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2.1 Introduction

The power of thermodynamics comes from the fact that
the change in the state of a fluid is independent of the

actual physical process by which the change is achieved;

thermodynamic theory is expressed in terms of perfect
differentials.

2.2 Thermodynamics

Piston-cylinder combination.

PdV

First law of thermodynamics.

6Q = dE + 6W.

50 = dE + PdV
9/29/20
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The work done by the system is the mechanical work by a force

acting over a distance.

PdV = (F/A)d(Ax) = Fdx

When dealing with fluid flows it is convenient to work in terms of

intensive (per unit mass) variables.
0q = de + Pdv

If there is an equation of state for the substance
inside the cylinder the first law is

0q = de + P(e, v)dv

9/29/20
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According to Pfaff’s theorem there must exist an integrating factor such that
the first law becomes a perfect differential.

o0q _ de N P(e, v)
T(e,v)  T(e,v) T(e,v)

dv = ds(e,v)

Once one accepts the first law and the existence of an equation of state
then two new variables of state are implied; an integrating factor, the
temperature, and an associated integral called entropy. The final result is
the famous Gibbs equation which is the starting point for the field of
thermodynamics

Tds = de + Pdv

The partial derivatives of the entropy are

c?s 1 aS _ P(e’ V)

de - T(e,v) oV - T(e,v)

vV = constant

e = constant
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Figure 2.3 P-V diagram of the Carnot Cycle
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Thermodynamic efficiency of the cycle

_ work output by the system during the cycle _ W

heat added to the system during the cycle 0,

First Law 60 = dE + 6W.

Over the cycle the change in internal energy is zero and the work done is

W= 0,+0;
So the effici i
o the efficiency is . 1+9£
9,
Since the temperature is constant during the heat interaction
Q; &
T, " T, §|5dS—955q 0,0 _
Finally T T
r,
Ne = l—-—<1
TZ
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2.3.1 The absolute scale of temperature

For any Carnot cycle regardless of the working fluid

Q; r,

QZ T2
This relation enables an absolute scale of temperature to be

defined that is independent of the properties of any particular
substance.

There is an arbitrary scale factor in the definition of the
temperature. The convention is to put the freezing point of
water exactly at 273.15 Kelvin. Two scales are widely used
and they are related by

9

TRankine = (5) TKelvin :

T + 459.67

Rankine ~ TFarenheit

T +273.15

Kelvin — TCentigrade
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2.4 Enthalpy

It is often useful to exchange dependent and independent variables. Define
the enthalpy.

h = e+ Pv

In terms of the enthalpy, the Gibbs equation becomes

ds = Y _Yap

T T

In this way the pressure has been converted to an independent variable.

dh v(h, P).
T(h, P) T(h, P)dp

ds(h, P) =

The partial derivatives of the entropy are

aS _ 1 ig_ — _V(h, P)
oh p " T(h, P) oP|, T(h, P)

= constant = constant

9/29/20
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By defining additional variables of state and rearranging the Gibbs

equation suitably, any variable of state can be expressed in terms
of any two others.

e=¢0T,P); s =C{T,v)
g = ¢le,P); h=oT,P)
s = 0(h,P) ; s = B(e, V)
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2.4.1 Gibbs equation on a fluid element

We will often use the Gibbs equation to describe the
thermodynamic state of a fluid element moving in a flow.

Ds IDh 1 DP

Dt  TDt pTDt
or

Ds _ IDe 1 Dp

Dt T Dt pZTDt

9/29/20
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2.5 Heat capacities

0q >

Heat capacity at constant volume.

8q=de(T,v)+P(T,v)dv= 9 dT + de dv+P(T v)dv
aT v=const aV T'=const
dv=0
' dT v=const aT v=const

9/29/20
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Heat capacity at constant pressure.

5q=dh(T.P)-v(T,P)dP = oh dT + oh dP—v(T,P)dP
J P=const JP T'=const
dP =0
b dT P=const aT P=const

9/29/20
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One way to measure heat capacity is to use a
Differential Scanning Calorimeter

REFERENCE PAN SAMPLE PAN
pans 1J
wh.
A —
" —— sample

Reference m | P

material  =—a__| -

Pt resistance

I——\NW\/‘ ’\/\/W\/—-l "
[O0000000) | | /O0000000)

heaters

The energy needed to maintain the reference and
test sample at the same temperature is measured
enabling the heat capacity of the test sample to be
determined.

