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Calculation of Separation Points in Incompressible
Turbulent Flows

TUNCER CEBECI,* G. J. MOSINSKIS,! AND A. M. O. SMITH}
Douglas Aircraft Company, Long Beach, Calif.

The purpose of this paper is to evaluate the accuracy with which the location of turbulent separation can
be predicted on two-dimensional and axisymmetric bodies. The evaluation was made by studying a consid-
erable number of flows that had separation. Calculated separation points were compared with the experi-
mentally measured location. Four methods of predicting separation in turbulent flow were evaluated. They
were Goldschmied's method, Stratford's method, Head's method, and the Cebeci-Smith method. It was
concluded from the study that the last three listed methods predict separation points with the reliability and
accuracy needed for aerodynamic design purposes.

Nomenclature
c =chord
cf = local skin friction coefficient, rw/(l/2)pwe

2

Cp = pressure coefficient, (p — pm)l(l/2pum
2)

D = diameter
h = total head
H = shape factor, S*/d
k = mixing-length constant

L = reference body length
p = pressure
Rc  = chord-Reynolds number, u^cjv
RD = diameter-Reynolds number, u^Djv
RL = length-Reynolds number, u^L/v
Rx = local Reynolds number, uex/v
R0 = Reynolds number, ujdjv
u,v = x and y components of velocity, respectively
#* = friction velocity, (rw/p)1/2

x — streamwise distance
y = distance normal to the surface of the body

a = angle of attack
8 = boundary-layer thickness
8* = displacement thickness, J^ (1 — u/ue)dy
6 = momentum thickness, J^ u/ue(l —u/ue)dy
IJL = dynamic viscosity
v = kinematic viscosity
p = density
r = shear stress
(/> = angle from stagnation point

Subscripts
e = edge of the boundary layer
m = minimum pressure point
sep = separation point
tr = transition
w = wall
co = freestream conditions

Introduction

IN many problems, it is necessary to know whether the
boundary layer (either laminar or turbulent) will separate

from the surface of a specific body. If it does, it is also
necessary to know accurately where the flow separation will
occur. This is quite important in many design problems.
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In the design of airfoils or hydrofoils, it is necessary to avoid
flow separation in order to keep drag levels low. In design-
ing for high lift, predicting separation points is a crucial part
of the design problem.

For steady two-dimensional and axisymmetric flows, the
separation point is defined as the point where the wall shear
stress TW is equal to zero, i.e.,

With high-speed computers, the governing boundary-layer
equations for laminar flow can be solved exactly, and conse-
quently, the laminar separation point can be determined
almost exactly. In addition, there are several simple methods
which do not require the solution of the boundary-layer
equations in their differential form, and can be used to predict
separation points quite satisfactorily. The momentum integral
method of Thwaites and the method of Stratford are examples
of two such methods. The latter does not even require the
solution of the laminar boundary-layer equations. For a
given pressure distribution [Cp(x)9 for example], the expression

Cp
1/2(xdCp/dx) (2)

is calculated around the body. Laminar separation is pre-
dicted when it reaches a value of 0.102.

The prediction of the separation point in turbulent flows,
on the other hand, is a much more difficult job. As a result
of the presence of the time mean of the fluctuating quantities
appearing in the governing equations, an exact solution of
the boundary-layer equations for turbulent flows is impos-
sible. Consequently, when the equations are solved with
some suitable assumption for these quantities, the solutions
contain empiricism, and must be checked against experiment.

The current prediction methods on the subject can be
divided into two groups. In one group are methods that
require the detailed solution of the boundary-layer equations.
These methods are either of differential type (meaning that
partial-differential equations are solved) or of integral type
(meaning that momentum integral or energy integral equations
are solved). Reference 1 presents a critical evaluation of these
methods for two-dimensional incompressible turbulent flows.
In differential methods, the parameter used to predict the
separation point is the zero wall shear stress. In integral
methods, on the other hand, the shape factor H = S*/d is
usually used to locate the separation point. In integral
methods, as the flow approaches separation, the value of H
increases. Separation of the flow is assumed to occur when
H reaches a value between 1.8 and 2.4. In some cases, § how-
ever, the value of H increases rapidly near separation, and
then begins to decrease. Then, the point corresponding to
the maximum value of His taken as the separation point.

