

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. © 2020 Society for Industrial and Applied Mathematics
Vol. 42, No. 6, pp. A3560--A3583

ANDERSON ACCELERATED DOUGLAS--RACHFORD SPLITTING\ast

ANQI FU\dagger , JUNZI ZHANG\ddagger , AND STEPHEN BOYD\dagger

Abstract. We consider the problem of nonsmooth convex optimization with linear equality con-
straints, where the objective function is only accessible through its proximal operator. This problem
arises in many different fields such as statistical learning, computational imaging, telecommunica-
tions, and optimal control. To solve it, we propose an Anderson accelerated Douglas--Rachford
splitting (A2DR) algorithm, which we show either globally converges or provides a certificate of in-
feasibility/unboundedness under very mild conditions. Applied to a block separable objective, A2DR
partially decouples so that its steps may be carried out in parallel, yielding an algorithm that is fast
and scalable to multiple processors. We describe an open-source implementation and demonstrate
its performance on a wide range of examples.

Key words. Anderson acceleration, nonsmooth convex optimization, parallel and distributed
optimization, proximal oracles, stabilization, global convergence, pathological settings

AMS subject classifications. 49J52, 65K05, 68W10, 68W15, 90C25, 90C53, 97N80

DOI. 10.1137/19M1290097

1. Introduction.

1.1. Problem setting. Consider the convex optimization problem

(1.1)
minimize f(x)
subject to Ax = b

with variable x \in Rn, where f : Rn \rightarrow R \cup \{ +\infty \} is convex, closed, and proper
(CCP), and A \in Rm\times n and b \in Rm are given. We assume that the linear constraint
Ax = b is feasible.

Block form. In this paper, we work with block separable f , i.e., f(x) =
\sum N

i=1 fi(xi)
for individually CCP fi : Rni \rightarrow R \cup \{ +\infty \} , i = 1, . . . , N . We partition x =

(x1, . . . , xN) so that n =
\sum N

i=1 ni and let A = [A1 A2 \cdot \cdot \cdot AN] with Ai \in Rm\times ni ,
i = 1, . . . , N . Problem (1.1) can be written in terms of the block variables as

(1.2)
minimize

\sum N
i=1 fi(xi)

subject to
\sum N

i=1Aixi = b.

Many interesting problems have the form (1.2), such as consensus optimization [10]
and cone programming [35]. In fact, by transforming nonlinear convex constraints
(e.g., cone constraints) into set indicator functions and adding them to the objective
function, any convex optimization problem can be written in the above form.

Optimality conditions. The point x \in Rn is a solution to (1.2) if there exist
g \in Rn and \lambda \in Rm such that

(1.3) Ax = b,

\ast Submitted to the journal's Methods and Algorithms for Scientific Computing section September
27, 2019; accepted for publication (in revised form) July 31, 2020; published electronically November
9, 2020. *Anqi Fu and Junzi Zhang contributed equally to this work.

https://doi.org/10.1137/19M1290097
Funding: The work of the first and second authors was each supported by a Stanford Graduate

Fellowship.
\dagger Department of Electrical Engineering, Stanford University, Stanford, CA 94305 USA (anqif@

stanford.edu, boyd@stanford.edu).
\ddagger ICME, Stanford University, Palo Alto, CA 94304 USA (junziz@stanford.edu).

A3560

D
ow

nl
oa

de
d

11
/0

9/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/19M1290097
mailto:anqif@stanford.edu
mailto:anqif@stanford.edu
mailto:boyd@stanford.edu
mailto:junziz@stanford.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ANDERSON ACCELERATED DOUGLAS--RACHFORD SPLITTING A3561

(1.4) 0 = g +AT\lambda , g \in \partial f(x),

where \partial f(x) is the subdifferential of f at x. With block separability, (1.4) can be
written as

0 = gi +AT
i \lambda , gi \in \partial fi(xi), i = 1, . . . , N.