13
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W(T)= | C(T)dT +AH

Enthalpy of a general substance.

WT.P)=[C,(T.P)dT + f(P)

Typically the heat capacity and enthalpy are tabulated as functions of
temperature at a standard pressure of 10°N / m’

The standard enthalpy of a substance at temperature T is.

Tﬁtsion T,

vaporization

T
+ [ C@ydar+aH; + [ cmar

vaporization
Tfuxion T,

vaporization

o

fusion

14
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2.6 Ideal gases (also called perfect gases)

Ideal (perfect) gas equation of state
nRuT

P =
Vv

Universal gas constant

R, = 8314.472 Joules/(kgmole — K)

The ideal (perfect) gas law in terms of the density

P = pRT

15
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where

R=R/M,
For Air the gas constant is

28.9644 kilograms/kmole |

air
\

’_k

M

w

R = 287.06 m’/sec

The perfect gas equation of state implies that the heat capacity,
internal energy and enthalpy depend only on temperature.

WT) = e+ P/p = e(T) + RT

16
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For ideal gases we can determine the internal energy and enthalpy using

de = C (T)dT ; dh = C(T)dT
The gas constant can be expressed in terms of the heat capacities.
RdT = dh—de = (C,-C)dT
R=C,-C,
The ratio of specific heats is a key parameter characterizing a gas.

C

17
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The ideal gas model has two basic assumptions:

1) The gas is composed of colliding molecules with negligible volume.

2) The force between particles is negligible.

In real gases the volume of the molecules becomes
important at high densities and there are van der Waals
forces between molecules that act at short distances.

These effects are accounted for in the van der Waals equation of
state.

1 -bp RT
a 27 a _
5_§RTC , ;2-,_27PC

18
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2.7

Constant specific heat

For monatomic gases such as helium the heat capacity is
constant over a very wide range of temperatures from very
low temperatures close to vaporization up to ionization
temperatures.

The heat capacity of diatomic gases such as nitrogen is nearly
constant within a certain range of temperatures well above
the vaporization temperature and well below combustion
temperatures.

It is often convenient to assume that the heat capacity is
constant over the temperature range of interest. Under this
assumption the gas is said to be calorically perfect.

For constant heat capacity the Gibbs equation
ds  (dT dp)

2 o= —(v=DZE

C, (F)- -1 p

can be easily integrated. o
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Consider a parcel of gas that moves between two pointsin a
flow.

y

o2

The integrated Gibbs equation in terms of temperature and density

(y—1
Sy—8; T\, Y71
exp = |=|| =

¢ 'y \P;

1%

20
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or equivalently

_dh (1), _ 4T edp
ds = T—(pT)dp = CPT %

The integrated Gibbs equation in terms of temperature and pressure

S, 5, T,\(P, _(L}l)
A5 Ele)

The integrated Gibbs equation in terms of pressure and density

exp e | I:g Eg—y
¢ A\PINPI

Vv

21
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Lines of constant entropy change

"UI"U
~ o

In an isentropic process

Y

i (T_Z)y" 5
P, \T, P,

1

1

(Zé)y—I
iy

These relations are sometimes called the isentropic chain

22
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2.8 The entropy of mixing

2.8.1 Sample problem - thermal mixing — constant pressure

SNONN NN NN N NN NNN NN N NNNNANANN

SONNNNNNNNNNNNANNNNNNNNNN]

Z

T =Tgpa

NI
N
\
\
\
T,=600K N
N
N
\

g
o
[
(T8
]
-]
2
/////1///// /
77777777777

///////////
////////////

4

SONNNNNNNNNNNNNNNNNNANNN NNNNNNNNNNNNNNNNNNNNNN

Figure 2.9 Thermal mixing of an ideal gas at two temperatures

Thermal energy

E - Eref = macv(Ta N Tref) + mva(Tb N Tref) = (ma + mb)cv(Tfinal N Tref)

manTa + mvaTb = (ma + mb)chfinal

23
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From the ideal gas law

m T
b  “a
PV = m,RT, = m,RT, -2 =~
a b
m
T T T“+(n7b)Tb 2T T
mT +m
T . _ _aa b"b _ a _ a b _ 400K
final (m, + my) m, T,+T,
o5
ma

