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Fundamentals of Compressible Flow

Chapter 13 - Unsteady Waves in Compressible Flow
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The Shock Tube - Wave Diagram
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13.1 Equations for irrotational, homentropic, unsteady flow
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There is no mean velocity and the velocity 
disturbance is small. Linearize the equations

13.2 The acoustic equations

Consider the case where fluctuations in flow 
variables are very small compared to the mean.
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Define the condensation

The equations of motion in terms of the condensation are.
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Replace the pressure with the density.

where
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Differentiate both equations.

Subtract one from the other

The condensation satisfies the linear wave equation.
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Consider the velocity disturbance.

Again, subtract one from the other

Use the identity 
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Similarly, all other variables of the flow satisfy the linear wave equation.
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13.3 Propagation of acoustic waves in one space dimension

In one dimension the acoustic equations are

The wave equation

Can be solved in the general form

where F and G are arbitrary functions
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Right propagating F waves

Left propagating G waves
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The pressure disturbance generated by the wave is

In differential form
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The particle velocity induced by an acoustic disturbance can also be written in a very general form

Substitute the expressions for the condensation and the velocity into the acoustic equations.
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Add and subtract these relations. The result is

Let

The equations for r and U become

From which we can conclude
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This result gives us the relationship between density and particle velocity in left and right running waves. 

Now

In a right running wave

In a left running wave

In differential form

Recall
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13.4 Isentropic, finite amplitude waves
In a general 1-D isentropic flow

Locally, the velocity disturbance can be assumed to be

Integrate this result from an initial to a final state beginning at U1=0

Thus
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The local acoustic speed is

The wave speed at any point is
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We can put this result on a somewhat more rigorous 
foundation for a finite amplitude wave as follows. 

The equations for 1-D isentropic unsteady flow are:

Assume

The derivatives of the density are
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Substitute the derivatives of the density into the 1-D equations.

Rearrange

The continuity and momentum equations become identical except for the 
coefficient of the last term. To have a solution the coefficients must be 
equal. 
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Rearrange

Take the square root

Substitute

Result
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13.5 Centered expansion wave

Note that the piston speed is negative. In effect, this gives us 
the sound speed in region 3.

Consider a piston withdrawn from a compressible fluid at rest.

The speed of the fluid in region three is 
equal to the piston speed.
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The leading characteristic propagates to the right with the speed 
of sound in region 4, the undisturbed gas. The tail of the 
disturbance moves to the right with wave speed
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The density ratio across the wave is given by the isentropic relation.

or

and the pressure ratio is
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13.6 Compression wave

Suppose the piston motion is into the gas.

The wave speed at the surface of the piston is

Once the compression waves catch up the isentropic 
assumption is no longer valid and there is the formation of a 
shock wave.

x=c1t

x=c2t
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13.7 The shock tube
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The conditions at the contact surface are

In a frame of reference moving with the shock

The shock jump conditions give
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The shock Mach number can be written in terms of the piston speed.

This can be written in terms of the shock pressure ratio.

where Up is positive.

11/10/20 28



The velocity behind the expansion is

Note that

Use the pressure condition at the contact surface.
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The result is the basic shock tube equation
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The shock Mach number is determined from

or
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Properties of a reflected shock
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Reflected shock with a high Mach number incident shock 
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The free piston shock tube 
A scheme for increasing the pressure and temperature of the driver gas

Main valve
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A free piston shock tube facility in 
Goettingen Germany
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Shock wave produced by a very strong point explosion

Images from the trinity test, Alamogordo N.M., July 16, 1945 made public in 1947 

0.006 sec 0.016 sec 0.025 sec

0.040 sec 0.053 sec 0.062 sec

100 meters 100 meters 100 meters

100 meters 100 meters 100 meters
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G.I Taylor UK 1941 and 1950, John Von Neumann USA 1941 and 1947 and Leonid Sedov USSR 1946

Sedov
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Radius of a sphere of 
ambient gas with the 
same total internal 
energy as the 
explosion energy

Gas properties behind 
the shock come from 
normal shock theory 
with M>>1.
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α s  needs to be determined from theory
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Governing equations

inviscid, isentropic flow behind the shock
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The problem is invariant under a one-parameter dilation group.

Similarity variables

Similarity Solution
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Solution
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Solution for the unknown constant as a function of gamma

α s 1.4( ) = 1.175

11/10/20 47



Knowing α s  determine the energy of the explosion

E = 7.19 ×1013J
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Taylor Wave

This is an expansion wave that occurs behind a detonation wave. Recall from 
Chapter 11 the properties of a Chapman-Jouget wave can be determined from the 
heat addition jump conditions.

Recall the ZND model in a 
frame of reference 
moving with the 
detonation.
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Subsonic and supersonic roots.

Detonation Wave Mach number

Pressure, temperature 
and density directly 
behind the wave come 
from Rayleigh theory 
for thermally choked 
heat addition.

We assume gamma 
does not change 
through the wave
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Suppose a detonation is initiated in a tube filled with a fuel/oxidizer mixture.
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C-J detonation

Taylor wave

c3 = a3t
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(1)(3) cdetonationU3 = 0 U1 = 0

(2)
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Pressure, temperature 
and density in region 2 
just behind the 
detonation wave comes 
from steady flow 
Rayleigh line theory.

Properties of the Taylor wave connecting regions 2 and 3
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Example - mixture of 5% hydrogen and 5%fluorine in 90% nitrogen.
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Behind the Taylor wave expansion.
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13.8 Problems
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