We refer to (1.3) and (1.4) as the primal feasibility and dual feasibility conditions,
and x and \lambda as the primal variable and dual variable, respectively. Together, these
conditions are sufficient for optimality; they become necessary as well when Slater's
constraint qualification is satisfied, i.e., relintdom f \cap \{ x : Ax = b\} \not = \emptyset .

Proximal oracle. Methods for solving (1.2) vary depending on what oracle is
available for fi. If fi and its subgradient can be queried directly, a variety of iterative
algorithms may be used [11, 34, 33]. However, in our setting, we assume that each fi
can only be accessed through its proximal operator proxtfi : R

ni \rightarrow Rni , defined as

proxtfi(vi) = argminxi

\bigl(
fi(xi) +

1
2t\| xi - vi\| 22

\bigr)
,

where t > 0 is a parameter. In particular, we assume neither direct access to the
function fi nor its subdifferential \partial fi. The separability of f implies that [39]

proxtf (v) =
\bigl(
proxtf1(v1), . . . ,proxtfN (vN)

\bigr)
for any v = (v1, . . . , vN) \in Rn.

While we cannot evaluate \partial fi at a general point, we can find an element of \partial fi
at the proximal operator's image point:

xi = proxtfi(vi) \Leftarrow \Rightarrow 0 \in \partial fi(xi) +
1
t (xi - vi) \Leftarrow \Rightarrow 1

t (vi - xi) \in \partial fi(xi).

Thus, by querying the proximal oracle of fi at vi, we obtain an element in the sub-
gradient of fi at xi = proxtfi(vi).

The optimality conditions can be expressed using the proximal operator as well.
The point x \in Rn is a solution to (1.2) if there exist v \in Rn and \lambda \in Rm such that

(1.5) Ax = b,

(1.6) 0 = 1
t (v - x) +AT\lambda , xi = proxtfi(vi), i = 1, . . . , N.

Residuals. From conditions (1.5) and (1.6), we define the primal and dual resid-
uals at x, \lambda as

(1.7) rprim = Ax - b,

(1.8) rdual =
1
t (v - x) +AT\lambda ,

and we define the overall residual as r = (rprim, rdual) \in Rn+m.
Stopping criterion. If problem (1.2) is feasible and bounded, a reasonable stop-

ping criterion is that the residual norm lies below some threshold, i.e., \| r\| 2 \leq \epsilon tol,
where \epsilon tol > 0 is a user-specified tolerance. We refer to the associated x as an
approximate solution to (1.2). We defer discussion of the criteria for pathological
(infeasible/unbounded) cases to section 4.

Notice that given a candidate v \in Rn, we can readily choose the primal point
x = proxtf (v) and dual point

(1.9) \lambda = 1
t (A

\dagger)T (x - v) \in argmin\^\lambda \| AT \^\lambda - 1
t (x - v)\| 2,

a minimizer of the dual residual norm, where A\dagger denotes the pseudoinverse of A.
Thus, any algorithm for solving (1.2) via the proximal oracle need only determine a
v that produces a small residual norm.

D
ow

nl
oa

de
d

11
/0

9/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3562 ANQI FU, JUNZI ZHANG, AND STEPHEN P. BOYD

1.2. Related work. When functional access is restricted to a proximal oracle,
the most common approaches for solving (1.2) are the alternating direction method of
multipliers (ADMM) [56, 38, 18, 6], Douglas--Rachford splitting (DRS) [22], and the
augmented Lagrangian method [64] with appropriate problem reformulations (e.g.,
consensus). These algorithms take advantage of the separability of the objective
function, making them well-suited for the nonsmooth convex optimization problem
considered in this paper. Yet despite their robustness and scalability, they typically
suffer from slow convergence. Researchers have proposed several acceleration tech-
niques, including adaptive penalty parameters [21, 60], adaptive synchronization [9],
and momentum methods [63]. In practice, improvement from these techniques is usu-
ally limited due to the first-order nature of the accelerated algorithms. Special cases
of (1.2) can sometimes yield exploitable problem forms, such as the Laplacian regu-
larized stratified model in [54]. There the authors use the structure of the Laplacian
matrix to efficiently parallelize ADMM. However, for the general problem, further
acceleration requires a quasi-Newton method with line search [51] or semismooth
Newton method with access to the Clarke's generalized Jacobian of the objective's
proximal operator [4, 59, 31], both of which typically impose high per-iteration costs
and memory requirements.

