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Abstract: We consider a multi-period variation on the network utility maximization problem
that includes delivery constraints. We allow the flow utilities, link capacities and routing matrices
to vary over time, and we introduce the concept of delivery contracts, which couple the flow
rates across time. We describe a distributed algorithm, based on dual decomposition, that solves
this problem when all data is known ahead of time. We briefly describe a heuristic, based on
model predictive control, for approximately solving a variation on the problem, in which the data
are not known ahead of time. The formulation and algorithms are illustrated with numerical
examples.
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1. INTRODUCTION

A network with m links supports n flows, that vary over
time t, which takes (discrete) values t = 1, . . . , T . At
time t, each flow is associated with a fixed route in the
network, i.e., a subset of the network links. We describe
these (possibly time-varying) routes using the routing or
link-route matrix Rt ∈ Rm×n, t = 1, . . . , T , defined as

(Rt)ij =

{

1 route of flow j passes over link i at time t
0 otherwise.

In the most common case, the route of a flow will be a
path, from a source node to a destination node. But our
definition of a route as any subset of links is more general,
and can be used to model, for example, a multicast flow
(where the route links form a tree).

At time t, flow j has a nonnegative flow rate, which we
denote fjt. Each flow rate fjt has a maximum permissible

value given by fmax
jt . We define F ∈ Rn×T (with entries

fjt) as the rate matrix. We also define Fmax (with entries
fmax

jt ) as the rate constraint matrix. The tth column of F ,
denoted ft ∈ Rn, gives the vector of all flow rates at time
t, i.e., a snapshot of the flow distribution in the network
at time t. Similarly, the jth row of F , which we will denote
fj ∈ RT , gives the rate schedule for flow j, i.e., the jth
flow rate for t = 1, . . . , T . We distinguish between ft (a
flow snapshot) and fj (a flow schedule) by their indices.

With the flow rate fjt we associate a strictly con-
cave, increasing, differentiable utility function Ujt, with
domUjt ⊇ (0, fmax

jt ]. The utility derived by flow rate fjt

is Ujt(fjt); the total utility, over all flows and over time, is
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U(F ) =

n
∑

j=1

T
∑

t=1

Ujt(fjt).

One common choice of utility function is Ujt(x) = log x;
but we allow here the possibility that the utility functions
differ for different flows, and can be time-varying as well.

The total traffic on link i at time t is the sum of the flow
rates at time t, over all flows whose route includes link i.
The link traffic vector, at time t, is given by Rtft ∈ Rm.
Each link in the network has a (positive) capacity. Let
ct ∈ Rm be the vector of the link capacities at time t. The
traffic on a link cannot exceed its capacity, i.e., we have

Rtft ≤ ct, t = 1, . . . , T,

where ≤ denotes componentwise inequality.

So far the problem setup is not coupled across time. The
utility function U is separable across t, and the constraints
for different values of t are independent (i.e., involve
different variables). It follows that we can maximize the
utility, subject to the link capacity constraints, by solving
T separate problems, once for each time t = 1, . . . , T . At
this point, however, we introduce some constraints that
couple the flow rates at different times.

A delivery contract is the requirement that the total of
some particular flow j, over some particular time interval
[tinit, tfin], should meet or exceed some specified minimum
quantity q:

tfin
∑

t=tinit

fjt ≥ q.

Suppose flow j has kj delivery contracts, with qj ∈ Rkj the
vector of the associated contract quantity amounts. The
contract constraints for flow j can be compactly written
using the contract indicator matrix Cj ∈ Rkj×T , defined
as
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(Cj)kt =

{

1 kth contract of flow j is active at time step t
0 otherwise.

(Here ‘is active’ means that t lies in the time interval
of the contract.) We can express the delivery contract
requirements for flow j as the vector inequality Cjfj ≥ qj .
(We have described contracts as involving a sum of flow
rates over an interval in time, but everything in what
follows works when contracts are any linear inequality
on the flow rates across time.) The constraints that all
contracts are met can be expressed as

Cjfj ≥ qj , j = 1, . . . , n.