§ These cases correspond to flows, for which the calculations
are made using an experimental pressure distribution.
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In another group are methods that do not require detailed
boundary-layer calculations. Separation is predicted by
simple formulas, or by simple differential equations that are
very fast and easy to apply. These methods also utilize the
composite nature of the turbulent boundary layer. For
example, Stratford2 divides the turbulent boundary layer
into inner and outer regions and bases his analysis on two
assumptions: 1) in the outer region, the pressure forces cause

a direct reduction in dynamic head and 2) in the inner region,
the pressure force is balanced by the shear-force gradient.
Goldschmied's method also treats the boundary layer consist-
ing of inner and outer regions. His analysis is based on the
assumptions of inner-region similarity under any pressure
gradient, and of a constant total-head line at a fixed distance
from the wall.

In this paper, we report the accuracy of several current
methods for predicting the turbulent boundary-layer separa-
tion point. In particular, we consider a differential method
(the Cebeci-Smith or CS method), a momentum integral
method (Head's method3), and two simple methods—
namely, the methods of Stratford2 and Goldschmied.4 The
differential method of Cebeci and Smith is discussed in Refs.
5 and 6. For this reason, only the other three methods are
discussed briefly in the next section.

Methods for Predicting Turbulent Boundary-Layer
Separation

Head's Method
Head's method is an integral method that can be used

both for calculating the boundary-layer parameters, as well
as for predicting the position of separation in turbulent flows.
It uses the momentum integral equation

d6/dx + (H+2)(Olue)(due/dx) = cf/2 (3)
and two auxiliary equations—namely, the Ludwieg-Tillman
expression for the skin-friction coefficient

Cf = 0.246(10)-°-678flJR0~0*268 (4)
and a shape factor G(H) relationship obtained from the
entrainment properties of the turbulent boundary layer.
The latter is also related to another shape factor HI. The
entrainment and the shape factor relationships are as follows.

Entrainment Relation
(\lue)(dldx)(ueQHi)  = 0.02990  ̂- 3.0)-°-6169 (5)

Shape Factor Relation
H! = G(H) where

(0.8234(^-1.1)-1-287 H<1.6
/"V 1LT\ __ { —— (f\\

\1.5501(#-0.6778)-3-064 + 3.3 H>1.6
This method, like most integral methods, uses the shape
factor H as the criterion for separation. Although it is not
possible to give an exact value of H corresponding to separa-
tion, when  H is between 1.8 and 2.4, separation is assumed
to exist. The difference between the lower and upper limits
of H makes very little difference in locating the separation
point, since close to separation the shape factor increases
quickly.

Stratford's Method
Stratford's method for turbulent flows is a simple one which

uses only the pressure distribution to predict boundary-layer
separation. It does not require detailed boundary-layer
calculations like the methods of Refs. 3 or 6. Presently, there

are several methods based on the ideas set forth in this
method.9-10 However, the accuracy of these methods is sim-
ilar to that of Stratford's, and so the methods are not con-
sidered in detail in this report.

Stratford's method is based upon the idea of dividing the
boundary layer into outer and inner portions. It follows
the principles successfully adopted for laminar flows.
According to this method, separation for turbulent boundary
layers is predicted from the following expression

F(x) s Cp(xdCP/dxY/2(W-6Rxri/10 = 1-25 k (7)

The above expression applies for an adverse pressure
gradient flow starting from the leading edge, as well as fully
turbulent flow everywhere. When there is a region of laminar
flow, or a region of turbulent flow with a favorable pressure
gradient, Stratford makes the assumption that at the mini-
mum pressure point x = xm the velocity profile is approxi-
mately that of a flat-plate turbulent boundary layer starting
from a false origin x = x'. • In this case, we replace  x by
(x — x') in (7), and take the value of Rx as um(xm — x')lv.
Then xm — x' is given by5

With the expression given by Eq. (8), Eq. (7) can be used
to predict the separation point in turbulent flows. In order
to do this, however, it is necessary to assume a value for k,
which, according to the mixing length theory, is 0.4. This
means that the right-hand side of Eq. (7) should be 0.5, but a
comparison with experiment, according to Stratford, suggests

a smaller value of F(x) around 0.35 and 0.40. For a typical
turbulent boundary-layer flow with an adverse pressure
gradient, it is found that F(x) increases as separation is ap-
proached, and decreases after separation. For this reason,
after applying his method to several flows with turbulent
separation, Stratford observed that if the maximum value
of F(x) a) is greater than 0.40, separation is predicted when
F(x) = 0.40; b) lies between 0.35 and 0.40, separation occurs
at the maximum value; c) is less than 0.35, then separation
does not occur.