The acceleration technique adopted in this paper, type-II Anderson acceleration
(AA), dates back to the 1960s [5]. It belongs to the family of sequence acceleration
methods, which achieve faster convergence through certain sequence transformations.
The origin of these methods can be traced to Euler's transformation of series [1] from
the 18th century. Several faster sequence acceleration techniques were proposed in
the 20th century, including Aitken's \Delta 2-process in 1926 [3] along with its higher-
order [47, 57] and vector [30, 28, 48] extensions, of which AA is a member. We refer
readers to [12, 7] for a thorough history. AA can be viewed as either an extrapolation
method or a generalized quasi-Newton method [17]. However, unlike classical quasi-
Newton methods, it is effective without a line search and requires less computation
and memory per iteration so long as certain stabilization measures are adopted.

Type-II AA was initially proposed to accelerate solvers for nonlinear integral
equations in computational chemistry and materials science; later, it was applied to
general fixed-point problems [55]. It operates by using an affine combination of pre-
vious iterates to determine the next iterate of an algorithm, where the combination's
coefficients are obtained by solving an unconstrained least squares problem. In this
sense, it is a generalization of the averaged iteration algorithm and Nesterov's ac-
celerated gradient method. Its local convergence properties have been analyzed in a
range of settings, both deterministic [42, 53, 46, 16, 25, 29, 41] and stochastic [45, 52],
but its global convergence properties remain largely unknown except for a variant
called EDIIS [24]. EDIIS has been shown to converge globally assuming that the
fixed-point mapping is contractive [13]. However, it adds nonnegativity constraints to
the coefficients of AA, meaning each iteration must solve a nonnegative least squares
problem, a more complex task than solving the unconstrained problem, which admits
a closed-form solution. The technique proposed in this paper, by contrast, only re-
quires nonexpansiveness for global convergence. Each of its iterations merely solves
an unconstrained least squares problem, similar to the original type-II AA. Recently,
[17] proposed another AA variant called type-I AA. While less stable than its type-II
counterpart, this variant performs more favorably with appropriate stabilization and
globalization [36, 61].

AA has been applied in the literature to several problems related to (1.2). The
authors of [40] use AA to speed up a parallelized local-global solver for geometry

D
ow

nl
oa

de
d

11
/0

9/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ANDERSON ACCELERATED DOUGLAS--RACHFORD SPLITTING A3563

optimization and physics simulation problems, which may be viewed as a special case
of our problem where fi are projection operators. In a separate setting, [27] employs
AA to solve large-scale fixed-point problems arising from partial differential equations,
demonstrating performance improvements on a distributed memory platform. More
generally, [61] uses type-I AA in conjunction with DRS and a splitting conic solver
(SCS) [35] to solve problems in consensus and conic optimization. These results
are extended by [49], which combines type-II AA with an SCS variant to produce
SuperSCS, an efficient solver for large cone programs. AA has also seen success in
nonconvex settings. Notably, [62] applies AA to ADMM and studies its empirical
performance on nonconvex optimization problems arising in computer graphics.

1.3. Contribution. In this paper, we consider the DRS algorithm for solving
(1.2), which satisfies the proximal oracle assumption and admits a simple fixed-point
(FP) formulation [43]. This FP format allows us to improve the convergence of DRS
with AA, a memory efficient, line search free acceleration method that works on
generic nonsmooth, nonexpansive FP mappings with almost no extra cost per iteration
[61]. Motivated by the need for solver stability, we choose type-II AA in our current
work and propose a robust stabilization scheme that maintains its speed and efficiency.
We then apply it to DRS and show that the resulting Anderson accelerated Douglas--
Rachford splitting (A2DR) algorithm always either converges or provides a certificate
of infeasibility/unboundedness under very relaxed conditions. As a consequence, we
obtain the first globally convergent type-II AA variant in nonsmooth, potentially
pathological settings. Our convergence analysis only requires nonexpansiveness of the
FP mapping, gracefully handling cases when a fixed-point does not exist. Finally, we
release an open-source Python solver based on A2DR at

https://github.com/cvxgrp/a2dr.