Now we can define the problem of network utility max-
imization, with delivery contracts (NUMDC). The goal
is to choose the flow rates, for all time steps, in order
to maximize total utility, subject to the flow rate, link
capacity, and delivery contract constraints:

maximize U(F )
subject to Rtft ≤ ct, t = 1, . . . , T

Cjfj ≥ qj , j = 1, . . . , n
0 ≤ F ≤ Fmax.

(1)

The optimization variable in this problem is rate matrix
F . The problem data are the rate constraint matrix Fmax,
the utility functions Ujt, the route matrices Rt, the link
capacities ct, the delivery contract matrices Cj , and the
delivery contract quantities qj . The NUMDC problem
is a convex optimization problem, and has at most one
solution, since the objective is strictly concave. It can,
however, be infeasible.

The constraints on the variable matrix F have an in-
teresting structure. The link capacity constraints impose
constraints on each of the t columns of F , separately. The
delivery contracts impose constraints on the rows of F ,
separately. With delivery contracts, the problem cannot
be split into separate subproblems; the choice of all flow
rates, over all times, must be coordinated.

There are a number of ways to solve problem (1), such as
interior-point methods (Boyd and Vandenberghe [2004],
Nocedal and Wright [1999], Wright [1997]), which are
efficient, but centralized algorithms. In this paper we
propose a method based on dual decomposition, which is
decentralized, and so scales to very large problem sizes.

Decomposition is the standard method used to solve a
large problem (or in this case its dual) by breaking it up
into a set of smaller subproblems that can be solved locally.
In some cases this leads to decentralized algorithms. De-
composition has a long history in optimization, going back
to the Dantzig-Wolfe decomposition (Dantzig and Wolfe
[1960]) and the Benders decomposition (Benders [1962]).
A more recent reference on decomposition methods is
(Bertsekas [1999]).

We combine the dual decomposition approach with the
projected subgradient method, which is a simple algorithm
to minimize a nondifferentiable convex function on a
convex set. Some classic references on subgradient methods
are (Shor [1985], Polyak [1987], Shor [1998]). For more
recent work on subgradient methods, we refer the reader
to (Nedić and Bertsekas [2001], Nedić and Ozdaglar [2007])
as well as the thesis (Nedić [2002]).

Network utility maximization (NUM), i.e., the problem
(1) for a single time step (T = 1), and with no contract
constraints, has been extensively analyzed. In the seminal
paper (Kelly et al. [1997]), the authors propose a dual
decomposition solution to the NUM problem and interpret
this as a distributed algorithm, whereby each link sets a
price for flow that passes through it, and each flow adjusts
its rate to locally maximize its utility. This work has led
to a large body of research in decomposition methods in
the context of networking problems. We refer the reader
to (Low and Lapsley [1999], Chiang et al. [2007]), as well
as the books (Bertsekas [1998], Srikant [2004]).

In §2, we describe a decentralized algorithm for solving the
NUMDC problem based on dual decomposition, establish
its convergence, and interpret the algorithm in terms of
contract pricing. We give a numerical example to illustrate
the method in §3. In §4 we consider the much harder
problem that arises when the problem data (such as link
capacities) are not known ahead of time, and describe a
simple heuristic, model predictive control, that can be used
to get a good, if not optimal, choice of rates even when
future problem data are not fully known. We illustrate
this method with the same example used to illustrate the
basic NUMDC problem.

2. SOLUTION VIA DUAL DECOMPOSITION

2.1 Dual Problem

In this section we derive a dual of problem (1). Let
λt ∈ Rm

+ be the dual variable associated with the capacity

constraints at time t, and µj ∈ R
kj

+ the dual variable
associated with the contract constraints for flow j. The
partial Lagrangian (see, e.g., [Boyd and Vandenberghe,
2004, Ch.5]) of problem (1) is

L(F, λ, µ) = U(F )−

T
∑

t=1

λT
t (Rtft−ct)+

n
∑

j=1

µT
j (Cjfj −qj),

where λ = (λ1, . . . , λT ) and µ = (µ1, . . . , µn).

