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1.2 Conservation of mass

Rate of mass
accumulation
inside the control

volume

Wixyz1) PV

Vixyzt)

U(x,y,2,t)
o(x, 5,2, 1)

into the control

-

Rate of mass

flow L—<

volume

oW

7+ Az

Rate of mass

flow
out of the control

volume

(x+ Ax,y + Ay, z + Az)

: |
~~~ |
.. T
! U
. . > p |x+Ax
|
L | Az
e | A _ l
: \V\
1 N
) i A N
'x, ’Z
(x, 5, 2) oV
~ | e, y
y\q_ Ax —p»

Figure 1.1 Fixed control volume in a moving fluid.

AxAyAz(a—p) + AyAz(pU| _, , —PU| )+

ot

AxAz(pV!y i Ay pV|y) + AxAy(pW|Z

+ Az

Mass flux in the

- leZ) =0

x-direction
L
M| =
_ T) M
[pU] - 3 2
L LT
Momentum Mass per
per unit unit area
volume per
second




T STANFORD

AERONAUTICS &
ASTRONAUTICS

9/15/20

Divide through by the volume of the control volume.

0P+pU|x+Ax—pU|x+leY+A}’_pV|y 4

ot Ax Ay Az
Let (Ax — 0, Ay — 0, Az — 0). In this limit (1.4) becomes

ap 8pU+8pV oipWwW _ -0
ot ox dy 0z

1.2.1 Conservation of mass - Incompressible flow

If the density is constant the continuity equation reduces to

aU aV %A%
ox (9y 07

= 0.

Note that this equation applies to both steady and unsteady

incompressible flow
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1.2.2 Index notation and the Einstein convention

Make the following replacements
(x> y’ Z) — (xla xé, x3)
(Ua V’ W) — (Ula U2, U3)

Using index notation the continuity equation is

3
d(pU,
&, (pU;) _ 0
ot dx;
i=1
Einstein recognized that such sums from vector calculus always
involve a repeated index. For convenience he dropped the
summation symbol.

?5t-+ ox. =0

l

Coordinate independent form

B Jd d d
P Ve(pl) = 0 v (9}’@’92)

ot
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1.3 Particle paths, streamlines and streaklines in 2-D
steady flow

The figure below shows the streamlines over a 2-D airfoil.

Figure 1.2 Flow over a 2-D lifting wing; (a) streamlines, (b)
streaklines.

The flow is irrotational and incompressible

VxU =0 VelU = 0.
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A vector field that satisfies V x U = 0 can always be

represented as the gradient of a scalar potential

or

If the scalar potential is substituted into the continuity
equation the result is Laplaces equation.

VeV = V2@= 0.
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A weakly compressible example - flow over a wing flap.

Figure 1.3 Computed streamlines over a wing flap.
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TSTANFORD Particle paths

The figure below shows the trajectory in space of a fluid element
moving under the action of a two-dimensional steady velocity field

particle trajectory

Yo

The equations that determine the trajectory are:

2D = U, y(1)]
S
UD = v(x(e), (1)

9/15/20
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Formally, these equations are solved by integrating the
velocity field in time.

x(t) = x5+ JJ U(x(t), y(t))dt
0

y() = yp+ _r V(x(), y(1))dt
0 J

Along a particle path

X = F(XO, yOJv t) , y = G(XO, )’0, t)

10
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Eliminate time between the functions F and G to produce
a family of lines. These are the streamlines observed in
the figures shown earlier.

v = ¥Y(x,y).

The value of a particular streamline is determined by

the initial conditions.

WO — 'P(XO) yO)

1
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This situation is depicted schematically below.

