
CRITICAL POINTS IN FLOW PATTERNS 

I .  INTROIIUCTION 

The '* phase-plane '' and '' phase-space " methods of exploring the proper- 
ties of solutions of ordinary differential equations have proved to be ex- 
tremely successful in the field of nonlinear dynamical systems. The methods 
do not yield a complete solution; but by locating certain critical points, 
IineariLing about them, and exploring other topological features of the solu- 
tion trajectories, the most important features of the solution of a given 
differential-equation set can be displayed in a descriptive manner. 

Following a suggestion of Kronauer (1967) the authors have applied these 
techniques to fluid flow problems. Oswatitsch (1958) and Lighthill (1963) 
exaniincd viscous flow patterns close to a rigid boundary and classified 
certain critical points which can occur. The mathematics used was equiva- 
lent to the phase-plane trajectory analysis mentioned above. However. 
analpsing such critical points in the framework of phase-space trajectory 
analysis gives the study a unified approach and enables a wealth of topologi- 
cal language to be utilized which seems i n  some instances to be less ambi- 
guous than the terms used in tluid mechanics, such as separation points. 
separation lines. regions of reversed flow, and so on. 

Here the authors apply this technique to the problem of viscous flow and 
then extend the approach to inviscid rotational flow, with slip at the bound- 
ary. This appears to be the appropriate model for turbulent boundary 
layers approaching obstacles. The various types of critical points are 
classified for this inviscid type flow. 

Although the positions of the critical points cannot always be predicted 
analytically, the authors feel that the study which follows will aid the exper- 
imenter in knowing what to look for in wind-tunnel flow-pattern studies and 
help him to identify the types of singular points which occur. This would aid 
h i m  greatly in sketching flow patterns and in gaining an understanding of 
them. The experienced investigator will quite often be able to guess the sort 
of critical points that are likely to occur in a proposed situation and hence he 
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will know fairly well the overall flow pattern which would result. There are 
certain topological restraints that greatly restrict the range of possible flow 
patterns for a given geometry. For further information regarding this and for 
more detailed studies of phase-space techniques, the reader is referred to 
Kaplan (1958), Pontryagin (1962), and Andronov et al. (1966). 

2. CLASSIFICATION OF CRITICAL POINTS 

Any set of ordinary differential equations which are autonomous may be 
written without loss of generality as a set of coupled first-order equations 
thus 

As time proceeds, the solutions of such a set trace out trajectories in the 
phase space x, and each trajectory is completely defined by initial conditions 
xo. If the equations are autonomous, i.e., if time does not appear explicitly, 
then trajectories will in general not cross and so all solutions and trajec- 
tory slopes x l / i 2  = dx,/dx,, etc., are unique. However, there may exist 
certain critical points in the phase space where the slopes are indeterminate, 
i.e., xl/x2 = 0/0 and at such points, it is often the case that trajectories do  
cross. 

For simplicity, consider the cases where the solution trajectories are 
confined to one plane, i.e., 

x = H(x) 

k ,  = P(.u,,x2), X 2  = Q(x1,x2) 

In general P and Q will be nonlinear functions. It is assumed in what follows 
that in the region of a critical point, the equations are linearizable and may 
be expressed as 

that is, 
X = F . x  

This is equivalent to the assumption that the equations are Taylor series 
expandable in the region of the critical point and that terms of order higher 
than one may be safely ignored. The matrix F (the Jacobian) will have 
eigenvalues ill and jLz which may in general be real or complex. The corre- 
sponding eigenvector slopes are 

and 
(1) 
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which for the case of I., and i2 real, may be shown to correspond to the 
slopes of certain special trajectories which emanate from the critical point. 

By the use of a suitable aftine transformation (i.e.. rotation of axes x1 and 
x2 and linear stretching of these coordinates) the trajectories can be 
described in a “canonical” form i n  terms of these new transformed coordin- 
ates. Such a transformation (see Fig. l a )  can always be found which will 
reduce all trajectories to either simple power laws or logarithmic spirals, 
depending on whether 2,  and 22  are real or complex. respectively. 