The dual function of problem (1) is

g(λ, µ) = sup
0≤F≤Fmax

L(F, λ, µ)

=

T
∑

t=1

λT
t ct −

n
∑

j=1

µT
j qj +

n
∑

j=1

T
∑

t=1

(−Ujt)
∗(pjt),

where pjt = (RT
t λt)j−(CT

j µj)t, with (RT
t λt)j and (CT

j µj)t

denoting the jth and tth elements of vectors RT
t λt and

CT
j µj , respectively. We define P ∈ Rn×T to be the price

matrix, i.e., the matrix with elements pjt. The function
(−Ujt)

∗ is the conjugate of the negative utility function
Ujt (see [Boyd and Vandenberghe, 2004§3.3]),

(−Ujt)
∗(y) = sup

0≤z≤fmax

jt

(Ujt(z) − yz).

For future reference we define

f⋆
jt(y) = argmax

0≤z≤fmax

jt

(Ujt(z) − yz)

=

{

(U ′
jt)

−1(y), (U ′
jt)

−1(y) ∈ (0, fmax
jt ]

fmax
jt , (U ′

jt)
−1(y) /∈ (0, fmax

jt ].
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(The argmax is unique, since Ujt is assumed to be strictly
concave.) Using this definition we have that

(−Ujt)
∗(y) = Ujt(f

⋆
jt(y)) − yf⋆

jt(y).

The functions (−Ujt)
∗ are convex, since by definition they

are pointwise suprema of affine functions (see [Boyd and
Vandenberghe, 2004, Chap. 3]). The dual function g(λ, µ)
is also convex since it is a sum of convex functions.

The dual of problem (1) is

minimize g(λ, µ)
subject to λ ≥ 0, µ ≥ 0.

(2)

This is a convex optimization problem, with variables λ
and µ. Any feasible point for this dual gives an upper
bound on the optimal value of the (primal) NUMDC
problem: for any λ ≥ 0, µ ≥ 0 and any feasible F we
have

g(λ, µ) ≥ U(F ).

This implies that if the dual NUMDC problem is un-
bounded below, the primal NUMDC problem is infeasible.
Conversely, if the dual problem is bounded below, the
primal problem is feasible.

We can reconstruct F ⋆, the optimal solution of the
NUMDC problem (1) from (λ⋆, µ⋆), an optimal solution
of the dual NUMDC problem (2) as follows:

f⋆
jt = f⋆

jt(p
⋆
jt) = argmax

0≤z≤fmax

jt

(

Ujt(z) − p⋆
jtz

)

.

2.2 Dual Decomposition

In this section we describe a simple distributed algorithm
for solving problem (2). We start with any nonnegative
λ1, . . . , λT , and any nonnegative µ1, . . . , µn, and repeat-
edly carry out the update

fjt := f⋆
jt(pjt) = argmax

0≤z≤fmax

jt

(Ujt(z) − zpjt) , t = 1, . . . , T

j = 1, . . . , n

λt := (λt − α (ct − Rtft))+ , t = 1, . . . , T
µj := (µj − α (Cjfj − qj))+ , j = 1, . . . , n,

where α > 0 is the step size, an algorithm parameter, and
(z)+ denotes the positive part of z, i.e., max{0, z}. The
terms ct − Rtft, Cjfj − qj appearing in the updates are
the slacks in the link capacity and contract constraints
respectively (and can have negative terms during the
algorithm execution). If we stack up these terms, we form
exactly the gradient of the dual objective function.

We will later show that for α small enough, this algorithm
will converge to a solution of the NUMDC problem, as
long as the problem is feasible. By this we mean that

fjt → f⋆
jt, j = 1, . . . , n, t = 1, . . . , T

λt → λ⋆
t , t = 1, . . . , T

µj → µ⋆
j , j = 1, . . . , n,

where F ⋆ is the solution of the primal NUMDC problem
and (λ⋆, µ⋆) is a solution to the dual NUMDC problem.
At each algorithm iteration, we have a dual feasible point
(λ, µ); but F is generally not feasible. (Indeed, if F is
feasible, it must be optimal.) Thus, at each iteration we
have an upper bound on the optimal value of the NUMDC
(1), obtained by evaluating the dual objective function.

The algorithm above is decentralized. We can interpret
λt as the vector of link prices at time t and µj as the
vector of contract subsidies for flow j. All the updates are
carried out based on local information. Each flow updates
its rates based on information obtained from the links it
passes over, and its contracts; each link price vector is
updated based only on the schedules of the flows that pass
over it. The contract subsidies are updated (by each flow,
separately) based on the slack in the contract constraints.

