= fGD: y=g& ) z=hE 1)

If we eliminate time between these three equations the result
is two families of stream-function surfaces.

- V@) ¥ = ¥aE).

These are integrals of the first order PDE

aq}’ atr’ Ll L
U-V¥ = Us— + ay +Wo =0, =12
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The velocity vector lies along the line of intersection of the two surfaces.

18
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The velocity field of an incompressible flow can be
represented by the curl of a vector potential.

U = VxA.

The vorticity and vector potential are
related by a vector Poisson equation.

VA = -0.
Where we have used the vector identity.
V(VeA)- V°A = Vx(VxA)

The vector potential is related to the dual stream-functions.

a=v¥vey = _¥vy
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AERONAUTICS & 6.9 Incompressible flow with mass and vorticity sources
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A general incompressible flow containing mass sources and distributed vorticity can be
constructed from a superposition of the fields generated by a scalar and a vector potential.

U=Vop+ VxA

Where the potentials satisfy the Poisson equation.

V2¢ = Q(x,1)
VA = -O(x, 1)
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ASTRONAUTICS 6.10 Turbulent flow

Recall the equations of motion.

ip . 9 _
+ axi(pU,-) =

ot
pU; g

J

5};(2#5,'1'_((2/3)M_Mv)6ijskk) =0

dp(e + k)
ot

(pUh —k(dT /9x;))- pG. U, -

l

——(ZMU S, —((2/3)u u,)o,.U =0

l

i kk)
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Decompose each flow variable into a mean and fluctuating part.
O(x, y,z,t) = Q(x, 3,2, 1) + Q'(x, y, 2, 1)

Consider N realizations of the flow. The mean of any flow variable is defined as

N
Q=§2Qn

n=1

For any term that is linear in the fluctuations the average is

0 0
_(Pai’) - 7
&xj J o'?xj

- : = 0 : _ i -
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Nonlinear terms are more complex.

=p+p
=U+U
V+V
W+ W

T < < v
Il

pUV = (p+p) U+U)V+V') =

UV +pUV+pUV' +pUV+pVU+pUV +pUV
0 0

pUV +

o Tl

Nonzero correlations of fluctuations are effective turbulent stresses
known as Reynolds stresses.

pUV = pUV +(p'UV +p'V'U+pUV +p UV = §UV+rxy|
turbulent

pUU = pUU+ (2p'U'U +pU'U' + p'U'U') = 5(7U+Txx|
turbulent

pVV = pVV +(2p' V'V +pV'V' +p'V'V') = v
turbulent
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Time dependent terms are ensemble averaged in the same way.

_ N _
ap 1 Jp| _ dp  dp' _ dp
(9t_NEt S % T T a
n=1 n
A TT N - T7 '\ T 7 p 1 1 1 — T7 l_l
pU; 1 o IPY; _0".0Ui+0"PUi+0"PUi+aPUi=é’PUi+0"PUi
ot N 2 ot , ot ot ot ot ot ot
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ASTRONAUTICS Incompressible flow - Navier Stokes Equations.
Yioo
o"xj

2
+ + =

(o
ot ﬁxj pox;, \p 8xjo"xj

=0

Incompressible flow - Reynolds Averaged Navier Stokes Equations (RANS).
oU
J _

o"xj

+ = S
ot 0xj pPox;

— 2_ 1 !
P 8xjo"xj &xj

ij = pULU;

’ turbulent

A model relating the Reynolds stresses to the mean flow is needed to close
the equations.
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6.11 Problems

Problem 1 - Derive equation (6.6) beginning with the Navier-Stokes equations. Do the
same for equation (6.47).

Problem 2 - Show that for homentropic flow of an ideal gas VP = a®Vp where a is the
local speed of sound.
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