I- I(;. I Classilication and translormat ion 0 1  critical points. ( a )  L)emonstration of an  a f f ix  
transforination f rom Y ,  .x2 plane to \ ,  \ ?  plane. (b)  p - q  chart Hhicli  shows classific;ition of 
critic‘il points. 
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The classification of possible critical points may be represented as shown 
in Fig. 1 b where 

u b  
(2) p = - (u  + d) = -tr F, 4 = (ad - bc) = l c  d l  = d e t F  

and 

= -$[p  T (p' - 4q)'I2] 

Critical points corresponding to values of p and 4 along the axes ( p  = 0 or 
4 = 0) and on the parabola p2 = 44 are degenerate forms. 

The classification of critical points in phase-planes may be extended to 
cases where a three- or higher-dimensional phase space is required, but this 
involves considerable complexity. Three-dimensional phase space will be 
considered here, but attention will be confined to planes that contain trajec- 
tories (when they exist) allowing the simple phase-plane techniques to be 
applied. 

3 .  APPLICATION TO FLOW P A T T E R N S  

Consider the flow over a surface (defined by the x-J' plane) of a real viscous 
fluid. It is assumed that the velocity components are Taylor series expand- 
able about some critical point, thus 

(3) u = f$(X)FX 

where f$(X) is a scalar function of real physical space X, F is a 3 x 3 Jacob- 
ian matrix, and U is the velocity vector. See Fig. 2. 

FIG. 2. Notation used. 

Let t = real time and define a new time variable z such that 

(4) d z  = $(X) d t  

Equation (3) can be put into phase-space form thus 

(5  1 Xi = F X  
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where the prime denotes a differentiation with respect to T .  I n  expanded 
form this is 

X' = aI.y + b l y  + clz 

2'' = L I ~ . Y  + h 2 y  + c 2 z  (6) 
z' = a3.x + b 3 y  + c3z 

Hence, the assumption that the velocity components are Taylor series 
expandable about a critical point is equivalent to assuming that the (autono- 
mous) partial differential equations for fluid flow can be reduced to a set of 
ordinary autonomous differential equations which have a critical point in a 
phase-space which corresponds to physical space. 

For viscous flow, the no-slip condition requires that U = 0 at z = 0 for 
all .Y and y and hence 4 ( X )  in Eq. (3) becomes 

4 ( X )  = z and dz = z d t  

The description of a flow pattern via Eq. (6) is best illustrated by an 
example. Consider the case of a three-dimensional laminar boundary layer. 
This would be expressed as 

u = + I l  .x + h ,  y + c1 z) 

w = z(a,x + h,y + c 3 z )  

( 7 )  c = Z ( U , X  + b 2 y  + c 2 z )  

These expressions are substituted into the Navier-Stokes equations and 
the continuity equation with only the first-order terms retained. This results 
i n  relationships between the coefficients L I , ,  b,, el, etc. As far as possible, the 
coefficients are expressed in terms of "measurable " quantities such as the 
surface pressure and surface vorticity and their various XJ plane derivatives. 
For the latter quantities use must be made of the definition of vorticity and 
Fig. 2 shows the notation used. 

Equations (6) reduce to 

z' = f < 
- V . X k  

P and I' are the kinematic pressure and viscosity respectively and the sub- 
script denotes partial differentiation. All coefficients in (8) are evaluated at 
the critical point. For simplicity, consider the case of a flow with a plane of 
symmetry in the xz plane so that 

c.,. = = P,, = 0 
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This could represent a symmetrical flow in a diverging duct in which secon- 
dary flows give rise to cross-stream gradients of longitudinal vorticity (tY) at 
the surface. The critical points occurring in any plane containing trajectories 
may now be examined. 

For the surface ( z  = 0) Eqs. (8) give 

(9) 

Hence from (2), p = - ( q x  - tY) and q = -qxt,. 
The type of critical point occurring in the surface thus depends on the 

relative magnitudes o f t ,  and q x .  Consider the case when both are negative. 
In this case q is negative and from Fig. 1 the critical point is a saddle. The 
general shape of the trajectories in the vicinity of the critical point is shown 
in Fig. 3 for various cases. 