The algorithm also has a natural economic interpretation.
We can imagine that at each time t, flow j is charged a
price for utilizing each of its links. The total of these prices
is (RT

t λt)j ; this price multiplied by the flow rate (at time
t) gives a total link usage charge. At each time step t,
the flow receives a subsidy for each of its contracts that is
active, given by the associated value µjt. The sum of these
subsidies is given by (CT

j µj)t. This subsidy rate, multiplied
by the flow, gives the total contract subsidy. The net price
per unit rate, from link usage and contract subsidies, is
thus given by pjt. The total charge, pjtfjt, is subtracted
from the utility, and the maximum net utility flow rate is
chosen.

The links update their usage prices for each time t,
depending on their capacity margin ct−Rtft; if the margin
is positive, the link price is decreased (but not below zero);
if it is negative, which means the link capacity constraint
is violated, the link price is increased. In a similar way,
flow j updates its contract subsidies based on the contract
delivery margin Cjfj − qj .

2.3 Convergence

In this section we establish convergence of the algorithm.
A standard result is that the dual projected gradient
algorithm converges for 0 < α < 2/K, where K is a
Lipschitz constant for the dual objective function (see,
e.g., ([Polyak, 1987§7.2.1]) or ([Shor, 1985§3.4])). So in
this section we derive a valid Lipschitz constant for the
dual objective function.

We define a single dual variable

ν = (λ1, . . . , λT , µ1, . . . , µn).

We have

∇λt
g(ν) = ct − Rtf

⋆
t (ν), t = 1, . . . , T

∇µj
g(ν) = Cjf

⋆
j (ν) − qj , j = 1, . . . , n.

We define

sR = max
t

‖Rt‖, sC = max
j

‖Cj‖,

where ‖ · ‖ denotes the usual matrix norm, i.e., the
maximum singular value. By construction of ∇g we have

‖∇g(ν1)−∇g(ν2)‖2 ≤ (sR +sC)‖F ⋆(ν1)−F ⋆(ν2)‖F , (3)

where ‖ · ‖F denotes the matrix Frobenius norm. Let P1

and P2 be the price matrices corresponding to ν1 and ν2.
Define

pcrit
jt = U ′

jt(f
max
jt ), Vjt(p) = (U ′

jt)
−1(p).

We have

‖F ⋆(ν1) − F ⋆(ν2)‖F ≤ max
j,t

∣

∣V ′
jt(p

crit
jt )

∣

∣ ‖P1 − P2‖F . (4)

Finally,

‖P1 − P2‖F ≤ 2max(sR, sC)‖ν1 − ν2‖2. (5)
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Fig. 1. Network topology.

Combining inequalities (3), (4), and (5) we get

‖∇g(ν1) −∇g(ν2)‖2 ≤

2(sR + sC)max(sR, sC)max
j,t

∣

∣V ′
jt(p

crit
jt )

∣

∣ ‖ν1 − ν2‖2. (6)

Thus a Lipschitz constant for ∇g is

K = 2(sR + sC)max(sR, sC)max
j,t

∣

∣V ′
jt(p

crit
jt )

∣

∣ . (7)

3. NUMERICAL EXAMPLE

In this section we give a simple numerical example to
illustrate the NUMDC problem and the distributed dual
decomposition algorithm. Our example has m = 3 links
and n = 3 flows, with time horizon T = 10. The routes
do not vary with time and are shown in figure 1; these
correspond to routing matrices

Rt =

[

1 0 1
1 1 1
0 1 1

]

, t = 1, . . . , 10.

The utility functions are logarithmic: Ujt = log fjt for all
j and t. The link capacities cjt are chosen randomly, from
a uniform distribution on [4, 6] for links 1 and 3 and [4, 10]
for link 2. We set fmax

jt = 4.5 for all j and t.

Our example has four delivery contracts. Flow 1 must
deliver an average rate of at least 4 (per time step) in
the period [1, 3] and an average rate of at least 10/3 in
the period [6, 8]. Flow 2 must deliver an average rate of
at least 3 over the period [3, 6]. Flow 3 must deliver an
average rate of 1.5 over the period [2, 10]. The associated
contract matrices and quantities are thus

C1 =

[

1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0

]

, q1 =

[

12
10

]

,

C2 = [ 0 0 1 1 1 1 0 0 0 0 ] , q2 = 12,

C3 = [ 0 0 1 1 1 1 1 1 1 1 ] , q3 = 12.