Outline. We begin in section 2 by introducing the basics of DRS. We then describe
AA and propose A2DR in section 3. The global convergence properties of A2DR
are established in section 4, along with an analysis of the infeasible and unbounded
cases. We discuss the presolve, equilibration, and hyperparameter choices in section
5, followed by the implementation details in section 6. In section 7, we demonstrate
the performance of A2DR on several examples. We conclude in section 8.

2. Douglas--Rachford splitting. Douglas--Rachford splitting (DRS) is an al-
gorithm for solving problems of the form

minimize g(x) + h(x)

with variable x, where g and h are CCP [43]. We can write problem (1.2) in this
form by taking g = f and h = \scrI \{ x :Ax=b\} , the indicator function of the linear equality
constraint. Notice that proxth is the projection onto the associated subspace, defined
as

\Pi (vk+1/2) = vk+1/2 - A\dagger (Avk+1/2 - b) = vk+1/2 - AT (AAT)\dagger (Avk+1/2 - b).

The DRS algorithm proceeds as follows.
Each iteration k requires the evaluation of the proximal operator of f and the

projection onto a linear subspace.
Dual variable and residuals. We regard xk+1/2, the proximal operator's image

point, as our approximate primal optimal variable in iteration k. There are two ways
to produce an approximate dual variable \lambda k. The first way sets

\lambda k = 1
t (AA

T)\dagger (Avk+1/2 - b),

D
ow

nl
oa

de
d

11
/0

9/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://github.com/cvxgrp/a2dr

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3564 ANQI FU, JUNZI ZHANG, AND STEPHEN P. BOYD

Algorithm 2.1 Douglas--Rachford Splitting (DRS)

1: Input: initial point v0, penalty coefficient t > 0.

2: for k = 1, 2, . . . do

3: xk+1/2 = proxtf (v
k)

4: vk+1/2 = 2xk+1/2 - vk

5: xk+1 = \Pi (vk+1/2)

6: vk+1 = vk + xk+1 - xk+1/2

7: end for

an intermediate value from the projection step. (See Remark SM1.2 in the supplemen-
tary materials for the reasoning behind this choice.) The second way computes \lambda k as
the minimizer of \| rkdual\| 2, which necessitates solving the least squares problem (1.9)
at each iteration. Our implementation uses the second method because the additional
computational cost is minimal, and this choice of a dual optimal variable results in
earlier stopping.

The primal and dual residuals can be calculated by plugging our DRS iterates
into (1.7) and (1.8):

(2.1) rkprim = Axk+1/2 - b,

(2.2) rkdual =
1
t (v

k - xk+1/2) +AT\lambda k.

Convergence. Define the fixed-point mapping FDRS : Rn \rightarrow Rn as

FDRS(v) = v +\Pi
\bigl(
2proxtf (v) - v

\bigr)
 - proxtf (v),

so that vk+1 = FDRS(v
k). It can be shown that FDRS is 1/2-averaged (i.e., FDRS =

1
2H + 1

2I, where H is nonexpansive and I is the identity mapping), and hence, vk

converges globally and sublinearly to a fixed-point of FDRS whenever such a point
exists. In this case, xk+1/2 and xk+1 both converge to a solution of (1.2), implying
that limk\rightarrow \infty \| rkprim\| 2 = limk\rightarrow \infty \| rkdual\| 2 = 0 [43].

3. Anderson accelerated DRS. In this section, we give a brief overview of AA
and propose a modification that improves its stability. We then combine stabilized
AA with DRS to construct our main algorithm, Anderson accelerated DRS. A2DR
always produces an approximate solution to (1.2) when the problem is feasible and
bounded. We treat the infeasible/unbounded cases in section 4.

