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GLOBALLY CONVERGENT TYPE-I ANDERSON ACCELERATION
FOR NONSMOOTH FIXED-POINT ITERATIONS\ast 

JUNZI ZHANG\dagger , BRENDAN O'DONOGHUE\ddagger , AND STEPHEN BOYD\S 

Abstract. We consider the application of the type-I Anderson acceleration to solving general
nonsmooth fixed-point problems. By interleaving with safeguarding steps and employing a Powell-
type regularization and a restart checking for strong linear independence of the updates, we propose
the first globally convergent variant of Anderson acceleration assuming only that the fixed-point
iteration is nonexpansive. We show by extensive numerical experiments that many first order algo-
rithms can be improved, especially in their terminal convergence, with the proposed algorithm. Our
proposed method of acceleration is being implemented in SCS 2.1, one of the default solvers used in
the convex optimization parser-solver CVXPY 1.0.
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1. Introduction. We consider solving the following general fixed-point problem:

(1.1) Find x \in Rn such that x = f(x),

where f : Rn \rightarrow Rn is potentially nonsmooth. Unless otherwise stated, we assume
throughout the paper that f is nonexpansive (in \ell 2-norm), i.e., \| f(x)  - f(y)\| 2 \leq 
\| x - y\| 2 for all x, y \in Rn, and that the solution set X = \{ x \star | x \star = f(x \star )\} of (1.1)
is nonempty. With these assumptions, (1.1) can be solved by the Krasnosel'ski\v {\i}--
Mann (KM, or averaged) iteration algorithm, which updates xk in iteration k to
xk+1 = (1 - \alpha )xk+\alpha f(xk), where \alpha \in (0, 1) is an algorithm parameter. An elementary
proof shows the global convergence of KM iteration to some fixed-point x \star \in X [45].
In one sense, our goal is to accelerate the vanilla KM algorithm.

Fixed-point problems such as (1.1) arise ubiquitously in mathematics, natural
science, and social science. For example, to find a Nash equilibrium in a multiplayer
game, one can reformulate it as a monotone inclusion problem under mild assumptions
on the utility functions [11], which can then be further reformulated as a fixed-point
problem of the corresponding (nonexpansive) resolvent or Cayley operator [45]. In
general, the solution of most, if not all, convex optimization problems falls into the
above scenario. In fact, almost all optimization algorithms are iterative, and the goal
is to solve the corresponding fixed-point problem (1.1), where f : Rn \rightarrow Rn is the
iteration mapping. When the optimization problem is convex, f is typically non-
expansive, and the solution set of the fixed-point problem is the same as that of the
original optimization problem, or closely related to it. Another related example is
an infinite-horizon discounted Markov decision process (MDP), in which the optimal
policy can be found by solving the fixed-point problem of the associated Bellman

\ast Received by the editors January 2, 2019; accepted for publication (in revised form) June 26,
2020; published electronically November 18, 2020.

https://doi.org/10.1137/18M1232772
\dagger ICME, Stanford University, Stanford, CA 94305 USA (junziz@stanford.edu).
\ddagger DeepMind, Google, London, UK (bodonoghue85@gmail.com).
\S Department of Electrical Engineering, Stanford University, Stanford, CA 94305 USA (boyd@

stanford.edu).

3170

D
ow

nl
oa

de
d 

02
/1

5/
21

 to
 1

71
.6

6.
16

2.
93

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/18M1232772
mailto:junziz@stanford.edu
mailto:bodonoghue85@gmail.com
mailto:boyd@stanford.edu
mailto:boyd@stanford.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GLOBAL AA-I FOR NONSMOOTH FP ITERATIONS 3171

operator, which is not nonexpansive (in \ell 2-norm) but is contractive in \ell \infty -norm. Such
scenarios are also discussed in section 4.2.3 as a variant of our main setting.

In spite of the robustness of the vanilla KM iteration algorithm, the convergence
can be extremely slow in practice, especially when high or even just moderate accuracy
is needed. Data preconditioning and step-size line search are the two most commonly
used generic approaches to accelerate the convergence of the KM method [21]. To
further accelerate the convergence, a trade-off between the number of iterations and
per-iteration cost is needed. In this case, when f(x) = x  - \alpha \nabla F (x) is the gradient
descent mapping for the minimization of a differentiable objective function F (x), New-
ton, quasi-Newton, and accelerated gradient descent methods (e.g., Nesterov's [32],
and more recently, [17]) can then be used to reduce the overall iteration complexity
at the expense of an increased cost in each step [30]. For more general f , semismooth
Newton [2, 59] and B-differentiable (quasi-)Newton [35, 26], which generalize their
classical counterparts, have also been proposed and widely studied. More recently,
some hybrid methods, which interleave vanilla KM iterations with quasi-Newton or
Newton-type acceleration steps, are designed to enjoy a smaller per-iteration cost
while maintaining fast convergence in practice [47, 52].

Nevertheless, to our knowledge, apart from (pure) preconditioning and line search
(which can be superimposed on top of other acceleration schemes), the (local or global)
convergence of most, if not all, existing methods requires additional assumptions, e.g.,
some kind of differentiability around the solution [31, 15], symmetry of the Jacobian
of f [28, 29], or symmetry of the approximate Jacobians in the algorithm [64, 65].
Moreover, line search is (almost) always enforced in these methods to ensure global
convergence, which can be prohibitive when function evaluations are expensive. Our
main goal in this paper is hence to provide a globally convergent acceleration method
with relatively small per-iteration costs, without resorting to line search or any further
assumptions other than nonexpansiveness, thus guaranteeing improvement of a much
larger class of algorithms ruled out by existing methods.

To achieve this goal, we propose to solve (1.1) using the type-I (also called ``good"")
Anderson acceleration (AA-I) [19], a natural yet underdeveloped variant of the original
Anderson acceleration (AA), also known as the type-II Anderson acceleration (AA-II)
[4]. Despite its elegance in implementation, popularity in chemistry and physics, and
success in specific optimization problems, a systematic treatment of AA, especially
AA-I, in optimization-related applications is still lacking. One of the main purposes
of this work is thus to showcase the impressive numerical performance of AA-I on
problems from these fields.

On the other hand, both early experiments in [19] and our preliminary bench-
mark tests of SCS version 2 show that although AA-I outperforms AA-II in many
cases (earning the name ``good""), it also suffers more from instability. Moreover, few
convergence analyses of AA and its variants (and none for AA-I) for general nonlinear
problems exist in the literature, and the existing ones all require f to be continuously
differentiable (which excludes most algorithms involving projections, and in general
proximal operators), and either are local [20, 44, 54] or assume certain nonsingularity
(e.g., contractivity) conditions [47, 46, 49]. Another goal of this paper is hence to
provide modifications that lead to a stabilized AA-I with convergence beyond differ-
entiability, locality, and nonsingularity. As a result, we obtain global convergence to
a fixed-point with no additional assumptions apart from nonexpansiveness.

We emphasize that our analysis does not provide a rate of convergence. While
it would be nice to formally establish that our modified AA-I algorithm converges
faster than vanilla KM, we do not do this in this paper. Instead, we show only
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3172 J. ZHANG, B. O'DONOGHUE, AND S. BOYD

that convergence occurs. The benefit of our method is not an improved theoretical
convergence rate; it is instead (a) a formal proof that the method always converges,
under very relaxed conditions, and (b) empirical studies that show that terminal
convergence, especially to moderately high accuracies, is almost always much better
than vanilla methods.

Related work. As its name suggests, AA is an acceleration algorithm proposed by
D. G. Anderson in 1965 [4]. The earliest problem that AA dealt with was nonlinear
integral equations. Later, developed by two different communities [41, 42], AA enjoyed
wide applications in material sciences and computational quantum chemistry for the
computation of electronic structures, where it is also known as Pulay/Anderson mixing
and (Pulay's) direct inversion iterative subspace, respectively. In contrast, AA is not
well known in the optimization community. As far as we know, it was not until [19]
connected it with Broyden's (quasi-Newton) methods that some applications of AA
to optimization algorithms, including expectation-maximization (EM), alternating
nonnegative least squares, and alternating projections (APs), emerged [56, 24, 25].
More recently, applications are further extended to machine learning and control
problems, including K-means clustering [63], robot localization [37], and computer
vision [48]. For a thorough treatment of the history of AA, we refer the readers to
[10].

There has been a rich literature on applications of AA to specific problems, es-
pecially within the field of computational chemistry and physics [3, 40]. An emerging
literature on applications to optimization-related problems has also been witnessed in
recent years, as mentioned above.

Nevertheless, theoretical analysis of AA and its variants is relatively underde-
veloped, and most of the theory literature is focused on AA-II. For solving general
fixed-point problems (or equivalently, nonlinear equations), perhaps the work most
related to ours is [20] and [44], of which the former proves local Q-superlinear con-
vergence of a full-memory version of AA-I, while the latter establishes local Q-linear
convergence for the original (limited memory) AA-II, both presuming continuous dif-
ferentiability of f in (1.1) around the solutions. By assuming in addition contractivity
of f , slightly stronger and cleaner local linear convergence of the original AA-II can
be obtained [54]. A similar analysis for noise-corrupted f was later conducted in [53].

On the other hand, stronger results have been shown for more special cases.
When f is restricted to affine mappings, finite-step convergence of full-memory AA
is discussed by showing its essential equivalence to GMRES and the Arnoldi method
[56, 38]. More recently, a regularized variant of full-memory AA-II was rediscovered as
regularized nonlinear acceleration in [47], in which f is the gradient descent mapping of
a strongly convex and strongly smooth real-valued function. Local linear convergence
with improved rates similar to Nesterov's accelerated gradient descent is proved using
a Chebyshev's acceleration argument. The method is then extended to accelerate
stochastic [46] and momentum-based [49] algorithms.