For a constant pressure process

S final ~ Sa - In Tfinal
C, T

S final ~5b _ laninal
C, T,

9/29/20
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Entropy change of the system

- S final ~ Sa o S final ~ Sb
S =S, a C b C
final  “initial p p

Cp m, + my
T, (T T
In—J +( “] In—J 400 400
222 4+ (2)In 22X
S final ~ Sinitial _ I Ty) T _ n600+( )n300
C, T 1+ (2)
I+ |—=
r,

S /. - 8. .. —
final ~ Sinitial _ 0.405465 + 2(0.28768) — 00566

Cp 3

25
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2.8.2  Entropy change due to mixing of distinct gases

SONNNNNNNNNONNNNNNNNNNANN

ma
Mw,
P, T

VL L7777 777

my,
Mwy
P, T

SONNNNNNNNNNNNNNNNNNNANN

m,+my

P,T

(/L /I/// /
7777777777,

SOANNNANNNNANNNANNNNNNNNNN

LA

Figure 2.10 Mixing of two ideal gases at constant pressure and

temperature

5p

AT S SSSSSSSSSSSSSSSSSS

dT dP
ds = Cpor —Rp
Intensive entropy of each gas
. dr R,
CPa - Mw InP + o,
. dar R,
InP
CPb 7 Mwb nP+ o,

Extensive entropy of the system

S

26
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sbefore =

Define mass fractions

m mb

Xp =

ma+mb

Intensive entropy of the system before mixing

S
_ “before _
Sbefore m +m, = XaSa T XpSp
a

27
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After mixing each gas fills the volume. Partial pressures after mixing are

p = Malu, p, = b u g
@ VMw, bV Mw,
P=P_ +P,

ar R, ar R,
Safter = xa(_[cpa T MWalnPa + oca] + Zb{jcpb n —MwblnPb + abJ

Ru Ru P
s — S =X In +X In >0
after “before aMwa (Pa) wab (Pb)

28
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2.9 Isentropic Expansion

2.9.1 Blowdown of a pressure vessel

P, > P,
Pa Ta
‘ o @
initial state blowdown final state

Figure 2.11 A spherical, thermally insulated pressure vessel
exhausts to the surroundings through a small hole.

Pi > Pa

initial state final state

29
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Final gas temperature inside the sphere

Entropy change for the ejected gas

S,—3S. T
f i _a _(Y_:l>
Cp Log(Ti) ” Log(

Ta
P

l

-)

(2.82)

(2.83)

30
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2.9.2 Work done by an expanding gas

- L, >
Py T, pm? ) d
|<_L1_>| U1=0
U,
P, T, m] —»
Figure 2.12 Projectile energized by an expanding gas
LZ ]
W = f PdV = Zm (2.84)
I 2
1
(4m p as)
2
P P\’ wd L Ly
Po_ (_> = |2 f) (2.85)
P] P mgas
2
\7td L 7/

31
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2 L
§mU2 <—'4——>fL1P1(7:> dL
pP,L"

2 4 Jr-1
erZL]
V)= —
1 2 PV L)"~!
_mU _— —— ]— ean
2772 y—1 L,

3
-
N
|
S
oQ
Q
)
@
<
N
~
T
~
|
—
t~| ~
D~
=
|
;_/N

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)

291)
32
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- L2 .
Pl Tl ,/,1,15 1 d
<—L1_> U1=0
U,
P, T, mj —

Figure 2.12 Projectile energized by an expanding gas

P, = 4x10°NM® T, =20000K L,=2M
d =004M m=0.1lkg M =4.0026
Ru
P,V, = mgaS(AT) T,. (2.92)
w
CPIVIML) 4% 10% 1 m(0.04)%(0.0)y | 4.0026 \
"gas = T (Ru) = S\~ ) Ga)  0008ke 293)

9/29/20



TSTANFORD

AERONAUTICS &
ASTRONAUTICS

9/29/20

C, = (3/2)R

0.1 2)\ 4.0026

(222 3) S o - ()

a; = [JYRT, = 2631 M/Sec.

L

y—1 2/3
1 0.1
T, = TI( L—z) = 2000(——2)

a, =\|YRT, =968 M /Sec

=NE
H = [140.7 M/Sec .

= 271 K.