Goldschmied's Method

Goldschmied's separation criterion,4 like Stratford's
method, is based on the existence of inner and outer regions
in the turbulent boundary layer. Goldschmied assumes that
there is a line in the inner region at a constant distance yc
from the wall, with constant total head /zc, such that

hc=pjr (9)
Furthermore, since the line is in a region where the law of the
wall applies, he assumes it to be independent of pressure
distribution, and selects the outer edge of the inner region
at the start of the adverse pressure gradient as the starting
point of the line. He assumes that the outer edge of the inner
region is characterized approximately by u/u* = 20 and
*/v = 500. Then the total head at the start of adverse
pressure gradient can be written as

hm=pm + %(20um*y (10)
Then from Eqs. (9) and (10),

pm - p + M400(rw//°)] = %puc
2 (11)

since um* = (rw/p)1/2. Dividing both sides of Eq. (11) by
um

2 and rearranging gives
(uclum)2 = (Pm-p)/%pum2 + 400(rw//o«m2) (12)

If the following terms are defined,
cfm = Twf%pum

2 and Cp = (p—pm)/%pum
2

Eq. (12) becomes
uclum = (2Wcfm-CPY<2 (13)

Making use of the laminar sublayer and the law of the wall,
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620 CEBECI, MOSINSKIS, AND SMITH J. AIRCRAFT

he shows further that at separation, the expression uc\um =
l/3.45[c/m/2]1/2 is so small that it can be neglected. Then

Eq. (13) reduces to
= 200c/m (14)

and becomes the separation criterion for Goldschmied's
method.

Comments on the Four Methods

In the previous section, we presented a brief description of
the fluid mechanics aspects of the four methods. Of these,
Goldschmied's method is the simplest one to use. This
method takes into account some of the earlier history of the
boundary layer, since cfm depends on the flow history. After
the minimum pressure point is passed, details of the flow are
ignored. Consider Fig. 1. Up to the minimum pressure
point (tri) a general accelerating flow is assumed as sketched.
Then Goldschmied's method predicts separation when Cp
reaches a certain level as indicated, entirely independent of
path; the rise may be slow or fast.

Stratford's method predicts separation when Cp(xdCpldx)l/2

reaches a certain value. The method takes into account
Cp,  x and dCp/dx, so that path and distance now are considered

to a certain extent. But Stratford's method will give the same
answer for a number of pressure rise paths. Assume point s
is the separation point for path a according to Stratford's
method. Then X9CP9 and dCp/dx  are fixed. But paths b
and c start from the same point and end at the same point
with the same set of terminal values. It is easy to show that
certain paths b and c do not exceed Stratford's separation
criterion at intermediate values of x. Hence we have shown
that Stratford's method does not take into account all the
details of a pressure rise.

Head's method, being a differential equation solved as a
function of pressure distribution, can distinguish between the
pressure distributions a, b, and c of Fig. 1. The difficulty is
that it still has considerable approximations in it, being a
momentum integral type of equation. One case where it
fails is in flow of equilibrium boundary layers. This kind of
method will eventually predict separation where, in fact,
separation does not occur.

The partial differential equation method such as the CS
method also responds to full details of the pressure history.
Furthermore, it predicts equilibrium flows correctly, although
that problem is more difficult than predicting nonequilibrium
flows.

In summary, then, the four methods have the following
features:

1) Goldschmied: only sets a separation Cp level, and
takes no account of the shape of the pressure distri-
bution. Accuracy of the results is vitally dependent
on the precision of estimating cfm. This method is
not applicable to axisymmetric flows.

2) Stratford: takes partial account of the shape of the

-m(XmtO)

pressure rise curve, but will give the same answers for a
variety of pressure distributions. This method is not
applicable to axisymmetric flows.