We are not aware of any previous work on convergence of the limited memory
AA-I or its variants, let alone global convergence in the absence of (Fr\'echet continu-
ous) differentiability and nonsingularity (or contractivity), which is missing from the
entire AA literature. However, we remark that the proposed stabilized AA-I method
in this paper has now been adopted and generalized to various different applica-
tions and settings with convergence guarantees in a few follow-up works, including
self-consistent field (SCF) computation [58], nonconvex statistical learning [23], and
distributed optimization [51].
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Outline. In section 2, we introduce the original AA-I [19] and discuss its relation
to quasi-Newton methods. In section 3, we propose a stabilized AA-I with Powell-type
regularization, restart checking, and safeguarding steps. A self-contained convergence
analysis of the stabilized AA-I is given in section 4, together with several example
applications. Finally, we demonstrate the effectiveness of our proposed algorithm
with various numerical examples in section 5, followed by extensions to our results in
section 6.

2. Type-I Anderson acceleration. In this section we introduce the original
AA-I, with a focus on its relation to quasi-Newton methods. Following the historical
development from [4] to [19], we naturally motivate it by beginning with a brief intro-
duction to the original AA-II, making explicit its connection to the type-II Broyden's
method, and then move on to AA-I as a natural counterpart of the type-I Broyden's
method.

2.1. General framework of AA. As illustrated in the prototype Algorithm
2.1, the main idea is to maintain a memory of previous steps and update the iter-
ation as a linear combination of the memory with dynamic weights. It can be seen
as a generalization of the KM iteration algorithm, where the latter uses only the
two most recent steps, and the weights are predetermined, which leads to sublinear
convergence for nonexpansive mappings in general [45], and linear convergence under
certain additional assumptions [8].

Algorithm 2.1 Anderson acceleration prototype (AA).

1: Input: initial point x0, fixed-point mapping f : Rn \rightarrow Rn.

2: for k = 0, 1, . . . do

3: Choose mk (e.g., mk = min\{ m, k\} for some integer m \geq 0).

4: Select weights \alpha k
j based on the last mk iterations satisfying

\sum mk

j=0 \alpha 
k
j = 1.

5: xk+1 =
\sum mk

j=0 \alpha 
k
j f(x

k - mk+j).

6: end for

The integer mk is called the memory in iteration k, and the next iterate is a
linear combination of the images of the last mk + 1 iterates under the mapping f .
Based on the choices of the weights \alpha k

j in line 4 of Algorithm 2.1, AA is classified
into two subclasses [19], namely AA-I and AA-II. The terminology indicates a close
relationship between AA and quasi-Newton methods, as we will elaborate in more
detail below. While existing literature is mainly focused on AA-II, our focus is on the
less explored AA-I.

2.2. The original AA: AA-II. Define the residual g : Rn \rightarrow Rn of f to be
g(x) = x  - f(x). In AA-II [4], for each iteration k \geq 0, we solve the following least
squares problem with a normalization constraint:

minimize

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
mk\sum 
j=0

\alpha jg(x
k - mk+j)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

2

subject to

mk\sum 
j=0

\alpha j = 1,

(2.1)D
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3174 J. ZHANG, B. O'DONOGHUE, AND S. BOYD

with variable \alpha = (\alpha 0, . . . , \alpha mk
). The weight vector \alpha k = (\alpha k

0 , . . . , \alpha 
k
mk

) in line 4 of
Algorithm 2.1 is then chosen as the solution to (2.1). The intuition is to minimize the
norm of the weighted residuals of the previous mk + 1 iterates. In particular, when g
is affine, it is not difficult to see that (2.1) directly finds a normalized weight vector \alpha ,
minimizing the residual norm \| g(xk+1/2)\| 2 among all xk+1/2 that can be represented
as xk+1/2 =

\sum mk

j=0 \alpha jx
k - mk+j , from which xk+1 = f(xk+1/2) is then computed with

an additional fixed-point iteration in line 5 of Algorithm 2.1.
Connection to quasi-Newton methods. To reveal the connection between AA-II

and quasi-Newton methods, we begin by noticing that the inner minimization sub-
problem (2.1) can be efficiently solved as an unconstrained least squares problem by a
simple variable elimination [56]. More explicitly, we can reformulate (2.1) as follows:

(2.2) minimize \| gk  - Yk\gamma \| 2

with variable \gamma = (\gamma 0, . . . , \gamma mk - 1). Here gi = g(xi), Yk = [yk - mk
\cdot \cdot \cdot yk - 1] with

yi = gi+1  - gi for each i, and \alpha and \gamma are related by \alpha 0 = \gamma 0, \alpha i = \gamma i  - \gamma i - 1 for
1 \leq i \leq mk  - 1 and \alpha mk

= 1 - \gamma mk - 1.
Assuming for now that Yk has full column rank and the solution \gamma k to (2.2) is

given by \gamma k = (Y T
k Yk)

 - 1Y T
k gk, and hence by the relation between \alpha k and \gamma k, the

next iterate of AA-II can be represented as

xk+1 = f(xk) - 
mk - 1\sum 
i=0

\gamma k
i

\bigl( 
f(xk - mk+i+1) - f(xk - mk+i)

\bigr) 
= xk  - gk  - (Sk  - Yk)\gamma 

k = xk  - (I + (Sk  - Yk)(Y
T
k Yk)

 - 1Y T
k )gk = xk  - Hkgk,

where Sk = [sk - mk
\cdot \cdot \cdot sk - 1], si = xi+1  - xi for each i, and

Hk = I + (Sk  - Yk)(Y
T
k Yk)

 - 1Y T
k .

It has been observed that Hk minimizes \| Hk  - I\| F subject to the inverse multisecant
condition HkYk = Sk [19, 56] and hence can be regarded as an approximate inverse
Jacobian of g. The update of xk can then be considered as a quasi-Newton-type
update, with Hk being some sort of generalized second (or type-II) Broyden's update
[12] of I satisfying the inverse multisecant condition.

2.3. AA-I. In the quasi-Newton literature, the type-II Broyden's update is often
termed as the ``bad Broyden's method."" In comparison, the so-called ``good Broyden's
method,"" or type-I Broyden's method, which directly approximates the Jacobian of
g, typically seems to yield better numerical performance [22].

In the same spirit, we define the type-I AA (AA-I) [19], in which we find an
approximate Jacobian Bk of g minimizing \| Bk  - I\| F subject to the multisecant con-
dition BkSk = Yk. Assuming for now that Sk is full column rank, we obtain (by
symmetry) that

(2.3) Bk = I + (Yk  - Sk)(S
T
k Sk)

 - 1ST
k ,

and the update scheme is defined as

(2.4) xk+1 = xk  - B - 1
k gk,

assuming Bk to be invertible. We will deal with the potential rank-deficiency of Sk

and singularity of Bk in the next sections.
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A direct application of the Woodbury matrix identity shows that

(2.5) B - 1
k = I + (Sk  - Yk)(S

T
k Yk)

 - 1ST
k ,

where again we have assumed for now that ST
k Yk is invertible. Notice that this explicit

formula of B - 1
k is preferred in that the most costly step, inversion, is implemented

only on a small mk \times mk matrix.
Backtracking the derivation in AA-II, (2.4) can be rewritten as

(2.6) xk+1 = xk - gk - (Sk - Yk)\~\gamma 
k = f(xk) - 

mk - 1\sum 
i=0

\~\gamma k
i

\bigl( 
f(xk - mk+i+1) - f(xk - mk+i)

\bigr) 
,

where \~\gamma k = (ST
k Yk)

 - 1ST
k gk. Now we can see how AA-I falls into the framework of

Algorithm 2.1: here the weight vector \alpha k in line 4 is defined as \alpha k
0 = \~\gamma k

0 , \alpha 
k
i = \~\gamma k

i  - \~\gamma k
i - 1

for 1 \leq i \leq mk  - 1 and \alpha k
mk

= 1  - \~\gamma k
mk - 1. Note that although not as intuitive as

the weight vector choice in AA-II, the computational complexity is exactly the same
whenever matrix-vector multiplication is done instead of matrix-matrix multiplication.

For easier reference, we detail AA-I in Algorithm 2.2. As our focus is on the more
numerically efficient limited-memory versions, we also specify a maximum-memory
parameter m in the algorithm.

Algorithm 2.2 Type-I Anderson acceleration (AA-I-m).

1: Input: initial point x0, fixed-point mapping f : Rn \rightarrow Rn, max-memory m > 0.

2: for k = 0, 1, . . . do

3: Choose mk \leq m (e.g., mk = min\{ m, k\} for some integer m \geq 0).

4: Compute \~\gamma k = (ST
k Yk)

 - 1(ST
k gk).

5: Compute \alpha k
0 = \~\gamma k

0 , \alpha 
k
i = \~\gamma k

i  - \~\gamma k
i - 1 for 1 \leq i \leq mk  - 1 and \alpha k

mk
= 1 - \~\gamma k

mk - 1.

6: xk+1 =
\sum mk

j=0 \alpha 
k
j f(x

k - mk+j).

7: end for

Note that in the above algorithm, the iteration may get stuck or suffer from ill-
conditioning if Bk, or equivalently either Sk or Yk is (approximately) rank-deficient.
This is also a major source of numerical instability in AA-I. We will address this issue
in the next section.

3. Stabilized type-I Anderson acceleration. In this section, we propose sev-
eral modifications to the vanilla AA-I (Algorithm 2.2) to stabilize its convergence. We
begin by introducing a Powell-type regularization to ensure the nonsingularity of Bk.
We then introduce a simple restart checking strategy that ensures certain strong lin-
ear independence of the updates sk. These together solve the stagnation problem
mentioned at the end of the last section. Finally, we introduce safeguarding steps
that check the decrease in the residual norm, with which the modifications altogether
lead to global convergence to a solution of (1.1), as we will show in section 4.

Rank-one update. To motivate the modifications, we take a step back to the
update formula (2.4) and formalize a closer connection between AA-I and the type-I
Broyden's method in terms of a rank-one update. The counterpart result has been
proved for AA-II in [44].

Proposition 3.1. Suppose that Sk is full rank; then Bk in (2.3) can be computed
inductively from B0

k = I as follows:
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(3.1) Bi+1
k = Bi

k +
(yk - mk+i  - Bi

ksk - mk+i)\^s
T
k - mk+i

\^sTk - mk+isk - mk+i
, i = 0, . . . ,mk  - 1,

with Bk = Bmk

k . Here \{ \^si\} k - 1
i=k - mk

is the orthogonalization of \{ si\} k - 1
i=k - mk

, i.e.,

(3.2) \^si = si  - 
i - 1\sum 

j=k - mk

\^sTj si

\^sTj \^sj
\^sj , i = k  - mk, . . . , k  - 1.

