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Fundamentals of Compressible Flow

Chapter 14 - Thin Airfoil Theory

11/15/20 1



Lockheed F104 Starfighter
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14.1 Compressible potential flow

Governing equations

The gradient of the isentropic relation is

Note that 

The momentum equation becomes. 

14.1.1 The full potential equation
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The continuity equation can be written in the form

Equate the Bernoulli integral to free stream conditions.

Thus

The continuity equation becomes

In terms of the velocity potential

Full potential 
equation
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Flow past a thin 3-D airfoil

where

14.1.2 The nonlinear small disturbance approximation

y = f x, z( )
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Similarly the state variables deviate only slightly from 
freestream values

and

Now substitute this decomposition of variables into 
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Various terms are
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Neglect terms that are third order in the disturbance velocities
and divide through by the freestream speed of sound squared.

Small near Mach one

We can neglect all of the quadratic terms except that involving the 
derivative of u in the x-direction. The small disturbance equation is

Introduce the disturbance velocity potential

Transonic small 
disturbance 

potential equation
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For subsonic or supersonic flow not near Mach one the nonlinear small 
disturbance potential equation reduces to the linear wave equation.

14.1.3 Linearized potential flow
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In 2-D

General solution for supersonic flow
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Potential for the upper and lower surfaces

Boundary condition on the upper surface

For a thin airfoil this can be approximated by the linearized form

Let                define the coordinates of the upper surface and       
define the coordinates of the lower surface.

y = f (x)
y = g(x)
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This can be written as

or

On the lower surface

The linearized boundary conditions are valid on thin 2-D  
wings and thin planar 3-D wings. 
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Work out the linearized pressure coefficient

The stagnation temperature is constant throughout the flow. 
The static temperatures at any two points are related by

Since the flow is isentropic

14.1.4 The pressure coefficient
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The pressure coefficient is

The velocity term in this equation is small

The pressure coefficient is approximately

Note that the binomial expansion has to be carried 
out to second order.
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For 2-D flows over planar bodies

For 3-D flows over slender, approximately axisymmetric bodies

Recall for weak oblique shocks 

Cp =
P − P∞
1
2
ρ∞U∞

2
= P − P∞
γ
2
P∞M∞

2
≅ dP
γ
2
M∞

2P
≅ −2 dU

U
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If the airfoil is a 2-D shape defined by the function y=f(x) the 
boundary condition at the surface is

For a thin airfoil

For a thin airfoil in supersonic flow

11/15/20 16



14.1.5  Drag coefficient of a thin symmetric airfoil

+

Let the y-coordinate of the upper surface of the airfoil be

Where C is the airfoil chord and the thickness to chord ratio is small,  2A/C <<1.  The 
drag integral is
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Where alpha is the local angle formed by the upper surface tangent to the airfoil and 
the x-axis.



+

Since the airfoil is thin the drag coefficient can be written as 

The pressure coefficient is

The drag coefficient becomes
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Potential flow pressure distribution on a symmetric thin airfoil in several flow regimes -
subsonic to hypersonic Mach numbers
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Shock boundary layer interaction from Van Dyke
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14.1.6  Thin airfoil with lift and camber at a small angle of attack

Upper surface

Lower surface

where
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Lift

Cos(α lower ) ≅ 1 Cos(αupper ) ≅ 1
L
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Drag

Sin(αupper ) ≅ αupper ≅
dyupper
dx

Sin(−α lower ) ≅ −α lower ≅ − dylower
dx
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14.2 Similarity rules for high speed flight
Inviscid, incompressible flow

Governing equation

Pressure

CP1 =
Ps1 − P∞
1
2
ρ∞U∞1

2

Pressure coefficient
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How can we map an incompressible flow to a compressible flow?

U∞2
t2

c

Equation

Airfoil shape

Boundary condition

M∞1 <<1 M∞2 <1

Surface pressure

y2
c
= τ 2g x2 / c( ) τ 2 = t2 / c

x2 / c
x2 / c

U∞1

U∞1
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Transform variables as follows

where A is an arbitrary constant

⇒

⇒x2 / c
x2 / c

The transformation is completed by choosing

Pressure coefficient

⇒ CP2 =
1
A
CP1
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Prandtl-Glauert rule

In this case the airfoils have the same shape and thickness ratio. 

The pressure coefficient scales as 

inaccurate at the 
leading edge

Choose ⇒ t2
c
= t1
c
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Supersonic case - everything is the same with 

1−M∞
2 ⇒ M∞

2 −1

Mapping

M∞2
2 −1( ) ∂

2φ2
∂x2

2 − ∂2φ2
∂y2

2 = 0 ⇒ ∂2φ1
∂x1

2 − ∂2φ1
∂y1

2 = 0 M∞1 = 2

Pressure coefficient

For airfoils with the same dimensionless shape, ie, the same

This is limited to thin airfoils with no shocks.
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Transonic case 

Transform variables 

The transonic equation is invariant only if 

Pressure coefficient 

Thickness-to-chord ratio 
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Other choices of A

A = 1 CP2 = CP1
t2
c
= 1−M 2

∞2
t1
c

A = t1 / t2( ) CP2 =
t2
t1

⎛
⎝⎜

⎞
⎠⎟
CP1 M∞2 = const

Cp is constant if thickness is 
reduced as Mach number is 

increased

Cp is proportional to  
thickness/chord for fixed 

Mach number
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14.3 Problems

11/15/20 32