3) Head: takes complete account of the shape of the
pressure distribution, but uses a momentum inetgral
equation with its approximations. This method is
not applicable to axisymmetric flows.

4) Cebeci-Smith: takes complete account of the shape of
the pressure distribution by use of more exact differ-
ential equations than Head's. This method is applic-
able to axisymmetric flows.

The Problem of Predicting Separation from
Experimental Data

The general methods of calculation have been described, and
some of their basic features have just been summarized. But
still another problem needs discussion—the use of experi-
mental pressure distributions. To evaluate the accuracy of
predicting separation points, we must examine experimental
data where the flows do separate. Otherwise, there is no
base for assessment. Typical separating flows have a
peculiar pressure distribution function. The pressure distri-
bution flattens out because of the separated region. The
effect is shown in Figs. 2, 5, 10, and 11, among others. After

a short transition region, the pressure becomes essentially
constant. In performing boundary-layer calculations, this
is perceived as a flat-plate flow. Therefore, boundary-layer
methods may or may not predict separation, depending on
whether they have an optimistic or a conservative basis.

Examination of the region of transition between the vari-
able pressure region and the constant pressure separation
region shows that it is short. See, for example, a = 12°,
Fig. 11. The boundary-layer equations legitimately apply
to some place within the transition region. But beyond this
point the equations do not properly apply, and furthermore,
separation is not likely to be predicted. To avoid this
dilemma, we and others attacking this problem simply
extrapolate the pressure distribution following the guide-
lines given by inviscid theory. Extrapolation is done graph-
ically, but errors should not be great, because the transition
region is generally short. The flow is so near separation by
the time the extrapolation is commenced that any reasonable
extrapolation will give nearly the same location of separation.

The extrapolation would have, to appear absurd before
significant changes would occur.

Then, given this extrapolated pressure distribution, what
do we find? If separation is clearly predicted before the
start of the transition region, we have a poor prediction,
because obviously the flow did not separate in that region.

1.4

1.3-

Ue
Uoo

1.0

.9

EXPERIMENT

EXTRAPOLATION
PREDICTION OF SEPARATION BY

• EXPERIMENT
O CS METHODAHEADO STRATFORD

Fig. 1 Schematic for comparison of separation criteria. Fig. 2 Separation points for Schubauer's elliptic cylinder.
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SEPTEMBER 1972 SEPARATION POINTS IN INCOMPRESSIBLE TURBULENT FLOWS 621

O EXPERIMENTAL,RD = 1.18X10

——— EXPERIMENTAL, Ue/UooY
——— EXTRAPOLATED.Ue/U

0 .4 .8 1.2 1.6 2.0 2.4 2.8 3.2
X/D

Fig. 3 Calculated and experimental local skin-friction coefficients
for Schubauer's elliptic cylinder. The calculations were made by

the CS boundary-layer method.

Predictions made using the arbitrary extrapolation of pressure
distribution are found to agree well with experiment. Fur-
thermore, for the CS method, the minimum in cf occurs at
about the same point. A typical extrapolated pressure distri-
bution and the accompanying cf calculations are shown in
Figs. 2 and 3. It is seen that the cf obtained from following
the experimental pressure distribution has its minimum at
very nearly the same place where cf = 0 for the extrapolated
case. A large number of studies of this sort showed good
agreement. Hence either method is acceptable: to look for

the minimum value of cf using the measured pressure distri-
bution, or to look for the point where cf = 0, using an extra-
polated pressure distribution.

The same problem occurs regardless of the method that is
used, and the treatment in terms of H, etc., is similar. The
problem of relaxing pressure does not normally occur for
inviscid flows. In any case, it is assumed that all the know-
ledge available is used. It will be shown now by a number of
examples that separation points for arbitrary experimental
flows can be predicted well. That being so, we can state
that separation points on theoretical inviscid flows can be
predicted as well.