The proof of Proposition 3.1 is by induction and to fix Bk by its restrictions to
span(Sk) and its orthogonal complement, respectively. The detailed proof can be
found in the longer version of this paper [62] and is omitted here due to space limits.

3.1. Powell-type regularization. To fix the potential singularity of Bk, we
introduce a Powell-type regularization to the rank-one update formula (3.1). The
idea is to specify a parameter \=\theta \in (0, 1) and simply replace yk - mk+i in (3.1) with

(3.3) \~yk - mk+i = \theta ikyk - mk+i + (1 - \theta ik)B
i
ksk - mk+i,

where \theta ik = \phi \=\theta (\eta 
i
k) is defined with

(3.4) \phi \=\theta (\eta ) =

\Biggl\{ 
1 if | \eta | \geq \=\theta ,
1 - sign(\eta )\=\theta 

1 - \eta if | \eta | < \=\theta 

and \eta ik =
\^sTk - mk+i(B

i
k)

 - 1yk - mk+i

\| \^sk - mk+i\| 2
2

. Here we adopt the convention that sign(0) = 1.

The formulation is almost the same as the original Powell's trick used in [39], but
we redefine \eta k to take the orthogonalization into consideration. Similar ideas have
also been introduced in [47] and [24] by adding a Levenberg--Marquardt-type regu-
larization. However, such tricks are designed for stabilizing least squares problems in
AA-II, which are not applicable here. We remark that the update remains unmodified
when \=\theta = 0. By definition, we immediately see that \theta ik \in [1  - \=\theta , 1 + \=\theta ], which turns
out to be a useful bound in the subsequent derivations.

The following lemma establishes the nonsingularity of the modified Bk, which
also indicates how \=\theta trades off between stability and efficiency.

Lemma 3.2. Suppose \{ si\} k - 1
i=k - mk

and \{ yi\} k - 1
i=k - mk

are arbitrary sequences in Rn.

Define Bk = Bmk

k inductively from B0
k = I as

Bi+1
k = Bi

k +
(\~yk - mk+i  - Bi

ksk - mk+i)\^s
T
k - mk+i

\^sTk - mk+isk - mk+i
, i = 0, . . . ,mk  - 1,(3.5)

with \^sk - mk+i and \~yk - mk+i defined as in (3.2) and (3.3), respectively. Suppose that
the updates above are all well-defined. Then | det(Bk)| \geq \=\theta mk > 0, and in particular,
Bk is invertible.

Proof. We prove by induction that | det(Bi
k)| \geq \=\theta i. The base case when i = 0 is

trivial. Now suppose that we have proved the claim forBi
k. By Sylvester's determinant

identity, we have
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| det(Bi+1
k )| = | det(Bi

k)| 

\bigm| \bigm| \bigm| \bigm| \bigm| det
\Biggl( 
I + \theta ik

((Bi
k)

 - 1yk - mk+i  - sk - mk+i)\^s
T
k - mk+i

\^sTk - mk+isk - mk+i

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| 
= | det(Bi

k)| 

\bigm| \bigm| \bigm| \bigm| \bigm| 1 + \theta ik
\^sTk - mk+i((B

i
k)

 - 1yk - mk+i  - sk - mk+i)

\^sTk - mk+isk - mk+i

\bigm| \bigm| \bigm| \bigm| \bigm| 
= | det(Bi

k)| 
\bigm| \bigm| 1 - \theta ik(1 - \eta ik)

\bigm| \bigm| \geq \=\theta i \cdot 
\biggl\{ 

| \eta ik| , | \eta ik| \geq \=\theta 
| sign(\eta ik)\=\theta | , | \eta ik| < \=\theta 

\geq \=\theta i+1.

By induction, this completes our proof.

Now that we have established the nonsingularity of the modified Bk, defining
Hk = B - 1

k , we can directly update Hk = Hmk

k from H0
k = I as follows:

(3.6) Hi+1
k = Hi

k +
(sk - mk+i  - Hi

k\~yk - mk+i)\^s
T
k - mk+iH

i
k

\^sTk - mk+iH
i
k\~yk - mk+i

, i = 0, . . . ,mk  - 1,

again with \^sk - mk+i and \~yk - mk+i defined as in (3.2) and (3.3), respectively. This can
be easily seen by a direct application of the Sherman--Morrison formula. Notice that
the Hk hereafter is different from the one in section 2.2 for AA-II.

3.2. Restart checking. In this section, we introduce a restart checking strat-
egy proposed in [20], which was used to establish local convergence results for (full-
memory) AA-I. Here we instead use it to establish uniform bounds on the approximate
(inverse) Jacobians for the practical limited-memory scenarios, which turns out to be
essential to the final global convergence, as we will see in section 4.

Notice that the update formula (3.5) is well-defined as long as \^sk - mk+i \not = 0, in
which case the denominator \^sTk - mk+isk - mk+i = \| \^sk - mk+i\| 22 > 0. However, unless
gk - mk+i = 0 for some i = 0, . . . ,mk  - 1, in which case the problem is already solved,
we will always have sk - mk+i =  - B - 1

k - mk+igk - mk+i \not = 0, where we used Lemma 3.2 to
deduce that Bk - mk+i is invertible.

This means that the only case when the updates in (3.5) break down is sk - mk+i \not =
0 while \^sk - mk+i = 0. Unfortunately, such a scenario is indeed possible if mk is chosen
as min\{ m, k\} for some fixed 1 \leq m \leq \infty (with m = \infty usually called ``full""-memory),
a fixed-memory strategy most commonly used in the literature. In particular, when
m is greater than the problem dimension n, we will always have \^sk = 0 for k > n due
to linear dependence.

To address this issue, we enforce a restart checking step that clears the memory
immediately before the algorithm is close to stagnation. More explicitly, we keep mk

growing, until either mk = m+1 for some integer 1 \leq m < \infty or \| \^sk - 1\| 2 < \tau \| sk - 1\| 2,
in which casemk is reset to 1 (i.e., no orthogonalization). The process is then repeated.
Formally, the following rule is adopted to select mk in each iteration k \geq 0, initialized
from m0 = 0:

mk = mk - 1 + 1. If mk = m+ 1 or \| \^sk - 1\| 2 < \tau \| sk - 1\| 2, then reset mk = 1.(3.7)

Here \tau \in (0, 1) is prespecified. The main idea is to make sure that \^sk \not = 0 whenever
sk is so, which ensures that the modified updates (3.5) and (3.6) won't break down
before reaching a solution. We actually require a bit more by imposing a positive
parameter \tau , which characterizes a strong linear independence between sk and the
previous updates. This leads to boundedness of Bk, as described in the following
lemma.
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3178 J. ZHANG, B. O'DONOGHUE, AND S. BOYD

Lemma 3.3. Assume the same conditions as in Lemma 3.2 and in addition that
\| yi\| 2 \leq 2\| si\| 2 for i = k  - mk, . . . , k  - 1 and mk is chosen by rule (3.7). Then we
have \| Bk\| 2 \leq 3(1 + \=\theta + \tau )m/\tau m  - 2 for all k \geq 0.

Proof. Notice that by rule (3.7), we have \| \^sk\| 2 \geq \tau \| sk\| 2 and mk \leq m for all
k \geq 0. Hence by (3.5), we have that

\| Bi+1
k \| 2 \leq \| Bi

k\| 2 + \theta ik
\| yk - mk+i  - Bi

ksk - mk+i\| 2
\| \^sk - mk+i\| 2

\leq \| Bi
k\| 2 +

1 + \=\theta 

\tau 

\| yk - mk+i  - Bi
ksk - mk+i\| 2

\| sk - mk+i\| 2
.

Noticing that \| yk - mk+i\| 2 \leq 2\| sk - mk+i\| 2 for i = 0, . . . ,mk - 1, we see that \| Bi+1
k \| 2 \leq 

1+\=\theta +\tau 
\tau \| Bi

k\| 2+
2(1+\=\theta )

\tau , and hence by telescoping the above inequality and the fact that

\| B0
k\| 2 = 1, we conclude that \| Bk\| 2 = \| Bmk

k \| 2 \leq 3( 1+
\=\theta +\tau 
\tau )m  - 2. This completes our

proof.

In sum, combining the modified updates with the restarting choice of mk, the
rank-deficiency problem mentioned at the end of section 2.3 is completely resolved.
In particular, the full-rank assumption on Sk is no longer necessary. Moreover, the
inverse Hk = B - 1

k is also bounded, as described in the following corollary.

Corollary 3.4. Under the same assumptions in Lemma 3.3, we have that

(3.8) \| Hk\| 2 \leq 
\biggl( 
3

\biggl( 
1 + \=\theta + \tau 

\tau 

\biggr) m

 - 2

\biggr) n - 1

/\=\theta m \forall k \geq 0.

Proof. Denote the singular values of Bk as \sigma 1 \geq \cdot \cdot \cdot \geq \sigma n. Then by Lemma
3.2, we have

\prod n
i=1 \sigma i \geq \=\theta mk \geq \=\theta m. On the other hand, by Lemma 3.3, we have

\sigma 1 \leq 3(1 + \=\theta + \tau )m/\tau m  - 2. Hence we obtain that

\| Hk\| 2 = 1/\sigma n \leq 
n - 1\prod 
i=1

\sigma i/\=\theta 
m \leq 

\biggl( 
3

\biggl( 
1 + \=\theta + \tau 

\tau 

\biggr) m

 - 2

\biggr) n - 1

/\=\theta m,

which finishes our proof.

We remark that for type-II methods as in [44], the algorithm can already get
stuck if g(xk+1) = g(xk), which is not informative enough for us to say anything.
That's also one of the reasons for favoring the type-I AA in this paper. It's also worth
mentioning that empirical results in [40] and [24] have already suggested that cleaning
memories from time to time improves performance significantly for SCF methods and
EM-type algorithms, partially supporting our modification here.

