FSTANFORD

AERONAUTICS &
ASTRONAUTICS

AA210A
Fundamentals of Compressible Flow

Chapter 5 -The conservation equations

1/19/22



TSTANFORD o _ o _
A TRONAUTICS 5.1 Leibniz rule for differentiation of integrals

Differentiation under the integral sign. According to the
fundamental theorem of calculus if

I(x) = r f(x")dx'
constant

then
d
dr f(x).
Similarly if
onstant
I(x) = f f(x")dx
X
then

dl

T =)
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Suppose the function depends on two variables
I(t) = J.bf(x', t)dx'
a

where the limits of integration are constant.

The derivative of the integral with respect to time is

ar(t) _ (9, ., ,
—d;—' = Eé;f(x,t)dx

But suppose the limits of the integral depend on time.

(1)
I(t, a(2), b(1)) = f(xX, 1)dx
a(t)
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Figure 5.1 Integration with a moving boundary. The function f(x,t)
is shown at one instant in time.

From the chain rule.

DI _ 9l dlda_ dldb
Dt 0t Jdadt Jbdt

In this case the derivative of the integral with respect to time is

(1)
DI d ., : db da
Bi = | 3 00 4 10,0 = a0

Time rate of change due to
movement of the boundaries.



TSTANFORD In three dimensions Leibniz’ rule describes the time rate of change

AERONAUTICS &

ASTRONAUTICS of the integral of some function of space and time, F, contained
inside a control volume V.

Xy Ua

F(x], Xp, X3 t)

X3 * U, (surface velocity)

D _ [ 9F =
I-)-;JFdV— EdV+JFUAondA.

V(t) V(1) A(t)

Rate of change of the total amount of F in V

Rate due to changes of F within V
+

1/19/22 Rate due to movement of the surface of V



TSTANFORD Consider a fluid with the velocity field defined at every point.
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X U

2 surface

stress
o,

heat
transfer

U(x],XZ,x3vt)

Let the velocity of each surface element coincide with the fluid velocity.
This is called a Lagrangian control volume.

D oF = -
D—tIFdV— EdV+ J.FUOndA.

V(t) V() A(t)

Use Gauss’s theorem to convert the surface integral to a volume integral.

D 3 oF o(FT
Reynolds transport T J Fav = j (E +V (FU))dv.
1/19/22 theorem 1420 70
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5.2 Conservation of mass

The Reynolds transport theorem applied to the density is
D ap — )
— dV = —_ 4+ V. U dV
D: ] P J (0"t (pU)
V(t) V(1)
Since there are no sources of mass contained in the control

volume and the choice of control volume is arbitrary the kernel
of the integral must be zero.

W velnl —
=+ Ve(pl) = 0

This is the general procedure that we will use to derive
the differential form of the equations of motion.
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Incompressible flow

Expand the continuity equation.

g’:+UOVp+pV0U 0.

If the density is constant then the continuity equation
reduces to

pVelU = 0.

1/19/22
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The stress tensor in a fluid is composed of two parts; an
isotropic part due to the pressure and a symmetric part due
to viscous friction.

where

Pt
I

010 =

100 (5..:1; i =
00 1 y

We deal only with Newtonian fluids for which the stress is linearly
related to the rate-of-strain.

2
Tij = 2HS;- (}” - “v) 0;iSkk

where

S = (1/2)(9U;/0x; + U ;/Ix,).

1/19/22
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Notice that viscous forces contribute to the normal stresses
through the non-zero diagonal terms in the stress tensor.

2
Ty = 2HS;- (}“ - “v)5ij5kk

Sum the diagonal terms to generate the mean
normal stress

(o = (1/3)o;; = —P+qukk.

mean

The “bulk viscosity” that appears here is often assumed to
be zero. This is the so-called Stokes hypothesis. In general
the bulk viscosity is not zero except for monatomic gases
but the Stokes hypothesis is often invoked anyway.

1/19/22
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The rate of change of the total amount of momentum inside
the control volume is determined by the external forces that

act on the control volume surface.

-9; j pUdV = j (= PI + 7) o 7idA + j pGdV .
V() A(t) Vi)

Use the Reynolds transport theorem to replace the left-hand-
side and Gauss’ s theorem to replace the surface integrals.

j(ggtlﬂ Ve(pUU + PI-7%) - pG)dV 0.