3.1. Anderson acceleration. Consider a 1/2-averaged mapping F : Rn \rightarrow Rn.
To solve the associated fixed-point problem F (v) = v, we can repeatedly apply the
fixed-point iteration (FPI) vk+1 = F (vk), which is exactly DRS when F = FDRS.
However, convergence of FPI algorithms is usually slow in practice. Acceleration
schemes are one way of addressing this flaw. AA is a special form of the generalized
limited-memory quasi-Newton (LM-QN) method. It is one of the most successful ac-
celeration schemes for general nonsmooth FPIs, exhibiting greater memory efficiency
than classical LM-QN algorithms like the restarted Broyden's method [49].

We focus here on the original type-II AA [5]. Let G(v) = v - F (v) be the residual
function and Mk \in Z+ a nonnegative integer denoting the memory size. Typically,

D
ow

nl
oa

de
d

11
/0

9/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ANDERSON ACCELERATED DOUGLAS--RACHFORD SPLITTING A3565

Mk = min(Mmax, k) for some maximum memory Mmax \geq 1 [55]. At iteration k,

type-II AA stores in memory the most recent Mk + 1 iterates (vk, . . . , vk - Mk

) and

replaces vk+1 = F (vk) with vk+1 =
\sum Mk

j=0 \alpha
k
jF (v

k - Mk+j), where \alpha k = (\alpha k
0 , . . . , \alpha

k
Mk)

is the solution to

(3.1)
minimize \|

\sum Mk

j=0 \alpha
k
jG(v

k - Mk+j)\| 22
subject to

\sum Mk

j=0 \alpha
k
j = 1.

AA then updates its memory to (vk+1, . . . , vk+1 - Mk+1

) before repeating the process.
The accelerated vk+1 can be seen as an extrapolation from the original vk+1 and

the fixed-point mappings of a few earlier iterates. It has the potential to reduce
the residual by a significant amount. In particular, when F is affine, (3.1) seeks an
affine combination \~vk+1 of the last Mk + 1 iterates that minimizes the residual norm
\| G(\~vk+1)\| 2, then computes vk+1 = F (\~vk+1) by performing an additional FPI.

3.2. Main algorithm. Despite the popularity of type-II AA, it suffers from
instability in its original form [46]. We propose a stabilized variant using adaptive
regularization and a simple safeguarding globalization trick.

Adaptive regularization. Define gk = G(vk), yk = gk+1 - gk, sk = vk+1 - vk,

Yk = [yk - Mk \cdot \cdot \cdot yk - 1], and Sk = [sk - Mk \cdot \cdot \cdot sk - 1]. With a change of variables,
(3.1) can be rewritten as [55]

(3.2) minimize \| gk - Yk\gamma
k\| 2

with respect to \gamma k = (\gamma k0 , . . . , \gamma
k
Mk - 1), where

(3.3) \alpha k
0 = \gamma k0 , \alpha k

i = \gamma ki - \gamma ki - 1, i = 1, . . . ,Mk - 1, \alpha k
Mk = 1 - \gamma kMk - 1.

To improve stability, we add an \ell 2-regularization term to (3.2), scaled by the
Frobenius norms of Sk and Yk, which yields the problem

(3.4) minimize \| gk - Yk\gamma
k\| 22 + \eta

\bigl(
\| Sk\| 2F + \| Yk\| 2F

\bigr)
\| \gamma k\| 22,

where \eta > 0 is a parameter. The regularization adopted in (3.4) differs from the
one introduced in [46] that directly regularizes \alpha k. We argue that with the affine
constraint on \alpha k, it is more natural to regularize the unconstrained variables \gamma k. This
approach also allows us to establish global convergence in section 4. Intuitively, if the
algorithm is converging, limk\rightarrow \infty \| Sk\| F = limk\rightarrow \infty \| Yk\| F = 0, so the coefficient on
the regularization term vanishes just like in the single iteration local analysis by [46].