Notice that when mk is chosen by rule (3.7) and Bk is computed as in Lemma
3.2, we have Bi

k = Bk - mk+i. This means that in iteration k, only a rank-one update
(3.5) with i = mk  - 1 is needed, which yields Bk = Bmk

k from Bk - 1 = Bmk - 1
k . We

can also remove the need of maintaining updates for Bi
k in Powell's regularization by

noticing that

Bi
ksk - mk+i = Bk - mk+isk - mk+i =  - Bk - mk+iB

 - 1
k - mk+igk - mk+i =  - gk - mk+i.

3.3. Safeguarding steps. We are now ready to introduce the final piece for our
modified AA-I algorithm. The main idea is to interleave AA-I steps with the vanilla
KM iteration steps to safeguard the decrease in residual norms \| g\| 2. In particular,
we check if the current residual norm is sufficiently small and replace the AA-I trial
update with the \alpha -averaged (or KM) operator of f in (1.1) (defined as f\alpha (x) =
(1 - \alpha )x+ \alpha f(x)) whenever not.

D
ow

nl
oa

de
d 

02
/1

5/
21

 to
 1

71
.6

6.
16

2.
93

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GLOBAL AA-I FOR NONSMOOTH FP ITERATIONS 3179

The idea of interleaving AA with vanilla iterations has also been considered in [5]
with constant periods and is observed to improve both accuracy and speed for a certain
class of algorithms (e.g., SCF), although no theoretical guarantee for convergence is
provided. Similar ideas have been applied to regularized AA [47] and the classical
Broyden's methods [52] to seek smaller per-iteration costs without sacrificing much
the acceleration effects. A related idea is discussed in the context of line search for
general averaged operators in section 5 of [21].

It is worth noticing that the SuperMann framework in [52] can also be seen as a
general globalization strategy for acceleration schemes. However, certain boundedness
related to Lemma 3.3 and Corollary 3.4 in this paper has to be made as an assumption
(cf. Assumption II there).

The resulting algorithm, combining all the aforementioned tricks, is summarized
as Algorithm 3.1. Here, lines 4--8 perform restart checking (rule (3.7)) described in
section 3.2, lines 9--11 perform the Powell-type regularization (update (3.5)) described
in section 3.1, and lines 12--14 execute the safeguarding strategy described above. As
mentioned at the end of section 3.2, only a rank-one update of (3.5) from i = mk  - 1
is performed in iteration k, in which case the subscript k  - mk + i becomes k  - 1.
We remark that the right-hand side of the safeguarding step in line 12 can indeed
be replaced with any positive sequence \delta nAA

satisfying
\sum \infty 

nAA=0 \delta nAA
< \infty without

breaking the global convergence below. We also remark that when the fixed-point
problem (1.1) arises from an unconstrained optimization problem, comparisons of the
objective function values may also be included in the safeguard to better guide the
behavior of acceleration (see, e.g., [23] and more generally [43, 18]).

Notice that in line 5 of Algorithm 3.1, instead of defining sk - 1 = xk  - xk - 1 and
yk - 1 = g(xk)  - g(xk - 1) as in section 2.3, we redefine it using the AA-I trial update
\~xk to ensure that Bk - 1sk - 1 =  - Bk - 1B

 - 1
k - 1gk - 1 =  - gk - 1 still holds as mentioned at

the end of section 3.2, which makes it possible to get rid of maintaining an update
for Bk.

We remark that the assumptions in Lemma 3.2, Lemma 3.3, and Corollary 3.4
all hold for Algorithm 3.1 unless a solution is reached and the problem is solved,
despite the fact that the updates are modified in line 5 and the safeguarding strategy
is introduced in lines 12--14. This comes immediately from the arbitrariness of the
update sequences \{ si\} k - 1

i=k - mk
and \{ yi\} k - 1

i=k - mk
, the observation that the updates are

well-defined unless a solution is reached and the fact that f is nonexpansive (and
hence g is 2-Lipschitz, which implies that \| yi\| 2 \leq 2\| si\| 2 for i = k  - mk, . . . , k  - 1)
(cf. Lemmas 3.2 and 3.3). Formally, we have the following corollary.

Corollary 3.5. In Algorithm 3.1, unless a solution to (1.1) is found in finite
steps, the inequality (3.8) holds for all k \geq 0, and the condition number of Hk is

uniformly bounded by cond(Hk) \leq (3( 1+
\=\theta +\tau 
\tau )m  - 2)n/\=\theta m.

The proof is a simple combination of the results in Lemma 3.3 and Corollary 3.4.

4. Global convergence and example applications. In this section, we give
a self-contained proof for the global convergence of Algorithm 3.1, and then present
example applications of the global convergence result.

4.1. Analysis of global convergence. We temporarily assume for simplicity
that a solution to (1.1) is not found in finite steps. The proof can be divided into
three steps. First, we prove that the residual gk converges to 0. We then show that
\| xk  - y\| 2 converges to some finite limit for any fixed-point y \in X of f . Finally, we
show that xk converges to some solution to (1.1). We note that many of the arguments
are adapted from the proofs in [16].
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Algorithm 3.1 Stabilized type-I Anderson acceleration (AA-I-S-m).

1: Input: initial point x0, fixed-point mapping f : Rn \rightarrow Rn, regularization con-

stants \=\theta , \tau , \alpha \in (0, 1), safeguarding constants D, \epsilon > 0, max-memory m > 0.

2: Initialize H0 = I, m0 = nAA = 0, \=U = \| g0\| 2, and compute x1 = \~x1 = f\alpha (x
0).

3: for k = 1, 2, . . . do

4: mk = mk - 1 + 1.

5: Compute sk - 1 = \~xk  - xk - 1, yk - 1 = g(\~xk) - g(xk - 1).  \triangleleft Hk updates prep

6: Compute \^sk - 1 = sk - 1  - 
\sum k - 2

j=k - mk

\^sTj sk - 1

\^sTj \^sj
\^sj .

7: If mk = m+ 1 or \| \^sk - 1\| 2 < \tau \| sk - 1\| 2  \triangleleft Restart checking

8: reset mk = 1, \^sk - 1 = sk - 1, and Hk - 1 = I.

9: Compute \~yk - 1 = \theta k - 1yk - 1  - (1 - \theta k - 1)gk - 1  \triangleleft Powell regularization

10: with \theta k - 1 = \phi \=\theta (\gamma k - 1) and \gamma k - 1 = \^sTk - 1Hk - 1yk - 1/\| \^sk - 1\| 2.

11: Update Hk = Hk - 1 +
(sk - 1  - Hk - 1\~yk - 1)\^s

T
k - 1Hk - 1

\^sTk - 1Hk - 1\~yk - 1
, and \~xk+1 = xk  - Hkgk.

12: If \| gk\| 2 \leq D \=U(nAA + 1) - (1+\epsilon )  \triangleleft Safeguard checking

13: xk+1 = \~xk+1, nAA = nAA + 1.

14: else xk+1 = f\alpha (x
k).

15: end for

We begin by noticing that xk+1 equals either xk  - Hkgk or f\alpha (x
k), depending

on whether the checking in line 12 of Algorithm 3.1 passes or not. We partition the
iteration counts into two subsets accordingly, with KAA = \{ k0, k1, . . . \} being those
iterations passing line 12 and KKM = \{ l0, l1, . . . \} being the rest going to line 14.

Step 1: Convergence of gk. Consider y \in X an arbitrary fixed-point of f .
For ki \in KAA (i \geq 0), by Corollary 3.5, we have \| Hki\| 2 \leq C for some constant

C independent of the iteration count, and hence

\| xki+1  - y\| 2 \leq \| xki  - y\| 2 + \| Hki
gki

\| 2
\leq \| xki  - y\| 2 + C\| gki

\| 2 \leq \| xki  - y\| 2 + CD \=U(i+ 1) - (1+\epsilon ).
(4.1)

For li \in KKM (i \geq 0), since f is nonexpansive, by Proposition 4.25(iii) in [7] or
inequality (5) in [45], we have that

(4.2) \| xli+1  - y\| 22 \leq \| xli  - y\| 22  - \alpha (1 - \alpha )\| gli\| 22 \leq \| xli  - y\| 22.

By telescoping the above inequalities, we obtain that

(4.3) \| xk  - y\| 2 \leq \| x0  - y\| 2 + CD \=U

\infty \sum 
i=0

(i+ 1) - (1+\epsilon ) = E < \infty ,

and hence \| xk  - y\| 2 remains bounded for all k \geq 0.
Hence by squaring both sides of (4.1), we obtain that

(4.4) \| xki+1  - y\| 22 \leq \| xki  - y\| 22 + (CD \=U)2(i+ 1) - (2+2\epsilon ) + 2CDE \=U(i+ 1) - (1+\epsilon )\underbrace{}  \underbrace{}  
=\epsilon ki

.
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Combining (4.2) and (4.4), we see that

\alpha (1 - \alpha )

\infty \sum 
i=0

\| gli\| 22 \leq \| x0  - y\| 22 +
\infty \sum 
i=0

\epsilon ki
< \infty ,(4.5)

and hence limi\rightarrow \infty \| gli\| 2 = 0. Noticing that \| gki
\| 2 \leq D \=U(i + 1) - (1+\epsilon ) by line 12 of

Algorithm 3.1, we also have limi\rightarrow \infty \| gki\| 2 = 0. Hence we see that

(4.6) lim
k\rightarrow \infty 

\| gk\| 2 = 0.

Also notice that by defining \epsilon li = 0, we again see from (4.2) and (4.4) that

(4.7) \| xk+1  - y\| 22 \leq \| xk  - y\| 22 + \epsilon k

with \epsilon k \geq 0 and
\sum \infty 

k=0 \epsilon k =
\sum \infty 

i=0 \epsilon ki < \infty .
Notice that in the above derivation of (4.5)--(4.7), we have implicitly assumed

that both KAA and KKM are infinite. However, the cases when either of them is
finite are even simpler as one can completely ignore the finite index set.