For this example we found a Lipschitz constant K = 600
for ∇g using (7), which implies that our proposed algo-
rithm will converge as long as 0 < α < 0.0033. Numeri-
cal experiments suggest that the algorithm converges for
α ≤ 0.022, and diverges for α ≥ 0.025. Figures 2 and
3 show the convergence of the algorithm, started with
λt = 0 and µj = 0, with step size α = 0.01. Figure 2
shows the dual objective value (which is an upper bound
on the optimal objective value) versus iteration, and the
optimal value. Figure 3 shows the maximum link capacity
and contract violations versus iteration.

The optimal flow rates are shown in figure 4. Each of
the 4 delivery contract periods is depicted graphically as
a shaded area. We can see that the flow rates generally
increase during their contract periods, as we would expect,
and are generally lower outside contract periods (to make
room for other flows with contracts to meet). Figure 5
shows a set of optimal prices pjt. We can see that the
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Fig. 2. Dual objective value versus iteration. The dashed
line shows the optimal value.
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Fig. 3. Maximum link capacity violation (top) and contract
violation (bottom), versus iteration.
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Fig. 4. Optimal flow rates. The delivery contract periods
are shown as the shaded areas.
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Fig. 5. Optimal prices. The delivery contract periods are
shown shaded.

price generally drops when a contract is in force, due to
the contract subsidy, in order to encourage increased flow.

Figure 6 shows the total traffic and capacity for each link.
Figure 7 shows a set of optimal link prices λit. These prices
are zero whenever a link operates under full capacity.
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Fig. 7. Optimal link prices.

1 2 3 4 5 6 7 8 9 10
0

10

20

30

1 2 3 4 5 6 7 8 9 10
0

10

20

30

1 2 3 4 5 6 7 8 9 10
0

10

20

30

∑

i f2i

∑

i f1i

∑

i f3i

t

Fig. 8. Cumulative rates, with delivery contracts shown as
dashed line segments.

Figure 8 shows the cumulative rate for each flow versus
time, so the total rate over a contract period is given by
the vertical increase in the curve over the period. The
delivery contracts are shown as tilted line segments, with
horizontal span showing the delivery period, and height
showing required delivery quantity. The delivery contract
requires that the cumulative rate lie above the righthand
endpoint of the line segment. In this case all 4 delivery
contracts are tight. Optimal contract subsidy prices are

µ1 =

[

0.63
0.54

]

, µ2 = 0.39, µ3 = 0.17.

4. STOCHASTIC DYNAMIC NUM

In this section we describe an extension to the NUMDC
problem, where the problem data is not fully known ahead
of time. As above we assume that the flow utility functions
and upper bounds, the routing matrices, and the contracts
are known for all time steps. The link capacities, however,
are random, and revealed only at each time step; future
link capacities are not known. We impose a causality
constraint: the flow rates at time t must be a function

of the link capacities up to time t. Finding the flow rate
policy that maximizes expected utility, subject to the rate,
contract, and causality constraints is a convex stochastic
control problem (see, e.g., (Bertsekas and Shreve [1996])).
It can be solved in principle, for example by solving the
Bellman equation for the optimal cost-to-go, but this is
practical only for simple and small problems.

We instead consider a heuristic flow policy, based on model
predictive control (MPC) (Maciejowski [2002], Camacho
and Bordons [2004]). To compute the flow rate at time
τ we proceed as follows. Let the flow rates up to time
τ − 1 (which have already been decided, and so are fixed)
be f̄1, . . . , f̄τ−1. We know c1, . . . , cτ , but we do not know
cτ+1, . . . , cT . Define

ĉ(t|τ) = E[c(t)|c(1), . . . , c(τ)], t = τ + 1, . . . , T.