A simple and relaxed safeguard. To achieve global convergence, we also need a
safeguarding step. This step checks whether the current residual norm is sufficiently
small. If true, the algorithm takes the AA update and skips the safeguarding check
for the next R - 1 iterations. Otherwise, the algorithm replaces the AA update with
the vanilla FPI update. Here R \in Z++ is a positive integer that determines the degree
of safeguarding; smaller values are more conservative, since the safeguarding step is
performed more often.

A2DR. We are finally ready to present A2DR (Algorithm 3.1). A2DR applies
type-II AA with adaptive regularization (lines 10--11) and safeguarding (lines 13--
17) to the DRS fixed-point mapping FDRS. In our description, GDRS = I - FDRS

is the residual mapping, D > 0, \epsilon > 0 are constants that characterize the degree
of safeguarding, and nkAA is the number of times the AA candidate has passed the
safeguarding check up to iteration k.

D
ow

nl
oa

de
d

11
/0

9/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3566 ANQI FU, JUNZI ZHANG, AND STEPHEN P. BOYD

Stopping criterion. As explained in section 1, to check optimality, we evaluate the
primal and dual residuals rkprim and rkdual. We terminate the algorithm and output

xk+1/2 as the approximate solution if

(3.5) \| rk\| 2 \leq \epsilon tol = \epsilon abs + \epsilon rel\| r0\| 2,

where rk = (rkprim, r
k
dual) and \epsilon abs > 0, \epsilon rel > 0 are user-specified absolute and relative

tolerances, respectively.

Algorithm 3.1 Anderson Accelerated Douglas--Rachford Splitting (A2DR)

1: Input: initial point v0, penalty coefficient t > 0, regularization coefficient \eta > 0,

safeguarding constants D > 0, \epsilon > 0, R \in Z++, max-memory Mmax \in Z+.

2: Initialize nAA = 0, RAA = 0, Isafeguard = True.

3: Compute v1 = FDRS(v
0), g0 = v0 - v1.

4: for k = 1, 2, . . . do

5: \# Memory update

6: Choose memory Mk = min(Mmax, k).

7: Compute the DRS candidate: vk+1
DRS = FDRS(v

k), gk = vk - vk+1
DRS.

8: Update Yk and Sk with yk - 1 = gk - gk - 1 and sk - 1 = vk - vk - 1.

9: \# Adaptive regularization

10: Solve for \gamma k in regularized least squares (3.4) and compute weights \alpha k from

(3.3).

11: Compute the AA candidate: vk+1
AA =

\sum Mk

j=0 \alpha
k
j v

k - Mk+j+1
DRS .

12: \# Safeguard

13: If Isafeguard is True or RAA \geq R:

14: If \| gk\| 2 = \| GDRS(v
k)\| 2 \leq D\| g0\| 2(nAA/R+ 1) - (1+\epsilon):

15: vk+1 = vk+1
AA , nAA = nAA + 1, Isafeguard = False, RAA = 1.

16: else vk+1 = vk+1
DRS, RAA = 0.

17: else vk+1 = vk+1
AA , nAA = nAA + 1, RAA = RAA + 1.

18: Terminate and output xk+1/2 (cf. Algorithm 2.1) if stopping criterion (3.5) is

satisfied.

19: end for

4. Global convergence. We now establish the global convergence properties
of A2DR. In particular, we show that under the general assumptions in section 1,
A2DR either converges globally from any initial point or provides a certificate of
infeasibility/unboundedness.

4.1. Infeasibility and unboundedness. When the optimality conditions do
not hold even in the asymptotic sense, i.e., if the infimum of the primal or dual
residual over all possible x and v is nonzero, problem (1.2) is either infeasible or
unbounded. We say that (1.2) is infeasible if dom f \cap \{ x : Ax = b\} = \emptyset , and we
say that it is unbounded if (1.2) is feasible, but infAx=b f(x) = - \infty . The following
proposition characterizes sufficient certificates of infeasibility and unboundedness.