Step 2: Convergence of \| xk - y\| 2. Still consider y \in X an arbitrary fixed-point of
f . We now prove that \| xk - y\| 2 converges. Since \| xk - y\| 2 \geq 0, there is a subsequence
\{ j0, j1, . . . \} such that limi\rightarrow \infty \| xji  - y\| 2 = u = lim infk\rightarrow \infty \| xk  - y\| 2. For any \delta > 0,
there exists an integer i0 such that \| xji0  - y\| 2 \leq u + \delta and

\sum \infty 
k=ji0

\epsilon k \leq \delta . This,

together with (4.7), implies that for any k \geq ji0 ,

(4.8) \| xk  - y\| 22 \leq \| xji0  - y\| 22 +
\infty \sum 

k=ji0

\epsilon k \leq u2 + 2\delta u+ \delta 2 + \delta ,

and in particular, we have lim supk\rightarrow \infty \| xk - y\| 22 \leq lim infk\rightarrow \infty \| xk - y\| 22+\delta (2u+\delta +1).
By the arbitrariness of \delta > 0, we see that \| xk - y\| 22 (and hence \| xk - y\| 2) is convergent.

Step 3: Convergence of xk. Finally, we show that xk converges to some solution
x \star of (1.1), i.e., x \star = f(x \star ). To see this, notice that since \| xk  - y\| 2 is bounded for
y \in X, xk is also bounded. Hence it must have a convergent subsequence by the
Weierstrass theorem.

Suppose on the contrary that xk is not convergent; then there must be at least
two different subsequences \{ k\prime 0, k\prime 1, . . . \} and \{ l\prime 0, l\prime 1, . . . \} converging to two different
limits y1 \not = y2, both of which must be fixed-points of f . This is because by (4.6), we
have 0 = limi\rightarrow \infty \| g(xk\prime 

i)\| 2 = \| g(y1)\| 2 and 0 = limi\rightarrow \infty \| g(xl\prime i)\| 2 = \| g(y2)\| 2, where
we used the fact that f is nonexpansive and hence g(x) = x  - f(x) is (Lipschitz)
continuous. Now notice that we have proved that \alpha (y) = limk\rightarrow \infty \| xk  - y\| 2 exists for
any y \in X. By the simple fact that \| xk  - y\| 22  - \| y\| 22 = \| xk\| 22  - 2yTxk, we have

lim
i\rightarrow \infty 

\| xk\prime 
i\| 22 = lim

k\rightarrow \infty 
\| xk  - y\| 22  - \| y\| 22 + 2yT lim

i\rightarrow \infty 
xk\prime 

i = \alpha (y) - \| y\| 22 + 2yT y1,

lim
i\rightarrow \infty 

\| xl\prime i\| 22 = lim
k\rightarrow \infty 

\| xk  - y\| 22  - \| y\| 22 + 2yT lim
i\rightarrow \infty 

xl\prime i = \alpha (y) - \| y\| 22 + 2yT y2.

Subtracting the above inequalities, we obtain that for any y \in X, 2yT (y1  - y2) =
limi\rightarrow \infty \| xk\prime 

i\| 22  - limi\rightarrow \infty \| xl\prime i\| 22. By taking y = y1 and y = y2, we see that yT1 (y1  - 
y2) = yT2 (y1  - y2), which implies that y1 = y2, a contradiction. Hence we conclude
that xk converges to some \=x, which must be a solution as we have by (4.6) that
0 = limk\rightarrow \infty \| g(xk)\| 2 = \| g(\=x)\| 2. Here we again used the fact that f is nonexpansive,
and hence g(x) = x - f(x) is (Lipschitz) continuous.

In sum, together with the case that a fixed-point solution is found in finite steps,
we have the following theorem.
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Theorem 4.1. Suppose that \{ xk\} \infty k=0 is generated by Algorithm 3.1; then we have
limk\rightarrow \infty xk = x \star , where x \star = f(x \star ) is a solution to (1.1).

Remark 4.2. Many parts of steps 2 and 3 can be replaced by directly invoking
Theorem 3.8 in [16]. Step 3 also follows similarly to the proofs of [13, Corollary 3.3.3]
and [6, Theorem 2.16(ii)]. The details are shown to make the proof self-contained and
to facilitate the discussions about extensions in section 6.

4.2. Examples. Below we present several example problems and the corre-
sponding (unaccelerated) algorithms used to solve them, to which Theorem 4.1 can
be applied. The major focus is on optimization and decision-making problems and
algorithms, where f in (1.1) comes from the iterative algorithms used to solve them.
For each example, we specify the concrete form of f , verify its nonexpansiveness, and
check the equivalence between the fixed-point problem and the original problem.

4.2.1. Proximal gradient descent. Consider the following problem:

(4.9) minimize F1(x) + F2(x),

where F1, F2 : Rn \rightarrow R are convex closed proper (CCP), and F1 is L-strongly smooth.
We solve it using proximal gradient descent, i.e., xk+1 = prox\alpha F2

(xk - \alpha \nabla F1(x
k)),

where \alpha \in (0, 2/L). In our notation, the fixed-point mapping is f(x) = prox\alpha F2
(x  - 

\alpha \nabla F1(x)). For a proof of nonexpansiveness for f and the equivalence between the
fixed-point problem and the original optimization problem (4.9), see [36].

Gradient descent. When F2 = 0, proximal gradient descent reduces to vanilla
gradient descent (GD) for unconstrained problems, i.e., (denoting F = F1) xk+1 =
xk - \alpha \nabla F (xk), where \alpha \in (0, 2/L), and the fixed-point mapping is f(x) = x - \alpha \nabla F (x).

Projected gradient descent. When F2(x) = \scrI \scrK (x), with \scrK being a nonempty
closed and convex set, problem (4.9) reduces to a constrained optimization problem.
Accordingly, proximal gradient descent reduces to projected gradient descent (PGD),
i.e., (denoting F = F1) xk+1 = \Pi \scrK (x

k  - \alpha \nabla F (xk)), where \alpha \in (0, 2/L), and the
fixed-point mapping is f(x) = \Pi \scrK (x - \alpha \nabla F (x)).

Alternating projection. When F1(x) = 1
2dist(x,D)2 and F2(x) = \scrI C(x), with

C, D being nonempty closed convex sets and C \cap D \not = \emptyset . The problem (4.9) then
reduces to finding an element x in the intersection C\cap D. Noticing that F1 is 1-smooth,
by choosing \alpha = 1, proximal gradient descent reduces to AP, i.e., xk+1 = \Pi C\Pi D(xk),
with f(x) = \Pi C\Pi D(x).

Iterative shrinkage-thresholding algorithm. When F2 = \mu \| x\| 1, the problem re-
duces to sparsity-regularized regression. Accordingly, proximal gradient descent re-
duces to iterative shrinkage-thresholding algorithm (ISTA), i.e., (denoting F = F1)
xk+1 = S\alpha \mu (x

k  - \alpha \nabla F (xk)), where \alpha \in (0, 2/L), and S\kappa (x)i = sign(xi)(| xi|  - \kappa )+
(i = 1, . . . , n) is the shrinkage operator. The fixed-point mapping here is f(x) =
S\alpha \mu (x - \alpha \nabla F (x)).

4.2.2. Douglas--Rachford splitting. Consider the following problem:

(4.10) find x such that 0 \in (A+B)(x),

where A, B : Rn \rightarrow 2R
n

are two maximal monotone relations.
Douglas--Rachford splitting (DRS) solves this problem by the following iteration

scheme:

(4.11) zk+1 = f(zk) = zk/2 + CACB(z
k)/2,

D
ow

nl
oa

de
d 

02
/1

5/
21

 to
 1

71
.6

6.
16

2.
93

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GLOBAL AA-I FOR NONSMOOTH FP ITERATIONS 3183

where CG is the Cayley operator of G, defined as CG(x) = 2(I+\alpha G) - 1(x) - x, where
I is the identity mapping, and \alpha > 0 is an arbitrary constant. Since the Cayley
operator CG of a maximal monotone relation G is nonexpansive and defined over
the entire Rn, we see that the fixed-point mapping f(x) = x/2 + CACB(x)/2 is a
1
2 -averaged (and hence nonexpansive) operator. The connection between (4.10) and
(4.11) is established by the fact that x solves (4.10) if and only if z solves (4.11) and
x = RB(z), where RB is the resolvent operator of B, i.e., RB(x) = (I + \alpha B) - 1.

Below we will implicitly use the facts that subgradients of CCP functions, linear
mappings Mx with M +MT \succeq 0, and normal cones of nonempty closed convex sets
are all maximal monotone. These facts, as well as the equivalence between (4.10) and
(4.11), can all be found in [45].

Notice that whenever zk converges to a fixed-point of (4.11) (not necessarily fol-
lowing the DRS iteration (4.11)), xk = RB(z

k) converges to a solution of problem
(4.10), where RB(x) = (I + \alpha B) - 1(x) is the resolvent of B. This comes immediately
from the equivalence between (4.10) and (4.11) and the fact that RB is nonexpansive
[45] and hence continuous. Together with Theorem 4.1, this ensures that the applica-
tion of Algorithm 3.1 to the DRS fixed-point problem (4.11) leads to the convergence
of xk = RB(z

k) to a solution of the original problem.
Consensus optimization. In consensus optimization (CO) [45], we seek to solve

(4.12) minimize

m\sum 
i=1

Fi(x),

where Fi : R
n \rightarrow R are all CCP. Rewriting the problem as

(4.13) minimize

m\sum 
i=1

Fi(xi) + \scrI \{ x1=x2=\cdot \cdot \cdot =xm\} (x1, x2, . . . , xm),

the problem reduces to (4.10) with

A(x) = \scrN \{ x1=x2=\cdot \cdot \cdot =xm\} (x1, . . . , xm),

B(x) = (\partial F1(x1), . . . , \partial Fm(xm))T .

Since for a CCP function F : Rn \rightarrow R and a nonempty closed convex set C,
C\partial F (x) = 2prox\alpha F (x) - x and C\scrN C

(x) = 2\Pi C(x) - x, we see that the DRS algorithm
reduces to the following:

xk+1
i = argminxi

Fi(xi) + (1/2\alpha )\| xi  - zki \| 22,
zk+1
i = zki + 2\=xk+1  - xk+1

i  - \=zk, i = 1, . . . ,m,

where \=xk = 1
m

\sum m
i=1 x

k
i , and the fixed-point mapping f is the mapping from zk =

(zk1 , . . . , z
k
m)T to zk+1 = (zk+1

1 , . . . , zk+1
m )T . As discussed above, xk+1 converges to

the solution of (4.12) if zk converges to the fixed-point of f and hence can be deemed
as approximate solutions to the original problem.