In the plane of symmetry ( y  

I::] = 

= O), Eqs. (8) become 

Hence p = --+(qx + t,) and q = ;qx(tY - qx).  
The type of critical point may be determined from the p - q  chart as shown 

in Fig. 4 for both qx and cy again negative. For qx/ tY  > 1, q is negative, and 
the critical point is a saddle [case (a) Fig. 41. For qx / tY  < 1, the critical point 
becomes a node [case (c)]. For q,/& = 1, the critical point becomes a degen- 
erate form [case (b)]. Case (c) illustrates the ambiguity in terminology used 
in fluid mechanics. Although “reversed ” flow is involved, the “separation ” 
point could also be thought of as a point of reattachment. In nonlinear 
dynamics, this critical point is unambiguously described as a “stable node.” 

For case (a) above, it may be shown that the special trajectories labelled s1 
and s2 have slopes m ,  and m2 given by Eq. (I). Any trajectory such as these 
which emanate from a critical point is known as a sepratrix. The same 
applies to Fig. 3 where the terminology “separation lines” is often used to 
describe those sepratrices toward which neighbouring trajectories rapidly 
asymptote. 

It should also be noted that in Fig. 3 it can be shown that m,  = co and 
m2 = 0 which is a canonical form. Returning to Fig. 4, if m1 = tan 0, then 

(11) tan 0 = 2v(+t, - #qx) /Px 

Lines along which trajectory slopes are constant are called isoclines. A 
knowledge of these isoclines further aids the sketching of the trajectories. All 
rays emanating from critical points are isoclines. Examples are shown in 
Fig. 4. 
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FIG. 3.  Various cases of surface trajectories for symmetrical three-dimensional laminar 
separation. (a)  t~ . , l<v  4 1 :  (b) v , , / < ~  2 1 : (c)  !/ , ' fv e 1. 

By allowing tY -+ 0, one obtains 0 for the two-dimensional case as 

tan 0 = - 3vqx/P,  

which corresponds to the classical two-dimensional laminar-separation 
angle as derived by Lighthill (1963) and others. In the surface plane, allow- 
ing <, + 0 yields the degenerate case of a line of critical points ( q  = 0) again 
corresponding to the classical two-dimensional separation. 
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FIG. 4. Various cases of symmetrical three-dimensional laminar flow separation with p-y 
chart for symmetrical laminar-flow separation. Trace shown on p - q  chart corresponds to a 
variation in qx/ty; (a) Y-i plane trajectories for q,y/t, P 1; (b) for q J ( ,  = 1 ; (c) for 
f < %/tY < 1. 



FIG. S. Oblique view (isometric projection) of symmetrical, three-dimensional laminar flow 
separation. (a) qA/tv B I ; (b) y,/tV = I ; (c) f i I I , / < ~  < I .  
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So far two planes containing trajectories have been considered. Another 
plane that contains a set of trajectories is defined by the trajectory s1 and the 
y axis. This is often called the “separation surface.” In this plane, inclined at  
an angle 8 to the xy plane, the appropriate type of critical point may also be 
determined by using coordinates s1 and y .  For case (a) a node results, case 
(b) is degenerate, and in case (c) a saddle is produced. Figure 5 shows some 
composite diagrams. These viscous flow results were also studied by Oswa- 
titsch (1958). 

4. INVISCID, CONSTANT VORTICITY FLOWS 

It has been found by several authors that for an adverse-pressure-gradient 
two-dimensional turbulent boundary layer in the vicinity of a separation 
point, the major characteristics of the flow may be adequately represented 
by a layer of constant vorticity with slip at the boundary. For example, 
Smith (1970) considered such a representation for the flow in the region of 
the trailing edge of an aerofoil. The present authors (e.g., see Fairlie, 1973) 
considered such a model in relation to two-dimensional separation bubbles. 
They found that the model provided good agreement with experiment. 

For a constant vorticity layer with slip at the boundary, 4 is a constant 
and for w = 0 at z = 0 for all x and y ,  the equations become 

u = x = u1x + b l y  + C 1 Z  

(13) u = j = U ~ X  + b z y  + C ~ Z  

w = z = C J Z  

where the dot denotes differentiation with respect to real time. 
Again, substitution into Navier-Stokes and continuity equations yields a 

series of quadratic and linear equations relating the coefficients to surface 
pressure and vorticity derivatives. It is of interest that for this case, the 
viscous terms in the Navier-Stokes equations are zero and that the first 
derivatives of surface pressure P, , P, , and P ,  at a critical point are all zero. 
Since the coefficient equations contain quadratic terms, the analysis may 
take various alternative routes. 