D
ow

nl
oa

de
d

11
/0

9/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ANDERSON ACCELERATED DOUGLAS--RACHFORD SPLITTING A3567

Proposition 4.1 (certificates of infeasibility and unboundedness). Let f\ast : Rn \rightarrow
R\cup \{ +\infty \} denote the conjugate function of f , defined as f\ast (y) = supx\in \bfd \bfo \bfm f

\bigl(
yTx -

f(x)
\bigr)
.
(i) If dist(dom f, \{ x : Ax = b\}) > 0, then problem (1.2) is infeasible.
(ii) If dist(dom f\ast , range(AT)) > 0, then problem (1.2) is unbounded.

When (i) holds, (1.2) is also called (primal) strongly infeasible, and when (ii)
holds, (1.2) is called dual strongly infeasible [26]. We say that (1.2) is pathological if it
is either primal or dual strongly infeasible, and solvable otherwise. Notice that when
the problem is pathological, it is either infeasible or unbounded, but not both.

Proof. Claim (i) is true by definition. To prove claim (ii), observe that the dual
problem of (1.2) is minimize\nu f\ast (\nu) + g\ast (- \nu), where g\ast (\nu) = bT\lambda when \nu = AT\lambda ,
and g\ast (\nu) = +\infty otherwise. By Lemma 1 in [44], if dist(dom f\ast , range(AT)) > 0,
then the dual problem is strongly infeasible, and hence the primal problem (1.2) is
unbounded.

If (1.2) is pathological, an algorithm should provide a certificate of either (i) or
(ii). We will show that A2DR achieves this goal by returning the distances in (i) and
(ii) as a by-product of its iterations.

4.2. Convergence results. We are now ready to present the convergence re-
sults for A2DR. We begin by highlighting the contribution of adaptive regularization
to the stabilization of AA. Indeed, by setting the gradient of the objective function
in (3.4) to zero, we find the solution is

\gamma k = (Y T
k Yk + \eta

\bigl(
\| Sk\| 2F + \| Yk\| 2F

\bigr)
I) - 1Y T

k g
k.

Using the relationship between \alpha k and \gamma k, we then write

vk+1 = vk - (I + (Sk - Yk)(Y
T
k Yk + \eta

\bigl(
\| Sk\| 2F + \| Yk\| 2F

\bigr)
I) - 1Y T

k)gk = vk - Hkg
k,

(4.1)

where Hk = I + (Sk - Yk)(Y
T
k Yk + \eta

\bigl(
\| Sk\| 2F + \| Yk\| 2F

\bigr)
I) - 1Y T

k .

Lemma 4.2. The matrices Hk (k \geq 0) satisfy \| Hk\| 2 \leq 1 + 2/\eta .

Proof. Since \| A\| 2 \leq \| A\| F for any matrix A,

\| Hk\| 2 \leq 1 +
\| Sk - Yk\| 2\| Yk\| 2
\eta (\| Sk\| 2F + \| Yk\| 2F)

\leq 1 +
\| Sk - Yk\| F \| Yk\| F
\eta (\| Sk\| 2F + \| Yk\| 2F)

\leq 1 +
\| Sk\| F \| Yk\| F + \| Yk\| 2F
\eta (\| Sk\| 2F + \| Yk\| 2F)

\leq 1 + 2/\eta .

This completes the proof.

The above lemma characterizes the stability ensured by regularization in (3.4),
providing a stepping stone to our global convergence theorems.

4.2.1. Solvable case.

Theorem 4.3. Suppose that problem (1.2) is solvable. Then for any initialization
v0 and any hyperparameters \eta > 0, D > 0, \epsilon > 0, R \in Z++, Mmax \in Z+, we have

(4.2) lim inf
k\rightarrow \infty

\| rk\| 2 = 0,

and the AA candidates are adopted infinitely often. Additionally, if FDRS has a fixed-
point, vk converges to a fixed-point of FDRS and xk+1/2 converges to a solution of
(1.2) as k \rightarrow \infty .

