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Fundamentals of Compressible Flow

Chapter 5 -The conservation equations
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5.1 Leibniz rule for differentiation of integrals
Differentiation under the integral sign. According to the 
fundamental theorem of calculus if 

then 

Similarly if 

then 
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Suppose the function depends on two variables 

where the limits of integration are constant.

The derivative of the integral with respect to time is 

But suppose the limits of the integral depend on time.
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From the chain rule. 

In this case the derivative of the integral with respect to time is 

Time rate of change due to 
movement of the boundaries.1/19/22 4



In three dimensions Leibniz’ rule describes the time rate of change 
of the integral of some function of space and time, F , contained 
inside a control volume V. 
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Consider a fluid with the velocity field defined at every point. 

Let the velocity of each surface element coincide with the fluid velocity. 
This is called a Lagrangian control volume. 

Use Gauss’s theorem to convert the surface integral to a volume integral. 

Reynolds transport 
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5.2 Conservation of mass

The Reynolds transport theorem applied to the density is 

Since there are no sources of mass contained in the control 
volume and the choice of control volume is arbitrary the kernel 
of the integral must be zero.

This is the general procedure that we will use to derive 
the differential form of the equations of motion.
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Incompressible flow

Expand the continuity equation.

If the density is constant then the continuity equation 
reduces to
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5.3 Conservation of momentum
The stress tensor in a fluid is composed of two parts; an 
isotropic part due to the pressure and a symmetric part due 
to viscous friction.

where

We deal only with Newtonian fluids for which the stress is linearly 
related to the rate-of-strain. 

where
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Notice that viscous forces contribute to the normal stresses 
through the non-zero diagonal terms in the stress tensor. 

Sum the diagonal terms to generate the mean 
normal stress 

The “bulk viscosity” that appears here is often assumed to 
be zero. This is the so-called Stokes hypothesis. In general 
the bulk viscosity is not zero except for monatomic gases 
but the Stokes hypothesis is often invoked anyway. 
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The rate of change of the total amount of momentum inside 
the control volume is determined by the external forces that 
act on the control volume surface.

Use the Reynolds transport theorem to replace the left-hand-
side and Gauss’s theorem to replace the surface integrals.

Since there are no sources of momentum inside the control 
volume and the choice of control volume is arbitrary, the kernel 
must be zero.
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5.4 Conservation of energy

The rate of change of the total energy inside the control volume is 
determined by the rate at which the external forces do work on the control 
volume plus the rate of heat transfer across the control volume surface.

In a linear heat conducting medium

Again, use the Reynolds transport theorem to replace the left-hand-side and 
Gauss’s theorem to replace the surface integrals.
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Since there are no sources of energy inside the control volume and 
the choice of control volume is arbitrary, the kernel must be zero.

We make the usual argument.

Stagnation enthalpy
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Typical gas transport properties at 300K and one atmosphere.
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5.5 Summary - differential equations of motion
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5.6 Integral form of the equations of motion

Recall the Leibniz rule

If the surface of the control volume is fixed in space, ie, the 
velocity of the surface is zero then

This is called an Eulerian control volume.

5.6.1 Integral equations on an Eulerian control volume
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The integral form of the continuity equation on an Eulerian
control volume is derived as follows. Let F= density

Use the differential equation for continuity to replace the 
partial derivative inside the integral on the right-hand-side

Use the Gauss theorem to convert the volume integral to a 
surface integral. The integral form of the continuity equation is:
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The integral form of the conservation equations on 
an Eulerian control volume is
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5.6.2 Mixed Eulerian-Lagrangian control volumes

The integral form of the continuity equation on a Mixed Eulerian-
Lagrangian control volume is derived as follows. Let F in Liebniz 
rule be the fluid density.

Use the differential equation for continuity to replace the partial 
derivative inside the first integral on the right-hand-side and use 
the Gauss theorem to convert the volume integral to a surface 
integral. The integral form of the continuity equation on a Mixed 
Eulerian-Lagrangian control volume is 
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The integral equations of motion on a general control volume where the surface 
velocity is not the same as the fluid velocity are derived in a similar way. 

The most general integral form of the conservation equations is

Remember UA is the velocity of the control volume surface.
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5.7.1 Example 1 - Solid body at rest, steady flow

Integral form of mass conservation

Integral form of momentum conservation

5.7 Applications of control volume analysis
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Momentum fluxes in the streamwise and normal directions are 
equal to the lift and drag forces exerted by the flow on the body.
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5.7.2 Example 2 -Channel flow with heat addition

Mass conservation

Energy conservation

1/19/22 23



To a good approximation the energy balance becomes

Most of the conductive heat transfer is through the wall.

The energy balance reduces to

When the vector multiplication is carried out the energy balance becomes

The heat addition (or removal) per unit mass flow is equal to the change 
in stagnation enthalpy of the flow.1/19/22 24



5.7.3 Example 3 - A Rotating fan in a stationary flow

The integrated mass fluxes are zero.

Momentum fluxes are equal to the surface forces on the fan

The control 
volume 
surface is 
attached to 
and moves 
with the fan 
surface.
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The vector force by the flow on the fan is

The integrated energy fluxes are equal to the work done by the flow on the fan.

If the flow is adiabatic and work by viscous normal stresses is neglected the energy 
equation becomes.

The work per unit mass flow is equal to the change in stagnation enthalpy 
of the flow.

The flow and fan velocity on the 
fan surface are the same due to 
the no-slip condition.
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In a general situation with heat transfer and work

5.7.4 Example 3 - Combined heat transfer and work

1/19/22 27



Example - Drag of a 2-D airfoil
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5.8 Stagnation enthalpy, temperature and pressure

Using the energy equation

One can derive the transport equation for the stagnation enthalpy.

5.8.1 Stagnation enthalpy of a fluid element

Along with the continuity equation

and the identity
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5.8.2 Blowdown from a pressure vessel revisited

Assume the divergence term is small then

Neglect the kinetic energy and assume the temperature and pressure are constant over 
the interior of the sphere. Then

Which is the Gibbs equation for an isentropic process. If the gas is calorically perfect
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5.8.3 Stagnation enthalpy and temperature in steady flow

For flow in an adiabatic streamtube

Since the mass flow at any point in the tube is the same then the 
stagnation enthalpy per unit mass is also the same and we would expect

Neglecting viscous work, the stagnation enthalpy is conserved along an 
adiabatic path.
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In terms of the Mach number
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5.8.4 Frames of reference

Stagnation temperature in fixed and moving frames

Transformation of kinetic energy

Stagnation temperature
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5.8.5 Stagnation pressure

Gibbs equation

along an isentropic path

Integrate the pressure term
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Changes in the stagnation state are related by the Gibbs equation.

If an element of fluid is brought to rest isentropically

If the heat capacity is constant
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5.8.6 Transforming the stagnation pressure between fixed and moving frames

Divide out the static pressure and temperature

2
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5.9  Problems
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