It is found that all critical points are degenerate and the various possibili- 
ties are shown on the p - q  chart in Fig. 6a. The corresponding trajectories are 
also shown in Fig. 6 together with the resulting restrictions on pressure 
derivatives and vorticity components. If the xz plane is a plane of symmetry, 
then for P,, < 0 (i.e., a pressure maximum), the critical point is a saddle. 

can 
exist and so close to the critical point two-dimensional flow occurs. 

In this case, if u, u, and w are linearizable as in Eq. (13), then only 
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The separation or reattachment angle 0 is then given by 

The case of a separation with varying vorticity may also be considered but 
requires the inclusion of higher-order terms in Eq. (13). The general shape of 
the traJectories for such a case is shown in Fig. 7. At the critical point 

If at the critical point y is finite, then the trajectories in the immediate 
vicinity of the critical point must follow the degenerate pattern of case (1) 
above. Away from the critical point, the trajectories behave as though the 
critical point was “saddlelike,” which is deduced from the expression for j/i 
with higher-order terms included. 

For this case, the separation angle is given by 

(15)  tan 0 = 2 (  -PXx)’’’/y0 

where qo is the value of y at the critical point. 
I t  should be noted that unlike the laminar flow case [Eq. (1  l)] the effect of 

three-dimensionality does not affect the functional form of Eq. (14) since the 
inclusion of higher-order terms causes no modification to the lower-order 
terms. Associated with three-dimensionality is varying vorticity and one 
must use u o ,  the vorticity at the critical point, rather than an overall con- 
stant value of y as in two-dimensional flow. 

A nominally two-dimensional separation bubble was set up by the 
authors to investigate the properties of near two-dimensional separation and 
reattachment. By measuring the separation and reattachment angles of the 
experimental streamline pattern and using the observed constant vorticity 
applicable to the bulk of the flow. the surface pressure variation could be 
predicted from Eq. (14), thus 

q 2  tan’ 8 
8 

P = P , -  px’ + .. .  

where Po is the pressure at the critical points. The resulting osculating 
parabolas are compared with experimental data in Fig. 8. This shows that 
the predicted scales are reasonable, and that such critical points are indeed 
points of maximum pressure. 

I n  contrast, a critical point corresponding to case (3) is a pressure mini- 
mum and would be located at the centre of a separation bubble on a plane of 
symmetry. If the flow is three-dimensional, then far from such a critical 
point, the trajectories would spiral in (or out) and this requires higher-order 
terms in Eq. (13) since the vorticity would be varying. However, as the 



3 10 A. E. PERRY AND B. D. FAIRLIE 



FIG. 6. Inviscid critical points. (a )  p-ci chart showing degenerate cases. (b)  Cases 1 and 2. 
Degenerate node. Case 1 shown and case 2 has arrows reversed. P,,  and P, ,  are finite. 
Maximum magnitude of second derivative of pressure is j Ps,s ,  I = I P;; 1 .  P,L\ ,  < 0 hence S,  IS 
H line of maximum pressure. Ps>y2 = 0; ( = 0. S ,  and S ,  arc orthogonal. (c) Y-z plane 
rrajectories for case 1 if S,  and S ,  are rotated to y and x axes respectively. P,, = P,: < 0. 
(d)  Case 3. Degenerate focus (or centre) P , ,  = P,, > 0. Critical point corresponds to a pressure 
minimum. 5 = q = 0. 1: is finite; Pr: = 0. Characteristic direction S, depends on one 
undetermined coefficient. Ratio of major to minor axes of ellipses depends on P::’;;. 
A ,  , = ?]I,) where j = (~ 1)’” and (ri = P;;’. For special cases ofcircular trajectories “ J  = [!2. 
( e )  Case 3. Saddle. P,, = P,, < 0; 5 = q = 0, is finite, P , ,  = 0. Case slmilar to Fig. 6c. 
( f )  Case 5. q,  5, and 1: are finite; P,, = P,, = Pzz = 0. 
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FIG. 7. Inviscid three-dimensional separation close to 0 P,, < 0; P,, = 0; P;, = P.cx .  If 
'1 = 'lo at 0 and is finite, trajectories follow degenerate pattern (Case 1, Fig. 6b) at 0. 

