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Fundamentals of Compressible Flow

Chapter 1 - Introduction to fluid flow
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1.2  Conservation of mass
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Divide through by the volume of the control volume.

1.2.1  Conservation of mass - Incompressible flow

If the density is constant the continuity equation reduces to

Note that this equation applies to both steady and unsteady 
incompressible flow
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1.2.2  Index notation and the Einstein convention

Make the following replacements

Using index notation the continuity equation is

Einstein recognized that such sums from vector calculus always 
involve a repeated index. For convenience he dropped the 
summation symbol. 

Coordinate independent form
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1.3   Particle paths, streamlines and streaklines in 2-D 
steady flow

The figure below shows the streamlines over a 2-D airfoil.

The flow is irrotational and incompressible
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Streamlines Streaklines
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can always be A vector field that satisfies 

represented as the gradient of a scalar potential

or

If the scalar potential is substituted into the continuity 
equation the result is Laplaces equation.
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A weakly compressible example - flow over a wing flap.
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The figure below shows the trajectory in space of a fluid element 
moving under the action of a two-dimensional steady velocity field

The equations that determine the trajectory are:

Particle paths
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Formally, these equations are solved by integrating the 
velocity field in time.

Along a particle path
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Eliminate time between the functions F and G to produce 
a family of lines. These are the streamlines observed in 
the figures shown earlier.

The value of a particular streamline is determined by 

the initial conditions.
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This situation is depicted schematically below.
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The streamfunction can also be determined by solving the  first-order 
ODE generated by eliminating dt from the particle path equations. 

The total differential of the streamfunction is
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Replace the differentials dx and dy.

The stream function, can be determined as the solution of a 
linear, first order PDE.

This equation is the mathematical expression of the statement that 
streamlines are parallel to the velocity vector field.
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1.3.1  The integrating factor

On a streamline

What is the relationship between these two equations ?

The first-order ODE governing the stream function can be written as
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To be a perfect differential the functions U and V have to satisfy 
the integrability condition

It was shown by the German mathematician Johann Pfaff in 
the early 1800’s that an integrating factor M(x,y) always exists.

and the partial derivatives are

For general functions U and V this condition is not satisfied. The 
equation                                            must be multiplied by an 
integrating factor in order to convert it to a perfect differential.
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1.3.2 Incompressible flow in 2 dimensions

The flow of an incompressible fluid in 2-D is constrained 
by the continuity equation

This is  exactly the integrability condition . Continuity is satisfied 
identically by the introduction of the stream function,

In this case -Vdx+Udy is guaranteed to be a perfect 
differential and one can write. 

1.3.3 Incompressible, irrotational flow in 2 dimensions

The Cauchy-Reimann 
conditions
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1.3.4 Compressible flow in 2 dimensions

The continuity equation for the steady flow of a 
compressible fluid in two dimensions is

In this case the required integrating factor is the 
density and we can write.

The stream function in a compressible flow is proportional to 
the mass flux and the convergence and divergence of lines 
in the flow over the flap shown earlier is a reflection of 
variations of mass flux over different parts of the flow field.
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1.4 Particle paths in three dimensions

The figure above shows the trajectory in space traced out by a particle 
under the action of a general three dimensional unsteady flow,
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The equations governing the motion of the particle are:

Formally, these equations are solved by integrating the velocity field.
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1.5  The substantial derivative

The acceleration of a particle is

Insert the velocities. The result is called the substantial or 
material derivative and is usually denoted by

The time derivative of any flow variable evaluated on a fluid 
element is given by a similar formula. For example the rate 
of change of density following a fluid particle is 
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1.5.1  Frames of reference

Transformation of position and velocity

Transformation of momentum

229/15/20



Transformation of kinetic energy

Thermodynamic properties such as density, temperature and 
pressure do not depend on the frame of reference.
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1.6  Momentum transport due to convection
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The conservation equation for momentum
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Divide through by the volume

In the y and z directions

x - component
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In index notation the momentum conservation equation is

In words,

Rearrange
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1.7  Momentum transport due to molecular motion

1.7.1 Pressure

1.7.2 Viscous friction - Plane Couette Flow

Force/Area needed to maintain the motion of the upper plate
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1.7.5 Forces acting on a fluid element

1.7.3 A question of signs

1.7.4 Newtonian fluids
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Pressure-viscous-stress force components

Momentum balance in the x-direction
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x - component

In the y and z directions

Divide by the volume
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In index notation the equation for conservation of momentum is

Coordinate independent form
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1.7  Conservation of energy
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1.8.1  Pressure and viscous work

Fully written out this relation is
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The previous equation can be rearranged to read in terms of energy fluxes.
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Energy balance.
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In index notation the equation for conservation of energy is

Coordinate independent form
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1.9  Summary - the equations of motion
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Two dimensional steady, inviscid, incompressible flow

Conservation of mass
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Some remarks on the pressure field
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For any steady, inviscid, incompressible, irrotational
velocity field the pressure field exists!

This is the incompressible Bernoulli pressure
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1.10  Problems
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