SCS. Consider the following generic conic optimization problem:

(4.14)
minimize cTx
subject to Ax+ s = b, s \in \scrK ,

where A \in Rm\times n, b \in Rm, c \in Rn, and \scrK is a nonempty, closed, and convex cone.
Our goal here is to find both primal and dual solutions when they are available and
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provide a certificate of infeasibility or unboundedness otherwise [33]. To this end, one
seeks to solve the associated self-dual homogeneous embedding (SDHE) system [61],

(4.15) Qu = v, (u, v)T \in \scrC \times \scrC \ast ,

where u = (x, y, \tau )T \in Rn\times Rm\times R, v = (r, s, \kappa )T \in Rn\times Rm\times R, \scrC = Rn\times \scrK \ast \times R+,
\scrC \ast = \{ 0\} n \times \scrK \times R+ is the dual cone of \scrC , and the SDHE embedding matrix is

Q =

\left[  0 AT c
 - A 0 b
 - cT  - bT 0

\right]  .

The SDHE system can then be further reformulated into (4.10) [52], with A(u) =
\scrN \scrC (u), B(u) = Qu. Accordingly, DRS reduces to SCS [33], i.e.,

\~uk+1 = (I +Q) - 1(uk + vk),

uk+1 = \Pi \scrC (\~u
k+1  - vk),

vk+1 = vk  - \~uk+1 + uk+1.

Notice that here we have actually used an equivalent form of DRS described in [55]
with a change of variables. In our notation, the fixed-point mapping f is

f(u, v) =

\biggl[ 
\Pi \scrC ((I +Q) - 1(u+ v) - v)
v  - (I +Q) - 1(u+ v) + u

\biggr] 
,

which is nonexpansive (cf. the appendix in [33]).
Notice that with the transformations made, the equivalence and convergence prop-

erties of DRS cannot be directly applied here as in the previous examples. Neverthe-
less, the equivalence between the fixed-point problem and the SDHE system here can
be seen directly by noticing that f(u, v) = (u, v)T if and only if (I +Q) - 1(u+ v) = u
and \Pi \scrC ((I + Q) - 1(u + v)  - v) = u, i.e., Qu = v and \Pi \scrC (u  - v) = u. By Moreau
decomposition [36], we have \Pi \scrC (u - v) + \Pi  - \scrC \ast (u - v) = u - v, and hence

\Pi \scrC (u - v) = u \leftrightarrow \Pi  - \scrC \ast (u - v) =  - v \leftrightarrow \Pi \scrC \ast (v  - u) = v.

Hence we see that f(u, v) = (u, v)T \Rightarrow Qu = v, (u, v)T \in \scrC \times \scrC \ast . On the other hand,
when Qu = v and (u, v)T \in \scrC \times \scrC \ast , we have uT v = uTQu = 0 by the skew-symmetry
of Q, and hence for any w \in \scrC ,

\| u - v  - w\| 22 = \| u - w\| 22 + \| v\| 22  - 2vT (u - w) = \| u - w\| 22 + \| v\| 22 + 2vTw \geq \| v\| 22,

where the last inequality comes from the fact that vTw \geq 0 as v \in \scrC \ast and w \in \scrC , and
the equality is achieved if and only if u = w. Hence we have \Pi \scrC (u - v) = u, from which
we conclude that (u, v)T is a fixed-point of f if and only if Qu = v, (u, v)T \in \scrC \times \scrC \ast ,
i.e., (u, v)T solves the SDHE system.

4.2.3. Contractive mappings in different norms. As we can see from (4.2)
in the proof of Theorem 4.1, which does not hold for general norms, the \ell 2-norm in
the definition of nonexpansiveness is essential to our analysis of global convergence.
Nevertheless, an expansive mapping in one norm may be nonexpansive or even con-
tractive in another norm, as we will see in the examples below. When a mapping is
actually contractive in some (arbitrary) norm, the global convergence of Algorithm
3.1 can still be guaranteed. Formally, we have the following theorem.
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Theorem 4.3. Suppose that \{ xk\} \infty k=0 is generated by Algorithm 3.1, but with \alpha =
1, and instead of f being nonexpansive (in \ell 2-norm) in (1.1), f is \gamma -contractive in
some (arbitrary) norm \| \cdot \| (e.g., l\infty -norm) on Rn, where \gamma \in (0, 1). Then we still
have limk\rightarrow \infty xk = x \star , where x \star = f(x \star ) is a solution to (1.1).

The detailed proof can be found in the longer version of this paper [62] and is
again skipped here due to space limits. Notice that the global convergence in the
above algorithm also holds for \alpha \in (0, 1), and the proof is exactly the same apart
from replacing \gamma with (1  - \alpha ) + \alpha \gamma , which is larger than \gamma but is still smaller than
1. The only reason for specifying \alpha = 1 is that it gives the fastest convergence speed
both in theory and practice for contractive mappings.

Value iteration. Consider solving a discounted MDP problem with (expected)
reward R(s, a), transition probability P (s, a, s\prime ), initial state distribution \pi (\cdot ), and
discount factor \gamma \in (0, 1), where s, s\prime \in \{ 1, . . . , S\} and a \in \{ 1, . . . , A\} .

The goal is to maximize the (expected) total reward \BbbE \pi [
\sum \infty 

t=0 \gamma 
tr(st, \mu (st))] over

all possible policies \mu : \{ 1, . . . , S\} \rightarrow \{ 1, . . . , A\} , where st+1 \sim P (st, \mu (st), \cdot ). One of
the most basic algorithms used to solve this problem is the well-known value iteration
(VI) algorithm: xk+1 = Txk, where xk approximates the optimal value function
V  \star (s) = max\mu \BbbE [

\sum \infty 
t=0 \gamma 

tr(st, \mu (st))| s0 = s], and T : RS \rightarrow RS is the Bellman
operator:

(Tx)s = max
a=1,...,A

R(s, a) + \gamma 
\sum S

s\prime =1
P (s, a, s\prime )xs\prime .

In our notation, the fixed-point mapping f(x) = T (x). A prominent property of
T is that although not necessarily nonexpansive in \ell 2-norm, it is \gamma -contractive under
the l\infty -norm, i.e., \| Tx - Ty\| \infty \leq \gamma \| x - y\| \infty .

By Theorem 4.3, the global convergence is still guaranteed when Algorithm 3.1
is applied to VI here. We also remark that it would be interesting to apply the
accelerated VI to solving the MDP subproblems in model-based reinforcement learning
algorithms (e.g., UCRL2 [27]), where the rewards r and transitions P are unknown.

Another example that falls into the scenario of Theorem 4.3 is the heavy-ball
algorithm. Here we do not go into detail on this topic due to space limits, and
interested readers may refer to the longer version of this paper [62].

5. Numerical results. We are now ready to illustrate the performance of the
AA algorithms with the example problems and (unaccelerated) algorithms above. All
the experiments are run using MATLAB 2014a on a system with two 1.7 GHz cores
and 8 GB of RAM, running macOS Catalina.

We compare the performance of three algorithms for each experiment: (a) the
vanilla algorithm (e.g., gradient descent); (b) AA-I-m, Algorithm 2.2 with maximum
memory m, choosing mk = min\{ m, k\} ; (c) AA-I-S-m, Algorithm 3.1 with maximum
memory m. For each experiment, we show the convergence curves of one representa-
tive run against clock time (seconds) and iteration numbers, respectively. The codes
for the experiments, including some further comparisons with other algorithms (e.g.,
AA-II and its regularized version [47], which are also beaten by our algorithm in
most cases, but we only present results focusing on the comparison within the AA-
I algorithms) can be found at https://github.com/cvxgrp/nonexp global aa1. The
proposed acceleration method is also being implemented in SCS 2.1 [34], one of the
default solvers in CVXPY 1.0 [1]

5.1. Implementation details. Before we move on to the numerical results, we
first describe in more detail the implementation tricks for better efficiency.
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Matrix-free updates. In line 11 of Algorithm 3.1, instead of computing and storing

Hk, we actually store Hk - j \~yk - j and
HT

k - j\^sk - j

\^sTk - j(Hk - j \~yk - j)
for j = 1, . . . ,mk, compute

dk = Hk - 1gk +
(sk - 1  - Hk - 1\~yk - 1)\^s

T
k - 1Hk - 1gk

\^sTk - 1Hk - 1\~yk - 1

= gk +

mk\sum 
j=1

(sk - j  - (Hk - j \~yk - j))

\Biggl( 
HT

k - j\^sk - j

\^sTk - j(Hk - j \~yk - j)

\Biggr) T

gk,

and then update \~xk+1 = xk  - dk. This leads to a much more efficient matrix-free
implementation. Another small trick we use is to normalize the \^sk vectors, store
them, and keep them transposed to save the computational overhead.

Termination criteria. In all our experiments, we simply terminate the experiment
when either the iteration number reaches a prespecified maximum Kmax or the rela-
tive residual norm \| gk\| 2/\| g0\| 2 is smaller than some tolerance tol. Accordingly, the
residual norms in the plots are all rescaled by dividing \| g0\| 2, so all of them start with
1 in iteration 0. The initial residual norm \| g0\| 2 is shown in the title as res0. Unless
otherwise specified (e.g., ISTA for elastic net regression (ENR)), we always choose
Kmax = 1000 and tol = 10 - 5.

Choice of hyper-parameters. Throughout the experiments, we use a single set of
hyper-parameters to show the robustness of our algorithm (Algorithm 3.1). We choose
\=\theta = 0.01, \tau = 0.001, D = 106, \epsilon = 10 - 6, and memory m = 5 (apart from the memory
effect experiment on VI, in which we vary the memory sizes to see the performance
change against memories). We choose a small averaging weight \alpha = 0.1 to make
better use of the fact that most vanilla algorithms already correspond to averaged f .
We remark that further improvement might be obtained by adopting an adaptive and
problem-dependent strategy for choosing the hyper-parameters.