X = F(XO’yOJ t)
= G(XO, y0’ t)

WO = ?’(xa, yo) = 'P()C, y)

Figure 1.5 Streamlines in steady flow. The value of a particular
streamline is determined by the coordinates of a point on
the streamline. This can be regarded as the initial position
of a fluid particle that traces out the streamline.

12



TSTANFORD

AERONAUTICS &
ASTRONAUTICS

9/15/20

The streamfunction can also be determined by solving the first-order
ODE generated by eliminating dt from the particle path equations.

dy _ V(xy)

dx  U(x,y)

The total differential of the streamfunction is

oV ok d
dy = -a—x-dx+§)—)dy.

13
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Replace the differentials dx and dy.

dy = (U(x y) + V(x y) \P)dt

The stream function, can be determined as the solution of a
linear, first order PDE.

UeVYVW = U(x, y)gqj+ Vix, y)glp = 0.

This equation is the mathematical expression of the statement that
streamlines are parallel to the velocity vector field.

14
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The first-order ODE governing the stream function can be written as

~V(x,y)dx+ U(x, y)dy = 0.

1.3.1 The integrating factor

On a streamline

OF, ¥, _
a—xdx+§-§dy = 0.

What is the relationship between these two equations ?

15



TSTAN FORD To be a perfect differential the functions U and V have to satisfy

ASTRONAUTICS the integrability condition
v _au
oy ox

For general functions U and V this condition is not satisfied. The
equation -V (x, y)dx + U(x, y)dy = 0. must be multiplied by an
integrating factor in order to convert it to a perfect differential.

It was shown by the German mathematician Johann Pfaff in
the early 1800’s that an integrating factor M(x,y) always exists.

dy = -M(x, y)V(x, y)dx + M(x, y)U(x, y)dy

and the partial derivatives are

o o _Mx y)V(x, )

= M(x, y)U(x,y)

ox
Y
dy

9/15/20
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1.3.2 Incompressible flow in 2 dimensions

The flow of an incompressible fluid in 2-D is constrained
by the continuity equation

ox dy

This is exactly the integrability condition . Continuity is satisfied
identically by the introduction of the stream function,

oY oY
=% T Tox

In this case -Vdx+Udy is guaranteed to be a perfect
differential and one can write.

dy = —Vdx+ Udy.

U

1.3.3 Incompressible, irrotational flow in 2 dimensions

v _ g
dy  Ox The Cauchy-Reimann
¥ 9d conditions

-5 =5

17



TSTANFORD

AERONAUTICS &
ASTRONAUTICS

9/15/20

1.3.4

Compressible flow in 2 dimensions

The continuity equation for the steady flow of a
compressible fluid in two dimensions is

d d B
-a—;(PU)+—a—§(PV) =0

In this case the required integrating factor is the
density and we can write.

dy = —pVdx + pUdy

The stream function in a compressible flow is proportional to
the mass flux and the convergence and divergence of lines
in the flow over the flap shown earlier is a reflection of
variations of mass flux over different parts of the flow field.

18
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1.4  Particle paths in three dimensions

Figure 1.6 Particle trajectory in three dimensions

The figure above shows the trajectory in space traced out by a particle
under the action of a general three dimensional unsteady flow,

19
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The equations governing the motion of the particle are:

dx(t)
dt

= U (x;(0), xp(0), x5(0), 1) ;i = 1,2,3