Comparison of Calculated and Experimental
Separation Points

In this section, we will consider several experimental pres-
sure distributions which include observed or measured
boundary-layer separation, and apply the four separation-
prediction methods discussed previously to these pressure
distributions. It is important to note that near separation,
the behavior of these methods with an experimental pressure
distribution is quite different from that with an inviscid
pressure distribution. The pressure distribution near the
point of separation may be a characteristic of the phenome-
non of separation, and inclusion of it in the specification of
the flow is equivalent to being told the position of separation.9
For this reason, use of these separation-prediction methods
with an experimental pressure distribution will only show
their behavior close to separation, and indicate whether the
theoretical assumptions used in these methods are self-
consistent. When one considers an experimental pressure
distribution with separation and uses the CS method, it is
quite possible that the wall shear stress at the experimental
separation point may not reach zero. It may decrease as
the separation is approached, and may start to increase past
the separation point. Similarly, the shape factor H in Head's
method may not show a continuous increase to the position
of separation. Depending on the pressure distribution which
is distorted by the separation flow, the shape factor may even
start to decrease after an increase. All that can be learned
from a study such as the one conducted here is how these
methods behave close to separation, and whether they predict
an early separation or no separation at all.

While there is much good data available for comparing
calculated separation points with experimental separation
points for two-dimensional bodies, there is not much good
data for axisymmetric bodies.

In this study, we have tested the previously-discussed
separation prediction methods for a large number of two-
dimensional flows. However, only a few cases are considered
for axisymmetric flows. During the study, it became neces-
sary to make certain assumptions in applying Goldschmied's
method. According to this method, it is necessary to calcu-
late the local turbulent skin-friction coefficient at the minimum
pressure point. In the cases studied here, however, the flow
is generally laminar at the minimum pressure point and
becomes turbulent downstream of that point. In these
cases, the calculated local skin-friction coefficient for turbu-
lent flow was extrapolated to the minimum pressure point.

It was also observed that Stratford's method has better
agreement with experiment if the range of F(x)  was slightly
changed from that given in a previous section—namely, if
the maximum value of F(x) a) is greater than 0.50, separation
is predicted when F(x) = 0.50; b) lies between 0.30 and 0.40,
separation occurs at the maximum value; c) is less than 0.30,
then separation does not occur.

Results are reported by marking calculated separation
points on the pressure distribution curves because, in some
cases, experimental separation points could be inferred only
from the pressure distributions. This method of presentation,
therefore, helps the reader in assessing the accuracy of the
various theoretical approaches studied.

Results for Schubauer's Elliptic Cylinder

Figures 2 and 3 show the results for Schubauer's elliptic
cylinder,11 which has a 3.98-in. minor axis D. The experi-
mental pressure distribution was given at a freestream
velocity of u^ =60 ft/sec, corresponding to a Reynolds
number of RD = l.lS x 105. The extent of the transition
region was between x/D = 1.25 and x/D = 2.27, and experi-
mental separation was indicated at x/D = 2.91.

In the calculations, the transition point was assumed at
x/D = 1.25. Figure 2 shows the results. It is interesting
to note that while three methods predicted separation, the
fourth method (Goldschmied's), did not predict any separa-
tion.

Figure 3 shows a comparison of calculated and experi-
mental local skinfriction values. The calculations were
made by using the CS method. When the experimental
pressure distribution was used, the local skin-friction coeffi-
cient began to increase near separation because of the pressure
distribution which was distorted by the separating flow.
However, when the calculations were repeated by using an
extrapolated velocity distribution which could be obtained
by an inviscid method, the skin friction went to zero at
x/D = 2.82.

Figures 2 and 3 are convenient to illustrate the difference
in treatment between experimental and theoretical pressure
distribution data. As shown in Fig. 2, because of separation
the adverse pressure gradient becomes less severe and ap-
proaches zero. If a boundary-layer method predicted
separation, somewhat late separation would not be predicted
at all, and gradually the method would converge toward
flat-plate results because of the final constancy of the pressure.
Figure 3 illustrates the effect. Separation is not really
predicted, but there is a clear and well-defined minimum in
skin friction. If the experimental pressure distribution is
extrapolated following 'potential theory as in Fig. 2, then
separation is predicted by the CS method as in Fig. 3. It is
seen that the minimum cf point from experimental data, and
the cf = 0 point from the inviscid extrapolation, agree well.
Therefore, establishment of accuracy of methods by applica-
tion to experimental pressure distributions seems justified.
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622 CEBECI, MOSINSKIS, AND SMITH J. AIRCRAFT

y-FEET

Fig. 4 Calculated and experimental velocity profiles for Schubauer's
elliptic cylinder. The calculations were made by the CS boundary-

layer method.