V(1)

Since there are no sources of momentum inside the control
volume and the choice of control volume is arbitrary, the kernel

must be zero.

‘9gt + Ve(pUU + PI-%) - pG =

11




TSTANFORD

AERONAUTICS &
ASTRONAUTICS

1/19/22

Dt

5.4 Conservation of energy

The rate of change of the total energy inside the control volume is
determined by the rate at which the external forces do work on the control
volume plus the rate of heat transfer across the control volume surface.

[ ple+iyav = | (~PI+7)eU-0)endA+ [ (pG eT)av.
V(1) A(r) V(1)

In a linear heat conducting medium

Again, use the Reynolds transport theorem to replace the left-hand-side and
Gauss’ s theorem to replace the surface integrals.

[ (ap(g:’"ﬂ V.(pU(e+f+k)—%-U+Q)—-p@'l_f)d" = 0.

V(

p

t)

12
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We make the usual argument.

Since there are no sources of energy inside the control volume and
the choice of control volume is arbitrary, the kernel must be zero.

dplerh) , v.(pv(e+g+k)_%-v+é)—pé-v =0

Stagnation enthalpy

1/19/22
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Typical gas transport properties at 300K and one atmosphere.

m
. B x 108, x x 102, = x 10°%, ~
Fluid ka/(m)(s) | P Lsmys) | P Pr
He 1.98 0 15.0 12.2 0.67
Ar 2.27 0 1.77 1.40 0.67
H, 0.887 | 32 17.3 10.8 0.71
N, 1.66 0.8 2.52 1.46 0.71
0, 207 | - 04 2.58 1.59 0.72
CO, 1.50 | 1,000 1.66 0837 | 0.75
Air 1.85 0.6 2.58 1.57 0.71
H,O (liquid) | 85.7 3.1 61 0.0857 | 6.0
Ethyl alcohol 110 | 45 | 183 0.14 15
Glycerine 134000 | 04 | 29 109 11,000
ucC
pr=-FL

14
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5.5 Summary - differential equations of motion

ot

P, Ve(pl) =

9gtU+ Ve(pUU +PI-7)—pG = 0
c}’p(e+k) (pU(e+£+k)—%'U+Q)—PG‘U=O
ot p
dp
8t+8x(pU)
PU; Pé, G, =0
5 3 (pUU + = T) =P

ap(eo'?: 2 " ox, (pU(

k)—rl.jUj+ Qi)—pGiUi =0

15
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5.6 Integral form of the equations of motion

Recall the Leibniz rule

DI Fav = J%ng+ JFUAOﬁdA.
V(1) V(t) A(t)

5.6.1 Integral equations on an Eulerian control volume

If the surface of the control volume is fixed in space, ie, the
velocity of the surface is zero then

d oF
S e _d
77 Fdv > V

Vv V

This is called an Eulerian control volume.

16
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The integral form of the continuity equation on an Eulerian
control volume is derived as follows. Let F= devoity

d _fap
= pdV = f&tdv
v 1%

Use the differential equation for continuity to replace the
partial derivative inside the integral on the right-hand-side

Ipdv IV (pU)dV

Use the Gauss theorem to convert the volume integral to a
surface integral. The integral form of the continuity equation is:

C%j,odv + JpU eiidA = 0

vV A
17
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The integral form of the conservation equations on
an Eulerian control volume is

%jpdV+j(pU)-ﬁdA =0
| %4 A

ijp—UdV + J(pU_U + PI-7) or’sz—J'pf}dV =0
dtv A v

%Jp(e + k)dV + j(pf](
Vv A

e+£+k
p

)—%-‘U+Q)-ﬁdA—‘j/(pf;-U)dV = 0

18
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5.6.2 Mixed Eulerian-Lagrangian control volumes

The integral form of the continuity equation on a Mixed Eulerian-
Lagrangian control volume is derived as follows. Let F in Liebniz
rule be the fluid density.