(2.94)

(2.95)

(2.96)

(2.97)

34
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2.10 Some results from statistical mechanics

Heat capacities of monatomic and diatomic gases are predicted very
accurately using the theory of statistical mechanics which treats the gas as
a very large ensemble of colliding particles.

=
+
()

_ . _ Bp .
C,=55"R; C,=35R;, v

=

Where beta is the number of degrees of freedom of the appropriate
molecular model.

According to the Law of Equipartition each degree of freedom contains
1/2 kT of the energy of the molecule where k is Boltzmann's constant.

k = 138x 10 > Joules/K

35
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Molecular model of a gas

I monatomic gas
—_— /1 2 1 2 1 2
@ E = ému +§mv +§mw
/
Wy, Ip
T diatomic gas
A

[
D S B B ]I 2 ]I 2 ]1
d, ° e d C—> Wy, I solid dumbell ~ » 191 +§ 2(1)2+§

spring-mass 2T 2

)
A
e
P
Il
|
S
e
+
|
A
S

2
303

36
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E

diatomic gas

g E 1, 2,1 2 1, 2
s solid dumbell = 51197 T 51,0y + 51305

(B o
- ﬁ h o= 6626x 107 J-sec

| = |
—_
< »

_(h)ZK(K+])_<h)2K(K+1) K=0123
2, 3diatomic molecule ~— \ > — \5x T Molssn e
2n 212, 3 2n 2(mrD2)
m, x10"ke | Dx10"m | 6 °K
1
ék 6,~E 2, 3diatomic molecule Ez (1)'18222 0'172:6 le';z
. . | . 5
0, 13.284 1.207 8.32
o _ < A )2 9 Co 11.392 1.13 11.08
r— 2
2m k (mTD ) Figure A.12: Rotational constants for several diatomic gases.
2
E _ (ﬁ)zw 0. = () 2
ldiatomic molecule 271 2 I] r It kI,
0., ~ 36706,

electron cloud hollow sphere 37
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K
OLIC I N
spring-mass émrx + §Kx

h\ ©o h\1 |k
By = (gooits) 0= ()7 = G
1% o) Yo\ T 5 4 2m) k 27) kyfm,
j=0,1,2,3
27 0 °K
m, x 107" kg K(N/M) .
H, 0.8393 570 6297
N, 11.629 2240 3354
0, 13.284 1140 2238
CO 11.392 1860 3087
Note that the vibrational energy is never zero. This zero point h o
energy is actually quite large but it has no effect on the heat EV|J.:O = (2—)70
capacity and therefore no effect on the temperature of the gas. n

38
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For a monatomic gas there are three translational degrees of
freedom. The thermal energy per molecule is

¢ = (3/2)kT

where

k = 1.38x 10 Z Joules/K .

Over one mole of the gas

Né = (3/2)R,T

where

N = 6.023)(1026 molecules/kmole.

39
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The thermal energy per unit mass is

e = (3/2)RT

For monatomic gases over a very wide range of
temperatures

5 | 3
C,=3R . C, = 3R

At room temperature a diatomic gas has two additional
rotational degrees of freedom.

N
N1

C = =R ; C

40
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As the temperature increases two more vibrational degrees
of freedom come into play. At very high temperatures

9 7
C, = 3R ; C, = 5R

A theory of heat capacity developed using quantum statistical
mechanics leads to

(6,72T) °
Sinh(8 /2T)

_7,
R 2

41
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2.11 Enthalpy - diatomic gases

The heat capacity relation can be integrated

7 (6,72T) 1°
wT) = [cyar = RJ[§+{Sinh(9v/2T)} ]a’T

to give

(6,/T)

(6,/T)
(")

W) _ 7,
RT 2

42
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Enthalpy per mole of a perfect gas is determined from

dh=C (T)dT

Enthalpy per mole of a perfect gas species i

4

h(T)=h (T, )= (1)~ k(T )= Co(T)aT

Standard enthalpy of the ith perfect gas species.
o T’"’f o o
B(T,)= |, " C,dT +(0)

Here the enthalpy constant is the enthalpy change
associated with the chemical bond breaking and
making at absolute zero.

9/29/20
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Actually, 1t is much easier to use a reference temperature near room temperature.

o T o o
W (T)= . C,(T)dT +Ah,(T,,,)

Ah’ ; 1s the enthalpy change per mole of a gas species when the atoms are

brought together at 298.15K. Most measurements of the chemical bond

portion of the enthalpy are made at or close to this temperature.