Formally, these equations are solved by integrating the velocity field.

A
x;(1) = x;0 + IO U.(x,(2), x,(1), x3(t), tydt , i=1 23

20



Bl’éﬁﬁ%? 1.5 The substantial derivative

ASTRONAUTICS

The acceleration of a particle is

Ex(t) g U, JU,dx,
o = GUE 05500 = Sl

Insert the velocities. The result is called the substantial or
material derivative and is usually denoted by

i i

Dt ot

The time derivative of any flow variable evaluated on a fluid
element is given by a similar formula. For example the rate
of change of density following a fluid particle is

Do _dp, % _ %, g
Dt 6’t+Uk8xk— 3t+Uon

9/15/20
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1.5.1 Frames of reference

V(X, Y Z) U

Figure 1.7 Fixed and moving frames of reference

Transformation of position and velocity

x = x-X(1)
Yy =y-Y(1)
7 = z-7Z(1)
U = U-X(1)
V' = V-Y(1)
W = W-2Z(t)

Transformation of momentum

mU' = mU -mdX/dt

A

momentum in moving coordinates momentum in fixed coordinates

22
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Transformation of kinetic energy

2 2 2
kinetic energy in moving coordinates = ém(U’ + V7 + W)

ém(UZ + VW

kinetic energy in fixed coordinates =
. 2 L 2 . 2
ém(U'2+V'2+W'2) - ém((U—X) F (VoY) +(W=2)).

gm(U'z +v7iy W'z) = é—m( v evis Wz) +

ng(x _2U)+ é—mY(Y——ZV) N émz‘(z‘ _2W)

¥ o= k+ %mX(X—-ZU) + émY(Y——ZV) + émZ'(Z-2W).

Thermodynamic properties such as density, temperature and
pressure do not depend on the frame of reference.

23
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1.6 Momentum transport due to convection

Outward unit

Control volume surface

normal vector | —— T

Density
-1 M
] Ia

Volume flux in the y direction

Momentum flux

L

M@ L M(T)
UV i=————2| — |=
[pUV]=— (T)
X-momentum Volume
per unit per unit
volume area per
second

L L Volume
V] =

B ?: I’T  Area-Sec

Voo T,

x-momentum convected in the
y-direction per unit area per
second

24
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{ accumulation | = -
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Figure 1.8 Fluxes of x-momentum through a fixed control volume.
Arrows denote the velocity component carrying momentum into
or out of the control volume.

apU
AxAyAz(—at—) + AyAz(pUU|_, , —pUU| )+

AxAZ(pUV|, , , - pUV| )+ AxAy(pUW|,  , - pUW|) =

9/15/20 {the sum of x-component forces acting on the system}
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Divide through by the volume

opU N pUU|x AT pUU}x . pUV|y vy~ pUVly +pUW|z v Az pUW[Z _
at Ax Ay Az

the sum of x-component forces acting on the system

{ per unit volume

Let (Ax — 0, Ay — 0, Az — 0). In this limit (1.54) becomes

apU + dpUU + opUV N ipUW
ot ox dy 0z

In the y and z directions

apV + apVU + apVV + dIpVW
at ox dy Jz

aipW N aipWu N dIpWV + IpWW _
at Jx dy 0z

The sum of ]
x-component forces

per unit volume acting

P,
per unit volume acting

on the control volume

“

The sum of

y-component forces

on the control volume

The sum of
z-component forces

per unit volume acting

X - component

| on the control volume

26



TSTANFORD

AERONAUTICS &
ASTRONAUTICS

9/15/20

In index notation the momentum conservation equation is

Sum of the
dpU. d(pU.U:) ith-component forces
! + L J = J P f Ly i = I ,2,3
ot 0x ; per unit volume acting
on the control volume

Rearrange
The sum of ]
dU; o(U;) ap a(PUj) ith-component forces
p—_ + pUj + i - + I E— = < A . >
ot 0x ot 0x; per unit volume acting