D dp — _
— —dV U dA
D1 f + J‘ P A on

V(1) V(1) A(1)

Use the differential equation for continuity to replace the partial
derivative inside the first integral on the right-hand-side and use
the Gauss theorem to convert the volume integral to a surface
integral. The integral form of the continuity equation on a Mixed
Eulerian-Lagrangian control volume is

D

B pdV = IpUOﬁdA+ Ip"UA-ﬁdA

V(1) A(t) A(r)

19
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The integral equations of motion on a general control volume where the surface
velocity is not the same as the fluid velocity are derived in a similar way.

The most general integral form of the conservation equations is

D o
= j pdV + jp(U-UA)-ndA =0
V(1) A(t)

Z%J Udv + j(pU(U-UA)+Pi—%)-ﬁdA_ | pGav =0
V(1) A(1) 40

Dt [ pte+kyav+ | (ple +k) o(T-Ty) +PLoTU—ToU + Q) o ndA-

V(1) A(1)

J' (pG e U)dV = 0
V(1)

Remember UA is the velocity of the control volume surface.

20
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5.7 Applications of control volume analysis

5.7.1 Example 1 - Solid body at rest, steady flow

Integral form of momentum conservation

j(pUU+Pi—%)-ﬁdA+ j(Pi—%)-ﬁdA = 0
AI AZ

21



TSTANFORD

AERONAUTICS &
ASTRONAUTICS

1/19/22

Momentum fluxes in the streamwise and normal directions are
equal to the lift and drag forces exerted by the flow on the body.

- Lift = f(Pi—%)-ﬁdA
AZ

Drag = j (PI -7) e 7idA
AZ

XI x2

J(pUU+Pi—%)-ﬁdA + Drag = 0.
A, | | |

X]

J(pUU+P}-%)-ﬁdA + Lift = 0.

A
1
X2

22
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5.7.2 Example 2 -Channel flow with heat addition

"
/:
A
I
I
I
I

—>

2
n < lpmn
— /T |
5Qw | =

-
I
I
I
I
[

Mass conservation

J(pU) o iidA + j(p(‘/) enidA = 0.
Aj A,

Energy conservation

J(pU(e+k)+PU—%-U+Q)-ﬁdA = 0.
A

23
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Jpl_](e+§+k)-r‘sz = —j@ondA.
A A
Most of the conductive heat transfer is through the wall.

_J‘Q o ndA s_j Q endA = 80.
A A

w

The energy balance reduces to
JphtU ondA + J‘pht—U enidA = 6Q.
Az A

When the vector multiplication is carried out the energy balance becomes

fszzhtsz —IpIUIhﬂdA = 50.
A, A

The heat addition (or removal) per unit mass flow is equal to the change
in stagnation enthalpy of the flow.

1/19/22
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5.7.3 Example 3 - A Rotating fan in a stationary flow

The control
volume
surface is
attached to
and moves
with the fan
surface.

The integrated mass fluxes are zero.

j(pU)oﬁdA =0
r

Momentum fluxes are equal to the surface forces on the fan

j(pUU+Pi—%) o idA + j(p‘U(U-UAHPi—%) eiidA = 0
A A,

e

J(pUU+P?-%) edA+F = 0
Ae

25
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- = - The flow and fan velocity on the
Fo= j (PI-17) endA fan surface are the same due to

A the no-slip condition.

f

The integrated energy fluxes are equal to the work done by the flow on the fan.

I(pU(e+k)+PU—%0U)0ﬁdA+ I(PU-%oU)-ﬁdA = 0.
A A

e f

elU)eondA = 6W

L L

Work = J (PU -
A

f
If the flow is adiabatic and work by viscous normal stresses is neglected the energy
equation becomes.

Jp(e+§+k)z70ﬁdA+5W =0
A

e

The work per unit mass flow is equal to the change in stagnation enthalpy

1119/22 of the flow. o6
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5.7.4

Example 3 - Combined heat transfer and work

In a general situation with heat transfer and work

27
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Example - Drag of a 2-D airfoil

28
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FSTAN FORD Continuity J-

A +A +AHA HA,

Note U=0 on A,

-pUA+ | pU-ndA+jp (y)dy=0
Ay + Ay
L L h
-p.U.2h+ [pvax —[pvax +[p,(y)U,(y)dy=0
0 A, 0 As -h

