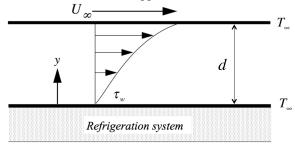

AA210A Homework 5 2020 -2021 Due Wednesday October 21

Read Chapter 8 Sections 8.4 to 8.11. In Chapter 8 do Problem 4.


Problem 1 - The figure below depicts compressible Couette flow between two parallel walls. The upper wall is at a temperature $T_{\infty} = 300 K$ and moves to the right at a speed $U_{\infty} = 800 m$ / sec while the lower wall is at rest. The gas is helium with $P_r = 0.67$ and atomic weight = 4. Normally we consider the case where the lower wall is adiabatic and there is heat flow through the upper wall. In this problem I would like you to consider the opposite case where the upper wall is adiabatic and the flow by the upper wall all passes through the lower wall and $Q_w < 0$.

For this case:

- 1) Determine M_{∞} .
- 2) Use the energy equation to relate U_{∞} , τ_{w} and Q_{w} .
- 3) Determine the temperature of the lower wall, T_{w}/T_{∞} .
- 4) Assuming $\mu / \mu_{\infty} = T / T_{\infty}$, determine $(\tau_w d) / (\mu_{\infty} U_{\infty})$.

Problem 2 – In the Couette flow problem shown below a refrigeration system is used to maintain the temperature of the lower wall at the same value as the upper wall.

1) Show that $Q_w / \tau_w = -U_\infty / 2$

2) Use the following data to evaluate R_e , M_{∞} , and P_r . What gas is this?

 $U_{\infty} = 400 \, m \, / \, \text{sec}, \ d = 0.001 \, m, \ T_{\infty} = 300 \, K, \ \rho_{\infty} = 1.177 \, kg \, / \, m^3, \ R = 287 \, m^2 \, / \left(\sec^2 - K \right), \ \gamma = 1.4$

 $\mu_{\infty} = 1.846 \times 10^{-5} kg / (m - \sec), C_p = 1005m^2 / (\sec^2 - K), \kappa_{\infty} = 2.624 \times 10^{-2} kg - m / (\sec^3 - K))$

3) Assume $\mu / \mu_{\infty} = T / T_{\infty}$. Determine the friction coefficient, C_f , on the lower wall.