Figure 4 shows a comparison of calculated and experi-
mental velocity profiles at various x/D locations for the same
body. In general, the agreement for both laminar and
turbulent boundary layers seems to be quite satisfactory.

Results of Roshko's Circular Cylinder

Figure 5 shows the predicted separation points, together
with the experimental points for Roshko's circular cylinder,12

for two diameter Reynolds numbers RD = 6.7 x 105 and
8.4 x 106 that are within the so-called "supercritical" and
"transcritical" Reynolds number ranges.

According to Roshko, at RD = 6.7 x 105 a separation
bubble exists for angles 100-120°. This can be inferred
from the pressure distribution. However, it is difficult to
find the exact location of the reattachment point. Also, the
turbulent separation point in this case must be very close to
the reattachment point. Thus, the extent of attached
turbulent flow is probably very small, possibly 115-120°.

Ue
Uoo

2.0

1.6

1.2

.8

.4 -

RD = 8.4X I06

RD = 6.7 X I05

PREDICTION OF SEPARATION BY
O CS METHOD
A HEAD

O STRATFORD
STRATFORD,
EXTRAPOLATED P.D.

40 80 120 160

2.4

2.4

2.0

1.6

,.2£

-

U'ei.6
L Ux

•8c

___ EXPERIMENTAL P.D.
——— EXTRAPOLATED P.D.

• A- '/ * '
" /

i l l . /
) 80 160 ,'

9 ^''

i i i
JO 90 100 110 120

(^-DEGREES

t
130

Fig. 6 Variation of shape factor with two pressure distributions for
Roshko's circular cylinder. Calculations were made by Head's

method for RD = 8.4 x 106.

At higher Reynolds number, RD = 8.4 x 106, on the other
hand, the laminar separation region is much smaller and the
extent of the turbulent flow region is fairly large, as evident
from the forward movement of the minimum pressure point
and the smaller pressure peak.

For both Reynolds numbers, Goldschmied's method did
not predict separation. On the other hand, in both cases
Head's method and CS method predicted separation. For
RD = 6.7 x 105, Stratford's method predicted separation
and for RD = 8.4 x 106 it did not. In the latter case, F(x)
was less than 0.2. However, when the velocity distribution
was extrapolated (see Fig. 6), then separation was predicted.

Figure 6 shows the variation of shape factor for the experi-
mental and extrapolated velocity distributions at RD = 8.4 x
106. The calculations were made by Head's method. As
expected with the extrapolated velocity distribution (which is
similar to inviscid velocity distribution), the shape factor
quickly increases close to separation. On the other hand,
with the experimental velocity distribution, the shape factor
reaches a maximum and then starts to decrease.

Results for Several Airfoils
Figures 7-12 show the results obtained for several airfoils

where separation was observed. The results for the pressure
distribution of Schubauer and Klebanoff13 are shown in
Fig. 7. This pressure distribution was observed over an
airfoil-like body at a Reynolds number per foot of 0.82 x 106.
The experimental separation point was given at 25.7 ± 0.2 ft.
The predictions of all methods are quite good.

As shown in Fig. 8, agreement between the CS method
and experiment is also very good for Newman's airfoil.7 On
the other hand, the other methods predict a slightly early
separation.

For the pressure distribution of Figs. 9-12, the experi-
mental separation points were not given, but can be inferred
from the shape of the pressure distribution. The results
show that, except at very high angles of attack, both boundary-
layer methods predict separation at approximately the same
streamwise locations, and generally close to the characteristic
"flattening" in the pressure distribution curves. Stratford's
method predicts a slightly earlier separation than that given

160

140

^FT/SEC
120

100

PREDICTION OF SEPARATION BY
EXPERIMENT
CS MKTHOD

AHEAD
Q GOLDSCHMIED
O STRATFORD

12 16
X~FEET

^'-DEGREES

Fig. 5 Separation points for Roshko's circular cylinder.
Fig. 7 Separation points for the airfoil-like body of Schubauer

and Klebanoff.
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2.0

1.6

1.2

Rc = 3.3x10s

Uoo X

a =10.5°

PREDICTION OF SEPARATION BY
• EXPERIMENT
O CS METHOD
A HEAD

GOLDSCHMIED
O STRATFORD

2 3
X~FEET

l.6r

1.2

Fig. 8 Separation points for Newman's airfoil.