Momentum
| (pU(? +P1=—%)-ﬁdA -0

A+Ay +A;+A A,

L U=U. Very small , U=U. ;ery small
—(me,i+Pm—r_m)2h+_|'(pUV %dx _[(pUV T J)dx +j p.(y
0 4 0 As

J(puu,

A

~(p.U2+P. -1, )2h+ .L[(pUmV)dx
0

A -h

Subtract the continuity equation multiplied by U _

j.pU Vdx

4 0

7
—p.U22h+ [ pU.V dx
0

Az

1/19/22

U;(»)+B(y)-

+I(p4 JUZ (y)+ P.(y)-

., () dy+ [(PI-

I %)-ﬁdAl -0

A,

B | y))dy +Drag =0

+jp4 )U_U,(y)dy=0

29
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h

J((P,; (y)U::' (Y)_ P, (y)UmU4 (Y))'*' (P4 (Y)_ Pc,c,)—'(’l'm4 (y)—'rxxi_} ))dy+ Drag =0

~h

Drag = [ (p()V.0.0) POV O) (2.~ B, ()~ (5. ~7., )

p.U. s Pt pU

—hit

Cbzz"j"(p4(y/t)u4(y/r)(1 m(wﬁ]}(a—a(y/r)]_(rm—r.u.,(y/r)

M

b

4

)

In the far wake the pressure and viscous normal stress terms are vanishingly small and %i 1

e Dra
Cp= 2,[(1 —W]d(%) Cp= lp ngf

The Reynolds number

1
s LU f .
R p.U_t 2 Dynamic Pressure
: U, (l %) Characteristic viscous stress
)

30
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5.8 Stagnation enthalpy, temperature and pressure

5.8.1 Stagnation enthalpy of a fluid element

Using the energy equation

dple + k) , v.(pv(e+€+k)_%-ﬁ+@)-pc‘;.ﬁ =0
ot 0
Along with the continuity equation

Dp =
“P o _pVel
pr - PV

and the identity

D(Pj _IDP PDp

Di\p

One can derive the transport equation for the stagnation enthalpy.

Dh - - -
pﬁ—t-t= Vo(%oU——Q)+pG-U+QE.

31
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P(t) T(t)

.

initial state blowdown final state

Figure 5.5 A adiabatic pressure vessel exhausting to the surroundings.

Assume the divergence term is small then

Dhy _ op
Por T o

Neglect the kinetic energy and assume the temperature and pressure are constant over
the interior of the sphere. Then

dh _ dP
Par T
Which is the Gibbs equation for an isentropic process. If the gas is calorically perfect
Z__]

Ty _(fa) 7
Tl.—P. '

1

1/19/22 32
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5.8.3  Stagnation enthalpy and temperature in steady flow

Py Ty hy

Figure 5.6 Schematic of a stagnation process in steady flow

For flow in an adiabatic streamtube

J poUohpdA = _[ pU h, dA

Ay
Since the mass flow at any point in the tube is the same then the
stagnation enthalpy per unit mass is also the same and we would expect

P
1 1.2 1.2
h,, = e1+[7]+k1 = h;+3U; = h2+§U2 = h,

Neglecting viscous work, the stagnation enthalpy is conserved along an
adiabatic path.

33
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The stagnation temperature is defined by the enthalpy relation

T

1
hi—h= | Gl = JUiU; (5.75)
T

The stagnation temperature is the temperature reached by an element of gas brought to

rest adiabatically. For a calorically perfect ideal gas with constant specific heat in the
range of temperatures between 7' and T; (5.75) can be written

1
CpTy = CpT + Ul (5.76)

In terms of the Mach number

1/19/22
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Stagnation temperature in fixed and moving frames

1
Cth == CpT+§UiUi
CT'=¢C.T ]U'U'
p't ~ p +-2' i~

Transformation of kinetic energy

] ' ' ] ] 7 7 ] 9 3 .I s 3
SUU; = SUU+ 5X(X =20) + 5Y(F = 2V) + 32(Z - 2W)

Stagnation temperature

1. .. .. 1. .
1 - = _ il _ - _2
Cth Cth+2X(X 2U)+2Y(Y 2V) + 2Z(Z W)

1/19/22
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5.8.5  Stagnation pressure