| on the control volume
The sum of ]
DU, ith-component forces
p— =1 o
Dt per unit volume acting
on the control volume
L J
In words,

The vector sum of

= forces acting

The rate of momentum change
of a fluid element

on the fluid element

27
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1.7 Momentum transport due to molecular motion

1.7.1 Pressure

1.7.2 Viscous friction - Plane Couette Flow

M
Id * t<0 Fluid all at rest
P X
>
y U
* t=0+ Upper plate set in motion
- X
y U .
* Uyt Small t Unsteady velocity increase
ma
P X
y n U,
- A N > - Large t Steady state velocity distribution
* U(y)
P X

Figure 1.9 Build-up to a steady laminar velocity profile for a vis-
cous fluid contained between two parallel plates. At t=0

the upper plate is set into motion at a constant speed U__.

Force/Area needed to maintain the motion of the upper plate

U, ;- dU
d xy—’udy

2> | "y

= U
28
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1.7.4 Newtonian fluids

1.7.5 Forces acting on a fluid element

Z
(x + Ax, y + Ay, 7 + Az)
7|
Z+ Az
—
|
T
xyl |
y + Ay P+t )
(—P+17xx)| -+ -—=—-—— | _(> > |x+Ax
x
Az
I I
e ] - — Xy
—k\ y
- - - -
y . N '
(x,y,Z) txz|
z
\Ay
Alg— Ax —p»
X

Figure 1.10 Pressure and viscous stresses acting in the x-direction

9/15/20
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Pressure-viscous-stress force components

B!
Il

. AyAz((- P+ rxx)l -(-P+7,)

X+ Ax

AxAy(rlez + Az—txz

)

Fy = AyAz(‘rxyl -T

x+ Ax xy

AxAy(r

y1| ad

Z+ Az yz

)

+ AxAz(t -7
x) yzly + Ay yz

)

Momentum balance in the x-direction

-T

F. = AyAz|l T
< Y (lex+Ax xz

)

AxAy((— P+ tzz)l ae (-P+ rzz)
Z Z

dply\
AxAyAz(7> = AyAz(pUU| - pUU| )+

AxAz(pUV| = pUV| 4 )+ AxAy(pUW| —pUW| )

AyAz((—— P+ rxx)l a (-P+rt,)
X X

)

v) + AxAy(rlez . Azﬂtxz

-T

AxAz(rx
y+A4y xy

|

)

+ AxAz|T -T
x) ( ol e sy

+

) + AxAz((— P+ 1yy)|y . 4y -(-P+ ryy)|) +
X

30
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Divide by the volume

opU +

pUU|x+Ax—pUle+ (P—txx)lx+Ax_(P~rxx)‘x
+

ot Ax

PUVI, L ay=PUVI, - (Txyl}u, Ay rx)"y)

Ay

pUWIz+Az 7+ Az

—pUWIZ—(’L'le ~ Txz

)

=0

Az

Let (Ax = 0, Ay — 0, Az — 0). In this limit (1.65) becomes

Jp

y 9dpUU+P-7,.) a(pUV—txy) 0(pUW—1:xz)_
+ + + =0

ot ox dy

In the y and z directions

0z

X - component

dHpVU-7.) JpVV+P-t,) JdpVW-1_)
ipv | (p xy) AP AN 2

ot ox dy 0z
IpW . dpWU -1,) . HpWV - tyz) . WpWW +P-1,) _
ot ox dy 0z

=0

31
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In index notation the equation for conservation of momentum is

dpU; . o"(pUin) , OP 9Ty

ot ox j ox ; &xj

=0 ; i=123

Coordinate independent form

3§tU+ Ve (pUT)+ VP-Vei = 0.

9/15/20
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Rate of

energy

inside the

control volume

Work done on the

control volume

1 accumulation | =

P,

Rate of
energy flow
into the

control volume

by convection

Rate of energy

P,

1.7 Conservation of energy

Rate of
energy flow
out ofthe |+

control volume

by convection
v J

Energy generation

due to sources

+ { addition due to | + o
by pressure and . inside the
heat conduction

viscous forces control volume

k= (1/72)(U° + V2 + W)
ple+ kW],
Wixyzt) e+ R)V| L, *

+ Az

(x + Ax, y + Ay, z + A7)

V(x,y,2,t) ! I

X+ Ax

|

|

|
U(xy.z,t) : p(ef+ k)U|

|

|

ple + k) Y|

(x, y,2) |

N ple+k)W|
Ay z
Nlg  Ax —p

Figure 1.11 Convection of energy into and out of a control volume.