The vector ĉ(t|τ) is the expected value of the link capac-
ities, given the information available at time τ . We solve
the following optimization problem:

maximize

T
∑

t=τ

∑

j

Ujt(fjt)

subject to Rτfτ ≤ cτ

Rtft ≤ ĉ(t|τ), t = τ + 1, . . . , T
Cjfj ≥ qj , j = 1, . . . , n
0 ≤ fjt ≤ fmax

jt , t = τ, . . . , T, j = 1, . . . , n.
(8)

Here we use the exact value of the current capacity, cτ

(which is known); but for future capacities (which are
unknown) we use instead the conditional mean ĉ(t|τ).
The contract inequalities, Cjfj ≥ qj , must be interpreted
carefully. If a contract has expired, i.e., its final time is
less than τ , then it can be ignored. If a contract has
not begun, i.e., its initial time is greater than or equal
to τ , then the contract inequality only involves future
flows, and can be interpreted exactly as written. When
a contract has already begun, and is still in force, i.e., its
start time is less than τ and its final time is at least τ ,
the contract inequality is interpreted as follows: the flows
fjt for t < τ are taken to be f̄jt, the previously chosen
flow rates (which are constants). In this case Cjfj ≥ qj

is essentially a contract on flow j that requires it to have,
over the remaining contract period, a cumulative flow that
is at least the remaining balance left on the contract.

The problem (8) is another NUMDC problem, which
could be solved using the distributed dual decomposition
algorithm. Let F ⋆ be a solution of (8) Our choice of flow
rates at time τ is then f̄τ = f⋆

τ .

To find the flow rates at any given time, then, we solve
a NUMDC problem, that covers the remaining time up
to T , and inherits any as yet unfilled contracts from the
original problem. In this NUMDC problem, we substitute
the expected future capacity for the actual future capacity
(which we do not know).

We have described here only the simplest MPC-based
heuristic. More sophisticated versions include some risk
aversion or robustness in the problem solved at each step,
for example by solving a stochastic programming problem,
or a robust utility maximization problem. In the problem
described, for example, we might replace the conditional
mean ĉ(t|τ) with ĉ(t|τ) − κσ(t|τ), where κ > 0 is a risk
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Fig. 9. Flow rates from MPC heuristic (solid), and the
prescient solution (dashed). Delivery contract periods
are shown as shaded areas.

aversion parameter, and σ(t|τ) is the conditional variance
of ct given the information available at time τ .

4.1 Example

We illustrate the MPC algorithm on the same problem
instance from §3. In the MPC heuristic, we use ĉ1(t|τ) = 5,
ĉ2(t|τ) = 7, and ĉ3(t|τ) = 5 for all τ , and t > τ .

Figure 9 shows the flow rates obtained from the MPC
heuristic, as well as the flows found from solving the
original NUMDC problem. We can think of the solution
of the original NUMDC problem as the prescient solution;
it gives the (globally) optimal flow rates when the future
capacities are fully known ahead of time. The MPC heuris-
tic is a suboptimal, but causal, policy. In this example, the
resulting flows are quite similar. The utility obtained by
the MPC heuristic is 23.16; the utility obtained by the
prescient solution is 23.33. The difference divided by nT
gives the average utility loss per flow and time step, and
is 0.06 for this example.

5. CONCLUSIONS

In this paper we presented a multi-period variation on the
network utility maximization problem that includes de-
livery contract constraints, which couple flow rates across
time. We described a distributed algorithm to solve this
problem based on dual decomposition and established
its convergence. We also looked at the case when some
problem data is not known ahead of time and described a
heuristic based on model predictive control.

There are many possible variations and extensions of these
ideas and methods. We can modify the formulation in
several ways. As a practical example, we can allow contract
violations, imposing a penalty for contract violation. Here
we subtract the total contract violation penalty charge

q
∑

j=1

ωT
j (qj − Cjfj)+

from the over all utility U(f), where ωj > 0 is the (vector
of) penalty prices for contract j. (With contract penalties,
the problem is always feasible.) Here the penalty is linear
in the amount of contract shortfall; but any convex penalty
function (e.g., quadratic) can be used.

We can use more sophisticated algorithms to solve the
dual problem. Our algorithm requires all rate, price, and

subsidy updates to occur synchronously. If we use an incre-
mental subgradient method (Nedić and Bertsekas [2001])
to solve the dual NUMDC problem, we would obtain an
algorithm in which updates can occur asynchronously, still
with guaranteed convergence.
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