Coffee cup
Bomb Calorimeter calorimeter
SRR . thermometer
A {4 thermometer
ignith b i
stirrer: %Ega“ magnifying e
S0—gyeniece ']
Insulating S = _41“ l\ ¢ /J
Jacket i
vucket g P reacltams — solvent
neater ! crucible products styrofoam
oo coffee cups
= >
ignition coil  semple steel bomb - .
D537 Ermyedopantia Britasnics, o, | 4 4
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Tabulated enthalpy for Nitrogen

Nitrogen (Ny), ideal gas-reference state, mol. wt. = 28.0134

Enthalply Reference Temperature = T, = 298.15 K
J K 'mop! —————
T/K Cp’ $? [GU-HYTHYT
0 0. 0. INFINITE
100 29.104  159.811 217490
200 A 179.985 194.272
250 29.111 186.481  192.088
298.15 29.124 191,609 191.609
300 29.125 191.789 191.610
350 29.165 196.281 191,964
400 29.249 200.181 192.753
450 29.387 203.633 193.774
500 29.580 206.739 194.917
600 30.110 212,176  197.353
700 30.754 216.866 199.813
800 31.433 221.017 202.209
900 32.090 224.757 204.510
1000 32.697 228.170 206.708
T TR
2

H-H(T,)

-8.670
-5.768
-2.857
-1.402

0.

0.054
1.51
2.971
4.437
5.911

8.894
11.837
15.046
18.223
21.463

Standard State Pressure = p° = 0.1 MPa
kJ mol’!
AH" A Log K,

00000 ©O0OOO © ocooo
©000O0 ©0O0OOO © 0000
OOOO0O0O QOOOCO o OOOO

~ R, =8.31451Joules | gmole— K

45
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Hydrogen (H;), ideal gas-reference state, mol. wt, = 2.01588 Hydrogen. Monatomic (H), ideal gas. mol. wt, = 1.00794

Enthalply Reference Temperature = T, « 298,15 K Standurd State Pressure = p” = 0.1 MPa Enthalply Reference Temperature = T, = 298.15 K Standard Siate Pressure = p° = 0.1 MPa
J K mor! KJ mot”! IK mol”! k¥ mor’!
™G §*AGSHNTHT  WNIOT)  ANC 8 Log Ky ™ G S GUHUATONT  HHOT)  adt® A Log Ke
0 0. 0. INFINITE -8.467 0 0 0 0 0. 0 INFINITE -6.197 218035  216.035 INFINITE
100 28184 100.727 155.408 -5.468 0. 0. 0 100 20.786 92009 133.197 -4.119 216,614 212.45%0 -110.972
200 27.447 119412 133,284 2774 0. 0. 0. 200 20786 106417 116618 -2.040 217.348 208.004 .54.325
250 28,344 125640 101152 -1.378 0. 0. 0. 250 20786 111055 115059 -1.001 217.687 205.623 -42 954
20815  28.836 130680 130680 0. 0. e. 0. 20815 20786 114716 114716 0 203278 35613
200 28.843 130858 130.680 0053 0 0. 0. 300 20.786 114845 114.717 0038  218.01 203 186 -35.378
250 20081 135325 131032 1.502 0 0. 0. ' a3s0 20.786 118.049 114.970 1.078 218326  200.690 -20.951
100 20181 139.216 131,817 2.959 0 0. ) i 400 20.786 120.825 115.532 2.117 218.637 198.150 -25.876
450 29229 142656 132.834 4,420 Q. 0. 0. 450 20.786 123273 116.259 3156  218.946 195.570 -22.701
500 28260 145737 133973 5.882 0. 0 0. 500 20.786 125463 117.072 4196  219.254 192.957 .20 158
600 29327 151077 136392 8.811 0. 0 0. 600 20786 128.253 118796 6.274 219.868 187.640 -16.335
700 29441 155606 138.822 11.749 0. 0 0. 700 20.786 132457 120.524 8353 220478 182.220 -13.567
800 29624 159.548 141171 14.702 0. 0. 0 800 20.788 135232 122.193 10.431 221.080 176.713 -11.538
900 20881 163051 14341 17.676 0 g 0. 900 20786 137.681 123.781 12510 221.671 171132 -9.832
1000 30205 166.216 145538 20.680 0. 0. 0. 1000 20786 139871 125282 14589  222.248 165.485 -8.644
1100 30581 169.112  147.549 23.719 0 c. 0. 1100 20786 141.852 126.700 16667  222.807 159.782 -7.587
1200 30592 171790 149.459 26.767 0. 0. C. 1200 20785 143660 128.039 18748  223.346 154.028 -6.705
1300 31423 174288 151274 29.918 0. 0. c. 1300 20.786 145324 129.305 20 824 223,885 148.230 -5.056
1400 31.861 176633 153003 33.082 0. 0. c. 1400 20.786 146.885 130.505 22903  224.361 142.394 5313
{1500 32208 178.846 154.652 36.290 0. 0. 0. 1500 20.786 148299 131.644 24982 224836 136.522 -4.754
| 1600 32725 180.944 156.231 39 541 0. 0. 0. 1600 20786 149.640 132.728 270680 225289 130.620 -4 284
1700 23136 182940 157,743 42835 0. 0 0 1700 20786 150.800 133.760 20139 225721 124689 -3831
1800 33537 184.846 150197 46.160 0. 0. 0. 1800 20786 152088 134.745 31217 226.122 118 734 -3.446
1900 33917 186.669 160585 49 541 0. 0. 0 1900 20.786 153212 135.688 33296 226525 12757 3100 |
2000 34280 168418 161,043 §2.951 0 0 0. 2000 20.786 154278  136.591 35375 226808 106.760 2788 |
TR
~—x R =38.31451Joules / gmole— K SR,
2 2