Gibbs equation

dT dP
dS = CP—Y—: —R—F

along an isentropic path
T
2dp 2 dT
RJJD P _ f c (14
p, P Jr, P T

Integrate the pressure term

T

P 2
2 1 dT
P, EXP(EJ‘T Cp(T) Tj
1

36
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If an element of fluid is brought to rest isentropically

P 1 dT
t

L Z TYSZ
P Exp[RIT Cp )T)

If the heat capacity is constant

s
P T~v-1 _ y—1
t_ (1t B y—1\,,2
7=(7) (T

37
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AERONAUTICS & 5.8.6 Transforming the stagnation pressure between fixed and moving frames
v
b _ (Ey‘
P T
v
i
P \T

Divide out the static pressure and temperature

(L)
P, T
¥

C o oy yey y—1
pi = p|g XE =20+ Y(Y -2V) + Z(Z-2W)|" ™"
t ZCPTI

1/19/22 38
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5.9 Problems

Problem 1 - Work out the time derivative of the following integral.

Sin(t)
I(t)= / e"tdzx (5.92)
t2

Obtain dI/dt in two ways: (1) by directly integrating, then differentiating the result and
(2) by applying Leibniz’ rule (5.9) then carrying out the integration.

Problem 2 - In Chapter 2, Problem 2 we worked out a hypothetical incompressible steady
flow with the velocity components

(U, V) = (Cos (z) Cos (y) , Sin (x) Sin (y)) . (5.93)

This 2-D flow clearly satisfies the continuity equation (conservation of mass), could it
possibly satisfy conservation of momentum for an inviscid fluid? To find out work out the
substantial derivatives of the velocity components and equate the results to the partial
derivatives of the pressure that appear in the momentum equation. The differential of the
pressure is

dP = —dz + —ydy. (5.94)

Show by the cross derivative test whether a pressure field exists that could enable (5.93)
to satisfy momentum conservation. If such a pressure field exists work it out.

39
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Problem 3 - Consider steady flow in one dimension where U = (U(z), 0, 0) and all velocity
gradients are zero except

A= —. 5.95
n=2 (5.95)
Work out the components of the Newtonian viscous stress tensor 7;;. Note the role of the
bulk viscosity.

Problem 4 - A cold gas thruster on a spacecraft uses Helium (atomic weight 4) at a
chamber temperature of 300 K and a chamber pressure of one atmosphere. The gas ex-
hausts adiabatically through a large area ratio nozzle to the vacuum of space. Estimate
the maximum speed of the exhaust gas.

Problem 5 - Work out equation (5.67).

Problem 6 - Steady flow through the empty test section of a wind tunnel with parallel
walls and a rectangular cross-section is shown below. Use a control volume balance to
relate the integrated velocity and pressure profiles at stations 1 and 2 to an integral of the
wall shear stress.

e | -

- N

Figure 5.11: Steady flow in an empty wind tunnel

State any assumptions used.
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Problem 7 - Use a control volume balance to show that the drag of a circular cylinder at
low Mach number can be related to an integral of the velocity and stress profile in the wake
downstream of the cylinder. Be sure to use the continuity equation to help account for the
x-momentum convected out of the control volume through the upper and lower surfaces.
State any assumptions used.

Problem 8 - Use a control volume balance to evaluate the lift of a three dimensional wing
in an infinite steady stream. Assume the Mach number is low enough so that there are no
shock waves formed.

Figure 5.12: 8-D wing in an infinite stream

1) Select an appropriate control volume.
2) Write down the integral form of the mass conservation equation.
3) Write down the integral form of the momentum conservation equation.

4) Evaluate the various terms on the control volume boundary so as to express the lift of
the wing in terms of an integral over the downstream wake.

5) Why did I stipulate that there are no shock waves? Briefly state any other assumptions
that went in to your solution.

Problem 9 - Suppose a model 3-D wing is contained in a finite sized wind tunnel test
section with horizontal and vertical walls as shown below.

N/ Z - P

o ZEEN

Figure 5.13: 3-D wing in a wind tunnel

What would a test engineer have to measure to determine lift and drag in the absence of
sensors on the model or a mechanical balance for directly measuring forces? Consider a
control volume that coincides with the wind tunnel walls.

41