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1.8.1 Pressure and viscous work

Power input to the control volume = F » U

Fully written out this relation is

Power input to the control volume =

U+t -T
) (xy|x+Ax Xy
X

)W}+

X

)U+((—P+ryy)ly+Ay—(-—P+ryy)|v)V+

X + Ax

AyAz{((— P+ rxx)l —(-P+ rxx)

)V+
X

T ! -T
(xzx+Ax Xz

AxAzZll T -T
{( xyly + Ay xy

34
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The previous equation can be rearranged to read in terms of energy fluxes.

Power input to the control volume =

X+ Ax

Awk¥—PU+me+;WV+;HW” 4—PU+;MU+pWV+qu)}+
X

AxAz{(—- PV + ‘L’ny + ’L'ny + tyZW)| —(-PV + ‘L’ny + rny + tyzW) }+
y

y + Ay

zZ+ Az

AxAy{(— PW+7, U+t V+ rzzW)l ~(-PW+t, U+, V+ rzzW)i }
z

z
(-PW + rsz + szV + rzzW)Iz .\ Al

(-PV + -rny + 1-ny + TyzW)ly + Ay * (x+ Ax,y + Ay, z + Az)

o

|
(+PU + rxxlU +T W+ rx?W)i
W)| »

X \ AZ
T CPVER UH Ve W
y \ (; Bl Tyt Tz )|y
N

(xy2)]
y I(—PW+1: Ur+1,—zyv+rzzW)|z

X+ Ax

(-PU+7 U+ rxVV +7,]

A

X

Figure 1.12 Energy fluxes due to the work done on the control volume
by pressure and viscous forces.
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Energy balance.

dp(e + k)
AxAyAz(T—) = AyAz(ple + )U| _—ple + K)U| )+
AxAz(p(e + k)V| —p(e+ k)V| N Ay +
AxAy(p(e + k)W[ - p(e + k)W| +Az
AyAz((— PU+7T, U+7, V+ rXZW)|x . Ax—-(— PU+7, U+t V+ T, W) )
X
(1.76)
AxAz((-— PV + rny + rny + ryZW)ly . Ay—(— PV + rny + rny + ’L'yZW) )
AxAy((— PW+1t, U+ rzyV + rzzW)lZ . AZ—(— PW+rt, U+ rzyV + rZZW) +
ré
AyAz( o] -2 ) + AxAz(le -0, > + AxAy(QZ| -Q,| ) +
x + Ax y y + Ay z 7+ Az

{ Power generation due to sources inside the control volume }

Divide (1.76) through by the infinitesimal volume AxAyAz and take the limit
(Ax = 0, Ay — 0, Az — 0). The conservation equation for the energy becomes

dp(e + k) N d(p(e + k)U) + d(p(e + k)U) + d(p(e + k)U) +
ot ax ay dz

o(PU-T, Ut V-1 W) (PV-t U-T V-T W
xx Xy xZ )+ ( xy yy yz )+
ax dy (1.77)
d(PW-t, U-7, V-1, W) 90, 4Q, 90,
+ + +
az dx dy 9z

{ Power generation due to sources inside the control volume }

36
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In index notation the equation for conservation of energy is

aple + k) | d(p(e +k)U ) . dPU; 0(U,-r,.j) . 9Q;

ot ox i ox i ox j ox i

Coordinate independent form

dp(e + k)

— * Ve(ple+k)U+PU-7°U+ Q) = {Power sources}

= { Power sources} .

37
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1.9 Summary - the equations of motion

Conservation of mass

if_)+apU+ 6pV+ IpW _
ot ox dy 0z

0

Conservation of momentum
opU . dHpUU +P-1,,) . dpUV — rxy) . HpUW-1,)

ot ox dy dz

JpV . I pVU - ’L'xy) . dHpVV +P - ’L'yy) . HpVW - ryz) 0
ot ox ay 0z

IpW N o"(pWU— ’L’xz) N 0(pWV— 'L'yz) N 8(pWW + P - 'L’ZZ) _ 0 .
Jt ox dy 0z

Conservation of energy
dp(e + k) N d(p(e + k)U) N d(p(e + k)U) + d(p(e + k)U) +

Jt 0x dy 0z
G(PU-—txxU—txyV—txZW) . 8(PV—17ny—1:ny—ryzW) .\
ox dy
d(PW—t, U-t, V-1, W) 9Q. 0Q, 0Q
X 34 Z_C Xy Y4 % = {Power sources}

9z ox ay 0z

38
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Some remarks on the pressure field

Two dimensional steady, inviscid, incompressible flow

Conservation of mass

8U oV 0
ax 8y

Conservation of momentum

ou _ dU o(P
U=+v & =—2
ox dy 8x( ]
avV _ dV Jo(P
e

ox Jy 8y( j

Vorticity
Q- vV dU

dx dy

39



R;ﬂ%{iﬁ?&% For any steady, inviscid, incompressible, irrotational
S velocity field the pressure field exists!

_dvV dU _

/8y

sil5) - %if ay) ———< )
a_ax §+%(U2+V2) =0

a% §+%(U2+V2) =0

P