Figure Al.1 JANAF data for diatomic and monatomic hydrogen in the temperature
range from OK to 2000K . The full tabulation runs to 6000K .

You can download tabulated data from the NASA Glenn site http://cea.grc.nasa.gov
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Hydrogen heat capacity - rotational degrees of freedom
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Fig. 3.—Specific heat of hydrogen.

Figure A.13: From: ”The specific heat of hydrogen gas at low temperatures from the velocity
of sound”, paper by Cornish and Eastman, Journal of the Americal Chemical Society, 1928,
50, 3, 627-652 -
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An Informal History of
Liquid Rocket Propellants

by John D. Clark

Those who cannot remember the past are condemned to
repeat 1.
George Santayana
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Hydrogen is a super-cryogenic. Its boiling point of 21 K is lower
than that of any other substance in the universe except helium. (That
of oxygen is 90 K.) Which means that problems of thermal insulation
are infinitely more difficult than with oxygen. And there is another
difficulty, which is unique to hydrogen.

Quantum mechanics had predicted that the hydrogen molecule,
H,, should appear in two forms: ortho, with the nucleii of the two
atoms spinning in the same direction (parallel), and para, with the two
nucleii spinning in opposite directions (antiparallel). It further
predicted that at room temperature or above, three-quarters of the
molecules in a mass of hydrogen should appear in the ortho form
and a quarter in the para, and that at its boiling point almost all of
them should appear in the para state.

But for years nobody observed this phenomenon. (The two forms
should be distinguishable by their thermal conductivity.) Then, in
1927, D. M. Dennison pointed out, in the Proceedings of the Royal
Society, that the transition from the ortho to the para state might be a
slow process, taking, perhaps, several days, and that if the investiga-
tors waited a while before making their measurements, they might get
some interesting results.

Urey, Brickwedde and others in this country, as well as Clusius and
Hiller in Germany looked into the question exhaustively between
1929 and 1937, and the results were indeed interesting, and when the
propellant community got around to looking them up, disconcerting.
The transition was slow, and took several days at 21 K. But that didn’t
matter to the rocket man who merely wanted to burn the stuff. What
did matter was that each mole of hydrogen (2 grams) which changed
from the ortho to the para state gave off 337 calories of heat in the
process. And since it takes only 219 calories to vaporize one mole of
hydrogen, you were in real trouble. For if you liquefied a mass of
hydrogen, getting a liquid that was still almost three quarters ortho-
hydrogen, the heat of the subsequent transition of that to para-hydro-
gen was enough to change the whole lot right back to the gaseous
state. All without the help of any heat leaking in from the outside.
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The answer to the problem was obvious —find a catalyst that will
speed up the transition, so that the evolved heat can be disposed of
during the cooling and liquefaction process and won’t appear later
to give you trouble; and through the 50’s, several men were looking
for such a thing. P. L. Barrick, working at the University of Colorado
and at the Bureau of Standards at Boulder, Colorado, came up with
the first one to be used on a large scale — hydrated ferric oxide. Since
then several other catalytic materials have been found — palladium-
silver alloys, ruthenium, and what not, several of them much more
efficient than the ferric oxide —and the ortho-para problem can be
filed and forgotten.
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2.12 Speed of sound