Rc =2.64Xl06,a =
R C = 2 . 6 7 X lof

PREDICTION OF SEPARATION BY
O CS METHOD
A HEAD
D GOLDSCHMIED
O STRATFORD

0 0 0 .1 .2 .3 A .5-  .6
X/C

Fig. 9 Predicted separation points for the experimental pressure
distribution on the NACA 65(216)-222 airfoil.

by the boundary-layer methods. On the other hand, Gold-
schmied's method shows results that are somewhat incon-
clusive, predicting early separation in some cases and late
separation in others.

Results for Axisymmetric Flows

For axisymmetric flows, Head's, Stratford's, and Gold-
schmied's methods cannot be used to predict the position
of separation in their present form. For this reason, only

Rc = 6.5 X I06

PREDICTION OF SEPARATION BY
o CS METHOD
A HEAD
a GOLDSCHMIED
O STRATFORD

Fig. 11 Predicted separation points for the experimental pressure
distribution on the NACA 66, 2-420 airfoil.

the CS method was used to predict the separation points in
such flows.

Table 1 shows the results for the Murphy bodies.18 The
experimental separation points were obtained accurately by
the "dust" technique. The calculated separation points

Table 1 Comparison of calculated and experimental separation
points for the bodies of revolution of Murphy0

Tail shape

A-2
C-2
C-4

RLx 10-6

6.0
6.0
6.6

•^sep

Experiment

59.1
58.3

No separation

(in.)

CS method

59.4
58.2

No separation

"SeeRef. 18.

Fig. 10 Predicted separation points for the
experimental pressure distribution on the

NACA 4412 airfoil.

X(a>0)
Rc=3xl06

X(a<0)

PREDICTION OF SEPARATION BY
o CS METHOD

HEAD
a GOLDSCHMIED
O STRATFORD
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2.8

2.6

2.4

2.2

2.0

1.8

1.4

1.2

1.0

o CS METHOD
A HEAD
Q GOLDSCHMIED
O STRATFORD

.2 . .4X/C
1.0

Fig. 12a Predicted separation points for the experimental pressure
distribution on the NACA 65,2-421 airfoil, negative angles of attack.

were obtained by the CS method by extrapolating the skin-
friction values to zero. The agreement is excellent.

Calculations were also made for a flow past the sphere of
3-in. radius measured by Page19 for RD = OA2xl06 by
using the CS method. The experimental separation point
was not given, but was inferred from the experimental pres-
sure distribution at an angular location of 140° from the
stagnation point. The calculated value is 131°.

Summary
Based on the calculations shown in this paper, as well as

many more (both unreported, and in Ref. 5) the following
conclusions can be made on the accuracy of calculating the
turbulent boundary-layer separation on two-dimensional
and axisymmetric bodies:

2.6

2.4

2.2

2.0

1.8

1.6

1.2

1.0

PREDICTION OF SEPARATION BY
o CS METHOD
A HEAD

a GOLDSCHMIED
STRATFORD

1.0

.2 .4
x/c

1.0

Fig. 12b Predicted separation points for the experimental pressure
distribution on the NACA 65, 2-421 airfoil, positive angles of attack.

1) The location of turbulent boundary-layer separation
on two-dimensional bodies can be calculated quite
satisfactorily by the CS method, Head's method, and
Stratford's method. Goldschmied's method is incon-
clusive. This is probably as a result of the very
questionable assumption concerning the total pressure

at the edge of the viscous sublayer. The results
indicate that both boundary-layer methods predict the
point of separation at approximately the same location.
However, in some cases the CS predictions agree
better with experiment than Head's predictions.
Stratford's method is slightly conservative in its pre-
diction but, is very convenient for calculation purposes.

2) The location of turbulent boundary-layer separation
on axisymmetric bodies can be calculated quite accu-
rately by the CS method. Head's, Stratford's, and
Goldschmied's methods in their present form are not
applicable to such flows.
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