—+1(U2+V2):const
p 2

This is the incompressible Bernoulli pressure
9/15/20
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1.10 Problems

Problem 1 - Show that the continuity equation can be expressed as

1Dp  0U;

- = 1.94
p Dt = Ox; 0 (1.54)

Problem 2 - Use direct measurements from the streamlines in Figure 2.13 to estimate the
percent change from the free stream velocity at points A , B, C and D.

m\B

Figure 1.13: Streamlines about a wing in potential flow.

Problem 3 - The general, first order, linear ODE

41
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Y e @yt @) (1.95)

can be written as the differential form

(9(z)y—f(z))dz+dy=0 (1.96)

Show that (1.96) can be converted to a perfect differential by multiplying by the integrating
factor.

M = el 9(@)de (1.97)

Work out the solution of (1.95) in terms of integrals. What is the solution for the case
g =sin (z), f = cos(x)? Sketch the corresponding streamline pattern.

Problem 4 - Solve

— —Z——=0. (1.98)

Sketch the resulting streamline pattern.

42
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—sin (z) sin (y) dz 4 cos (z) cos (y) dy = 0 (1.99)
Integrate (1.99) to determine the stream function and sketch the corresponding flow pat-

tern. Work out the substantial derivatives of the velocity components and sketch the
acceleration vector field.

Problem 6 - Determine the acceleration of a particle in the 1-D velocity field

U= (k%,o, 0) (1.100)

where k is constant.

Problem 7 - In a fixed frame of reference a fluid element has the velocity components

(U, V,W) = (100, 60, 175) meters/ sec. (1.101)

Suppose the same fluid element is observed in a frame of reference moving at

X = (25,110, 90) meters/ sec (1.102)

with respect to the fixed frame. Determine the velocity components measured by the ob-
server in the moving frame. Determine the kinetic energy per unit mass in each frame.

9/15/20
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AERONAUTICS & in Figure 2.14.
\§

ASTRONAUTICS

xy

v = I+x+Yy

Figure 1.14: Streamlines for potential flow in a corner.

Determine plausible expressions for the velocity components and density field. Does a
pressure field exist for this flow if it is assumed to be inviscid?

Problem 9 - The expansion into vacuum of a spherical cloud of a monatomic gas such as
helium has a well-known exact solution of the equations for compressible isentropic flow.
The velocity field is

t t t
U=y Vegis W=g 0 (1.103)
5+t t5+1 t5+1
The density and pressure are
o (1_ 2 (x2+y2+22))3/2
P (124 12)%? R it \ 1§+ 1
(1.104)

p 0 5/3

()
where R;pitiar is the initial radius of the cloud. This problem has served as a model of the
expanding gas nebula from an exploding star.

1) Determine the particle paths (x(t), y(t), z(t)).
9/15/20 2) Work out the substantial derivative of the density Dp/Dt.
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Problem 10 - A moving fluid contains a passive non-diffusing scalar contaminant. Smoke
in a wind tunnel would be a pretty good example of such a contaminant. Let the concen-
tration of the contaminant be C (z,y, z,t). The units of C are

mass of contaminant/unit mass of fluid. (1.105)

Derive a conservation equation for C.

Problem 11 - Include the effects of gravity in the equations of motion (1.93). You can
check your answer with the equations derived in Chapter 5.
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