In a homogeneous medium

2 _ (9
a_(ap)

§ = constant

For an ideal gas

Mach number

mM=_Y

JYRT
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2.13

Atmospheric models

Gravitational potential

VP = —pVV¥

Near the Earth the gravitational acceleration is nearly
constant.
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Constant entropy atmosphere

L. (.E_)y
Py \Pp
I
Y- 1
£ - (z—(y—ng—g)
Po an
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Constant temperature atmosphere
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2.14 The Third Law of Thermodynamics

Recall the Gibbs equation written in terms of the enthalpy

~ dh v
dS = —f—TdP

For a process at constant pressure the entropy is

dT + AHfusion " J;vaporizc f_lz: AHvaporiz + JT C c_I_]_"

T. .
_ fusion al
S = [T PT T

fusion fusion vaporiz PT

vaporiz
At very low temperatures heat capacity data shows that Cp goes to
zero as the temperature goes to zero fast enough so that the first
integral converges.

The Third Law states that the entropy of a pure crystalline substance is
zero at absolute zero temperature.
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2.10 Problems

Problem 1 - Use the Gibbs equation to determine each of the following for an

ideal gas.
(aS(a];’"p))p ) (aS(;; p))T ) (2.122)
(=5, - (%%,

Problem 2 - In Section 2 it was stated that the internal energy and enthalpy of an
ideal gas depend only on temperature. Show that this is true. First show that for
an ideal gas the Gibbs equation can be written in the form

ds(T, P) = -]Tde(T, P)+ ;—SdT _ %dP (2.123)

Work out the partial derivatives of the entropy, and show by the cross-derivative
test that de(7T, P)/oP = 0.
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Problem 3 - Use the Gibbs equation to show that for a general substance.

ohy _ v(T,P)
(57’)T = -TZ=22— + (T, P) (2.124)

where v(T, P) is the volume per unit mass.

Problem 4 -The temperature, entropy and pressure in a calorically perfect ideal
gas moving in an unsteady, three-dimensional flow are related by the function

33

exp (s _Cs:f ) = ( Tif) ( Pf ef) : (2.125)

Take the gradient of (2.125) and show directly that the flow satisfies.

TVs = Vh— —V[-)I-J (2.126)
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Problem 5 - Show that the internal energy of a van der Waals gas is of the form
e(T,v) = f(T)-a/v.

Problem 6 - A heavy piston is dropped from the top of a long, insulated, vertical
shaft containing air. The shaft above the piston is open to the atmosphere. Deter-
mine the equilibrium height of the piston when it comes to rest. Feel free to
introduce whatever data or assumptions you feel are required to solve the prob-
lem. Suppose you actually carried out this experiment. How do you think the
measured height of the piston would compare with your model?

Problem 7 - In problem 6 what would be the equilibrium height if the gas in the
shaft is Helium.

Problem 8 - Consider the nearly isentropic flow of an ideal gas across a low pres-

sure fan such as an aircraft propeller. Assume that the pressure change AP is
small. Show that the corresponding density change is

L - (2.127)

where p,, and P, are the undisturbed values ahead of the fan.
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Problem 9 - Mars has an atmosphere that is about 96% Carbon Dioxide at a tem-
perature of about 200K. Determine the scale height of the atmosphere and
compare it with Earth. The pressure at the surface of Mars is only about 1000 Pas-
cals. Entry, descent and landing of spacecraft on Mars is considered to be in some
ways more difficult than on Earth. Why do you think this is?

Problem 10 - Suppose you are driving and a child in the back seat is holding a
Helium filled balloon. You brake for a stoplight. In surprise the child releases the
balloon. The x-momentum equation governing the motion of the air in the car can
be simplified to

oU _ P

PS5 = o (2.128)

Use this result to show in which direction the balloon moves. What assumptions
are needed to reduce the momentum equation to (2.128)? Compare this problem
to the material developed in Section 2.13
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