Additional rules-of-thumb. In our algorithm, in general by setting a relatively
large D and small \epsilon , one enforces the modified algorithm to use safeguarding steps less
often, making it closer to the original AA-I-m. The Powell regularization parameter
should not be set too large, as it will empirically break down the acceleration effect.
A large \tau will force the algorithm to restart quite often, making it close to choosing
the memory size m = 1. A restart checking parameter \tau between 0.001 and 0.1 and
a memory size ranging from 2 to 50 are found to be reasonable choices.

5.2. Problem instances. We consider the following specific problem instances
for the algorithms listed in section 4.2, ranging from statistics to control to game
theory and so on. For each plot, AA-I-m is labeled as aa1, AA-I-S-m is labeled as
aa1-safe, and the original (vanilla) algorithm is labeled as original. The residual
norms are computed in the \ell 2-norm, and the vertical axis in the plots is \| gk\| 2/\| g0\| 2.
In the title of the ``residual norm versus time"" figures, ``time ratio"" indicates the
average time per iteration of the specified algorithm divided by that of the vanilla
algorithm. The average is computed for the single run shown in the figure among all
the iterations up to Kmax.

GD: Regularized logistic regression. We consider the following regularized logistic
regression (Reg-Log) problem:

(5.1) minimize
1

m

m\sum 
i=1

log(1 + exp( - yi\theta 
Txi)) +

\lambda 

2
\| \theta \| 22,
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Fig. 1. GD: Reg-Log. Left: residual versus iteration. Right: residual versus time.

where yi = \pm 1 are the labels, and xi \in Rn are the features and attributes. The
minimization is over \theta \in Rn. We use the UCI Madelon dataset, which contains 2000
samples (i.e., m = 2000) and 500 features (i.e., n = 500). We choose \lambda = 0.01 and
initialize x0 with independent normally distributed entries, i.e., using randn.m. To
avoid numerical overflow, we normalize x0 to have an \ell 2-norm equal to 0.001. The step
size \alpha is chosen as 2/(L+ \lambda ), where L = \| X\| 22/4m is an upper bound on the largest
eigenvalues of the objective Hessians [47], and X = [x1, . . . , xm]. The results are
shown in Figure 1. Here we set Kmax = 5000 to better demonstrate the improvement
of our algorithm.

In this example, the original AA-I-m completely fails, and our modified AA-I-S-
m obtains a 100x--1000x improvement over the original gradient descent algorithm in
terms of the residual norms.

AP: Linear program. We consider solving the following linear program (LP):

(5.2)
minimize cTx
subject to Ax = b, x \in \scrK ,

where A \in Rm\times n, b \in Rm, c \in Rn, and \scrK is a nonempty, closed, and convex cone.
Notice that here we deliberately choose a different (dual) formulation of (4.14) to
show the flexibility of our algorithm, which can be easily mounted on top of vanilla
algorithms.

As in SCS, (5.2) can be similarly formulated as the SDHE system (4.15), but now
with

Q =

\left[  0  - AT c
A 0  - b

 - cT bT 0

\right]  , \scrC = \scrK \times Rm \times R+.

Under the notation of AP, solving the SDHE system above reduces to finding a
point in the intersection of C and D, with C = \{ (u, v) | Qu = v\} and D = \scrC \times \scrC \ast ,
which can then be solved by AP.

We generate a set of random data ensuring primal and dual feasibility of the
original problem (5.2), following [33]. More specifically, we first generate A as a sparse
random matrix with sparsity 0.1 using sprandn.m. We then generate z \star with randn.m

and take x \star = max(z \star , 0), r \star = max( - z \star , 0), where the maximum is taken component-
wisely. We then also generate y \star with randn.m and take b = Ax \star , c = AT y \star + r \star .
In our experiments, we set m = 500 and n = 1000, and x0 is simply initialized using
randn.m and then normalized to have a unit \ell 2-norm.
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Fig. 2. AP: LP as SDHE. Left: residual versus iteration. Right: residual versus time.

In addition, as in SCS [33], we perform diagonal scaling on the problem data.
More explicitly, we compute \~A = D - 1AE - 1 and accordingly scale b to be \~b = D - 1b
and c to be \~c = E - 1c. Here D = diag(

\sum n
j=1 | a1j | , . . . ,

\sum n
j=1 | amj | ) and E =

diag(
\sum m

i=1 | \^ai1| , . . . ,
\sum m

i=1 | \^ain| ), with \^A = (\^aij)m\times n = D - 1A. We can see that \~x

is a solution to (5.2) with A, b, c replaced with the scaled problem data \~A, \~b, \~c, if and
only if x = E - 1\~x is a solution to the original problem.

The results are summarized in Figure 2.
We can see that our algorithm AA-I-S-m compares favorably with the original

AA-I-m in terms of iteration numbers, and both AA-I-S-m and AA-I-m outperform
the vanilla AP algorithm.

PGD: Nonnegative least squares and convex-concave matrix game. We consider
the following nonnegative least squares (NNLS) problem:

(5.3)
minimize

1

2
\| Ax - b\| 22

subject to x \geq 0,

where A \in Rm\times n and b \in Rm.
Such a problem arises ubiquitously in various applications, especially when x has

a certain physical interpretation [14]. We consider the more challenging high dimen-
sional case, i.e., m < n [50]. The gradient of the objective function can be evaluated
as ATAx - AT b, and hence the PGD algorithm can be efficiently implemented.

We generate both A and b using randn.m, with m = 500 and n = 1000. We again
initialize x0 using randn.m and then normalize it to have a unit \ell 2-norm. The step
size \alpha is set to 1.8/\| ATA\| 2. The results are summarized in Figure 3. Here we set
Kmax = 1500 to better demonstrate the improvement of our algorithm.

We also consider a more specialized and structured problem: the convex-concave
matrix game (CCMG), which can be reformulated into a form solvable by PGD, as
we show below.

A CCMG can be formulated as the following LP [9]:

(5.4)
minimize t
subject to u \geq 0, 1Tu = 1, PTu \leq t1,

where t \in R, u \in Rm are variables, and P \in Rm\times n is the pay-off matrix. Of course
we can again reformulate it as an SDHE system and solve it by AP as above. But
here we instead consider a different reformulation amenable to PGD.
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Fig. 3. PGD: NNLS. Left: residual versus iteration. Right: residual versus time.
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Fig. 4. PGD: CCMG. Left: residual versus iteration. Right: residual versus time.

To do so, we first notice that the above LP is always feasible. This can be seen
by choosing u to be an arbitrary probability vector and setting t = \| PTu\| \infty . Hence
the above LP can be further transformed into

(5.5)
minimize t+

1

2
\| PTu+ s - t1\| 22

subject to u \geq 0, 1Tu = 1, s \geq 0,

where we introduce an additional (slack) variable s \in Rn. Using the efficient pro-
jection algorithm onto the probability simplex set [57, 9], the above problem can be
solved efficiently by PGD.

We generate P using randn.m withm = 500 and n = 1500. Again, x0 is initialized
using randn.m and then normalized to have a unit \ell 2-norm. The step size \alpha is set
to 1.8/\| \~AT \~A\| 2, where \~A = [PT , I, - 1], in which I is the n-by-n identity matrix and
1 \in Rn is the all-one vector. The results are summarized in Figure 4.

ISTA: Elastic net regression. We consider the following ENR problem [66]:

(5.6) minimize
1

2
\| Ax - b\| 22 + \mu 

\biggl( 
1 - \beta 

2
\| x\| 22 + \beta \| x\| 1

\biggr) 
,

where A \in Rm\times n, b \in Rm. In our experiments, we take \beta = 1/2 and \mu = 10 - 5\mu max,
where \mu max = \| AT b\| \infty is the smallest value under which the ENR problem admits
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only the zero solution [33]. ENR is proposed as a hybrid of Lasso and ridge regression
and has been widely used in practice, especially when one seeks both sparsity and
overfitting prevention.

Applying ISTA to ENR, we obtain the iteration scheme

xk+1 = S\alpha \mu /2

\Bigl( 
xk  - \alpha 

\Bigl( 
AT (Ax - b) +

\mu 

2
x
\Bigr) \Bigr) 

,

in which we choose \alpha = 1.8/L, with L = \lambda max(A
TA) + \mu /2.

We again consider a harder high dimensional case, where m = 1500 and n = 2000.
The data is generated similarly to the Lasso example in [33]. More specifically, we
generate A using randn.m, and then generate \^x \in Rn using sprandn.m with sparsity
0.1. We then generate b as b = A\^x+ 0.1w, where w is generated using randn.m. The
initial point x0 is again generated by randn.m and normalized to have a unit \ell 2-norm.
The step size is chosen as \alpha = 1.8/L, where L = \| ATA\| 2 + \mu /2. The results are
shown in Figure 5. Here we set the tolerance tol to 10 - 8 and Kmax to 2500 to better
exemplify the performance improvement of our algorithm in a relatively long run.

CO: Facility location. Consider the following facility location problem [60]:

(5.7) minimize

m\sum 
i=1

\| x - ci\| 2,

where ci \in Rn, i = 1, . . . ,m, are locations of the clients, and the goal is to find a
facility location that minimizes the total distance to all the clients.

Applying CO to this problem with \alpha = 1, we obtain that

xk+1
i = prox\| \cdot \| 2

(zki + ci) - ci,

zk+1
i = zki + 2\=xk+1  - xk+1

i  - \=zk, i = 1, . . . ,m,

where prox\| \cdot \| 2
(v) = (1 - 1/\| v\| 2)+v [36].

Notice that all the updates can be parallelized. In particular, in the MATLAB
implementation no ``for"" loops are needed within one iteration, which is important to
the numerical efficiency. We generate ci using sprandn.m, with m = 500 and n = 300
and sparsity 0.01. The initialization x0 is again generated by randn.m and normalized
to have a unit \ell 2-norm. The results are summarized in Figure 6. Notice that here we
again set the tolerance tol to 10 - 8 and we truncate the maximum iteration number
to Kmax = 500 for better visualization.
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Fig. 5. ISTA: ENR. Left: residual versus iteration. Right: residual versus time.
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Fig. 6. CO: facility location. Left: residual versus iteration. Right: residual versus time.