FIG. 8. Experimental near-two-dimensional separation bubble. Surface pressure measure- 
ments are compared with osculating parabolae given by Eq. (16). C, is pressure coefficient 
and x is in meters. 
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critical point is approached, the linearised form (13) would be applicable 
giving a degenerate centre of constant vorticity. Thus trajectories would 
spiral in (or out) at an ever decreasing rate as the critical point is ap- 
proached giving a “blob” of vorticity. Such blobs have been observed in 
smoke pattern studies. 

An  inviscid constant vorticity analysis is also applicable to laminar 
.’ viscous ” flow provided the critical points under discussion occur away 
from the surface and provided the vorticity gradients at the points are 

FIG. 9. Laminar separation in front of cylindrical obstruction. .4. B, C. D. and E are viscous 
critical points. F .  G, H .  and J are inviscid-constant-vorticity critical points. Plan view shows 
surface trajectories. Note the sequence of saddles and nodes. 

small. Figure 9 shows such critical points for the case of three-dimensional 
laminar flow separation upstream of a cylindrical obstruction (see Thwaites, 
1960). Note the inviscid, constant-vorticity saddle-type critical point which 
occurs in “mid-air.’’ 

Figure 10 shows the conjectured (and partially verified) flow pattern 
which occurs when a turbulent boundary layer separates in front ofa  build- 
ing with a causeway beneath. Critical points on salient edges such as appear 
in  Fig. 10 can be treated using the analysis included here. Each flow 
approaching the edge in a plane of symmetry normal to the edge produces a 
saddle. The two saddles must be matched for pressure and velocity along 
their common sepratrix emanating from the edge. Assuming that the bound- 
ary layer flows approaching the edge are of constant but differing vorticity 
with slip, then as the vorticity ratio approaches infinity, the sepratrix stream- 
line will leave the edge tangentially as shown in Fig. 10. The second deriva- 
tive of pressure at the edge then goes to zero and this is consistent with 
free-streamline theory. 
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FIG. 10. Conjectured pattern for the separation of a turbulent boundary layer in front of a 
building with a causeway beneath. Plan view shows trajectories at ground level. A and B are 
salient edges. 

5. DISCUSSION AND CONCLUSIONS 

In the case of laminar separation and reattachment, the first derivative of 
pressure is finite and the vorticity is zero at the critical point. Contrary to 
this, turbulent boundary layer separation produces a critical point with zero 
first derivative of pressure and finite vorticity. This is simply a reflexion of 
the models being used. In the former, one has a balance of viscous and 
pressure gradient forces, while in the latter there is a balance of inertia and 
pressure gradient forces. Of course, in reality, a turbulent boundary layer has 
a viscous zone very close to the boundary where the no-slip condition 
applies. Hence the surface trajectories discussed for this case are really those 
which would exist if one extrapolated the outer rotational inviscid flow to 
the boundary. The thin, and hopefully unimportant viscous zone would have 
its own viscous critical points and so produce patterns which would need to 
match these outer patterns somewhere above the surface. 

The description of How patterns in terms of linearizable critical points as 
put forward by Lighthill and adopted here may not be without controversy. 
Maskell (1955) and recently Buckmaster (1972)’ regard a separation line as 
an “envelope” to which other trajectories join tangentially. Indeed at first 

This work was brought to the authors‘ attention by Dr. J.  Hunt ofcambridge, U.K. during 
the conference discussion. 
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sight, experiment would seem to support this viewpoint. However, to sup- 
port this view theoretically, it would be necessary to show that a separation 
line was a singular solution to the Navier-Stokes equation. There is as yet 
no theoretical evidence to suggest that a curved singular solution is possible. 
The viewpoint adopted here leads to the suggestion that a separation line is 
a sepratrix to which the trajectories asymptote. Support for this view is 
convincing from an examination of the cases given in Fig. 3. If the index to 
the power law is small or large, calculations show that the trajectories 
asymptote to the sepratrix so rapidly that one could regard (or mistake) 
them as joining the sepratrix tangentially. 
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