We remark that in general, the \ell 2-norm can also be replaced with an arbitrary
\ell p-norm and more generally any function for which the proximal operators can be
easily evaluated.

SCS: Cone programs. Consider (4.14) with \scrK = Rm
+ or \{ s \in Rm | \| s1:m - 1\| 2 \leq 

sm\} ), i.e., a generic LP or second order cone program (SOCP). We solve it using a
toy implementation of SCS, i.e., one without approximate projection, CG iterations,
fine-tuned overrelaxation, and so on. However, we do perform diagonal scaling on the
problem data as in the AP example above.

We make use of the following explicit formula for the projection onto the second
order cone \scrK = \{ s \in Rm | \| s1:m - 1\| 2 \leq sm\} [36]:

\Pi \scrK (s) =

\left\{     
s if \| s1:n - 1\| 2 \leq sn,
0 if \| s1:n - 1\| 2 \leq  - sn,
\| s1:n - 1\| 2+sn

2

\Bigl[ 
s1:n - 1

\| s1:n - 1\| 2
, 1
\Bigr] T

otherwise.

For both LP and SOCP, x0 is initialized using randn.m and then normalized to
have a unit \ell 2-norm. We again follow [33] to generate data that ensures primal and
dual feasibility of the original cone programs.

For LP, we choose m = 2000 and n = 3000. We generate A as a horizontal
concatenation of sprandn(m,\lfloor n/2\rfloor ,0.1) and an identity matrix of size m \times \lfloor n/2\rfloor ,
added with a noise term 1e-3 * randn(m, n). We then generate z \star using randn.m

and set s \star = max(z \star , 0) and y \star = max( - z \star , 0), where the maximum is also taken
componentwisely. We then also generate x \star using randn.m and take b = Ax \star + s \star 

and c =  - AT y \star . We set the tolerance tol to 10 - 8 and Kmax to 5000 for better
visualization.

For SOCP, we choose m = 3000 and n = 5000. We similarly generate A exactly
the same as in LP. We then generate z \star using randn.m and set s \star = \Pi \scrK (z

 \star ) and
y \star = s \star  - z \star , where the maximum is also taken componentwisely. We then once again
generate x \star using randn.m and take b = Ax \star + s \star and c =  - AT y \star . Here we use the
default tol and Kmax.

The results are summarized in Figures 7 and 8.
VI: Markov decision process. As described in section 4.2.3, we consider solving a

general random MDP using VI. In our experiments, we choose S = 300 and A = 200,
and we choose a large discount factor \gamma = 0.99 to make the problem more difficult,
thus making the improvement of AA more explicit.
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Fig. 7. SCS: LP. Left: residual versus iteration. Right: residual norm versus time.
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Fig. 8. SCS: SOCP. Left: residual versus iteration. Right: residual versus time.
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Fig. 9. VI: MDP. Left: residual versus iteration. Right: residual versus time.

The transition probability matrices Pa \in RS\times S , a = 1, . . . , A, are first generated
as sprand (S, S, 0.01) + 0.001I, where I is the S-by-S identity matrix, and then row-
normalized to be a stochastic matrix. Here the addition of 0.001I is to ensure that no
all-zero row exists. Similarly, the reward matrix R \in RS\times A is generated by sprandn.m
with sparsity 0.01. The results are summarized in Figure 9. Notice that the maximum
iteration Kmax is set to 50 for better visualization.
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Fig. 10. VI: memory effect. Left: residual versus iteration. Right: residual versus time.

Influence of memory sizes. Finally, we rerun the VI experiments above with dif-
ferent memories m = 2, 5, 10, 20, 50. All other data are exactly the same as in the
previous example. The results are summarized in Figure 10. Notice that again the
maximum iteration Kmax is set to 50 for better visualization.

We can see from the figures that the best performance is achieved when m = 2, 5,
and AA-I-S-m consistently improves over the original AA-I-m.

6. Extensions to more general settings. In this section, we briefly outline
some extended convergence analysis and results of our algorithm in several more
general settings and discuss the necessity of potential modifications of our algorithm
to better suit some more challenging scenarios.

Quasi-nonexpansive mappings. A mapping f : Rn \rightarrow Rn is called quasi-non-
expansive if for any y \in X a fixed-point of f , \| f(x) - y\| 2 \leq \| x - y\| 2 for any x \in Rn.
Obviously, nonexpansive mappings are quasi-nonexpansive.

Our convergence theorems actually already hold for these slightly more general
mappings, with an additional mild assumption on continuity. By noticing that non-
expansiveness is only applied between an arbitrary point and a fixed-point of f in the
proof of Theorem 4.1, and that the continuity of g can be relaxed to closedness, we
immediately see that the same global convergence result holds if f is only assumed to
be quasi-nonexpansive and closed. Here we say that a mapping f : Rn \rightarrow Rn is closed
if for any sequence \{ xn\} \infty n=0 \subseteq Rn, xn \rightarrow x and f(xn) \rightarrow y imply that f(x) = y.

Similarly, Theorem 4.3 remains true if f is closed and the contractivity is assumed
only between an arbitrary point and a fixed-point of f , i.e., \| f(x) - f(y)\| \leq \gamma \| x - y\| 
for any x \in Rn and y \in X, which we term as quasi-\gamma -contractive.

Formally, we have the following corollary.

Corollary 6.1. Suppose that \{ xk\} \infty k=0 is generated by Algorithm 3.1, and in-
stead of f being nonexpansive (in \ell 2-norm) in (1.1), we only assume that f is closed
and is either quasi-nonexpansive (in \ell 2-norm) or quasi-\gamma -contractive in some (ar-
bitrary) norm \| \cdot \| (e.g., l\infty -norm) on Rn, where \gamma \in (0, 1). Then we still have
limk\rightarrow \infty xk = x \star , where x \star = f(x \star ) is a solution to (1.1). In the latter (quasi-\gamma -
contractive) case, the averaging weight \alpha can also be taken as 1.

Iteration-dependent mappings. Consider the case when the mapping f varies as
iteration proceeds, i.e., instead of a fixed f , we have fk : Rn \rightarrow Rn for each k =
0, 1, . . . . The goal is to find a common fixed-point of all fk's (assuming that it exists),
i.e., find x \star \in \cap k\geq 0Xk with Xk being the fixed-point set of fk. For example, in GD,
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we may consider a changing (positive) step size, which will result in a varying f .
However, a common fixed-point of all fk's is still exactly an optimal solution to the
original optimization problem and all fk's have the same fixed-point set.

Assuming nonexpansiveness (actually quasi-nonexpansiveness suffices) of each fk,
k \geq 0, and that the fixed-point set Xk = X of fk is the same across all k \geq 0, both of
which hold for GD with positive varying step sizes described above, we can still follow
exactly the same steps 1 and 2 of the proof for Theorem 4.1 to obtain that \| gk\| 2 \rightarrow 0
as k \rightarrow \infty , where gk = xk  - fk(x

k), and that \| xk  - y\| 2 converges for any fixed-point
y \in X.

Unfortunately, in general step 3 does not go through with these changing map-
pings. However, if we in addition assume that for any sequence xk \in Rn, limk\rightarrow \infty \| xk

 - fk(x
k)\| 2 = 0 and xk \rightarrow \=x \Rightarrow \=x \in X, then any limit point of xk is a common

fixed-point of fk's in X. The rest of step 3 then follows exactly unchanged, which
finally shows that Theorem 4.1 still holds in this setting, as formally stated below.

Corollary 6.2. Suppose that fk : Rn \rightarrow Rn, k \geq 0, are all quasi-nonexpansive
and that the fixed-point sets Xk = \{ x \in Rn | fk(x) = x\} of fk are equal to the
same set X \subseteq Rn. Assume in addition that for any sequence \{ zk\} \infty k=0 \subseteq Rn, if
limk\rightarrow \infty \| zk  - fk(z

k)\| 2 = 0 and zk \rightarrow \=z for some \=z \in Rn, then \=z \in X. Suppose that
\{ xk\} \infty k=0 is generated by Algorithm 3.1, with f replaced with fk in iteration k. Then
we have limk\rightarrow \infty xk = x \star , where x \star = f(x \star ) is a solution to (1.1).

Although the additional assumption about ``zk"" seems to be a bit abstract, it
does hold if we nail down to the aforementioned specific case, the GD example with
varying step sizes, i.e., fk(x

k) = xk  - \alpha k\nabla F (xk), and if we assume in addition that
the step size \alpha k is bounded away from 0, i.e., \alpha k \geq \epsilon > 0 for some positive constant
\epsilon for all k \geq 0.

In fact, by the fact that limk\rightarrow \infty \| gk\| 2 = limk\rightarrow \infty \| xk  - fk(x
k)\| 2 = 0, we have

limk\rightarrow \infty \alpha k\| \nabla F (xk)\| 2 = 0, which implies that limk\rightarrow \infty \| \nabla F (xk)\| 2 = 0 as \alpha k \geq \epsilon > 0.
In particular, any limit point \=x of xk satisfies \nabla F (\=x) = 0 by the continuity of \nabla F
assumed in section 4.2.1, i.e., \=x \in X. Hence we see that the assumptions made in
Corollary 6.2 all hold in this example, and hence global convergence of xk is ensured.

A similar analysis can be carried out to reprove Theorem 4.3 in this setting.
Nevertheless, it remains open what assumptions are needed in general to obtain

global convergence as in Theorems 4.1 and 4.3. In particular, the above analysis
fails if \alpha k is vanishing, which may arise in many practical cases, e.g., training of deep
neural networks. There are also cases when the norm in which nonexpansiveness holds
changes as the iteration proceeds. We leave these as future works.

Nonexpansive mappings in non-Euclidean norms. Theorem 4.3 establishes global
convergence for contractive mappings in arbitrary norms. It is hence natural to ask
what happens if f is only nonexpansive (instead of contractive) in an arbitrary norm
different from the \ell 2-norm. A direct generalization holds when the \ell 2-norm is replaced
with an H-norm \| \cdot \| H , defined as \| x\| H =

\surd 
xTHx, where H \in Rn\times n is symmetric

positive-definite. The general extensions are yet to be explored in future works.
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