D
ow

nl
oa

de
d

11
/0

9/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3568 ANQI FU, JUNZI ZHANG, AND STEPHEN P. BOYD

The proof is left to the supplementary materials. A direct corollary of Theorem
4.3 is that the primal and dual residuals of xk+1/2 converge to zero so long as (1.2)
is feasible and bounded. Even if (1.2) does not have a solution, A2DR still produces
a sequence of asymptotically optimal points provided that (1.2) is not pathological.
Thus, Algorithm 3.1 always terminates in a finite number of steps in these cases.

In practice, the proximal operators and projections are often evaluated with error,
so lines 3 and 5 in Algorithm 2.1 become \^xk+1/2 = proxtf (v

k) + \zeta k1 and \^xk+1 =

\Pi (vk+1/2) + \zeta k2 , where \zeta k1 , \zeta
k
2 \in Rn represent numerical errors. We use \^xk+1/2,

\^vk+1/2, \^xk+1 to denote the error-corrupted intermediate FDRS iterates, and xk+1/2,
vk+1/2, xk+1 to denote the error-free intermediate FDRS iterates. However, we still use
the old notation (e.g., vk and gk) to denote the error-corrupted A2DR iterates in the
body of Algorithm 3.1. For cases with such errors, we have the following convergence
result.

Theorem 4.4. Suppose that problem (1.2) is solvable, but the FDRS iterates are
evaluated with errors \zeta k1 , \zeta

k
2 \in Rn. Assume that FDRS has a fixed-point and \exists \epsilon \prime > 0

such that \| \zeta k1 \| 2 \leq \epsilon \prime and \| \zeta k2 \| 2 \leq \epsilon \prime for all k \geq 0. Then for any initialization v0 and
any hyperparameters \eta > 0, D > 0, \epsilon > 0, R \in Z++, Mmax \in Z+, if all v

k and some
fixed-point v \star of FDRS are uniformly bounded, i.e., \| vk\| 2 \leq L and \| v \star \| 2 \leq L for a
constant L > 0, we have

(4.3) lim inf
k\rightarrow \infty

\| rkprim\| 2 \leq \| A\| 2(4\epsilon \prime + 4
\surd
L\epsilon \prime), lim inf

k\rightarrow \infty
\| rkdual\| 2 \leq 1

t (4\epsilon
\prime + 4

\surd
L\epsilon \prime).

The residuals are computed by plugging vk (as output by A2DR) and the error-free
intermediate iterates xk+1/2 = proxtf (v

k) into (2.1) and (2.2).

4.2.2. Pathological case.

Theorem 4.5. Suppose that problem (1.2) is pathological. Then for any initial-
ization v0 and any hyperparameters \eta > 0, D > 0, \epsilon > 0, R \in Z++, Mmax \in
Z+, the difference vk - vk+1 converges to some nonzero vector \delta v \in Rn. If, fur-
thermore, limk\rightarrow \infty Axk+1/2 = b, then (1.2) is unbounded, in which case \| \delta v\| 2 =
tdist(dom f\ast , range(AT)). Otherwise, (1.2) is infeasible and \| \delta v\| 2 \geq dist(dom f,
\{ x : Ax = b\}) with equality when the dual problem is feasible.

The proof is given in the supplementary materials. Theorem 4.5 states that in
pathological cases, the successive differences \delta vk = vk - vk+1 can be used as certificates
of infeasibility and unboundedness. We leave the practical design and implementation
of these certificates to a future version of A2DR.

The same global convergence results (Theorems 4.3--4.5) can be shown for sta-
bilized type-I AA [61], which sometimes exhibited better numerical performance in
our early experiments. However, type-I AA introduces additional hyperparameters,
and to ensure our solver is robust without the need for extra hyperparameter tuning,
we restrict ourselves to type-II AA. We leave type-I Anderson accelerated DRS to a
future paper.

5. Presolve, equilibration, and parameter selection. In this section, we
introduce a few tricks that make A2DR more efficient in practice.

Infeasible linear constraints. In section 1, we assumed that the linear constraint
Ax = b is feasible. However, this assumption may be violated in practice. To address
this issue, we first solve the least squares problem associated with the linear system.
If the resulting residual is sufficiently small, we proceed to solve (1.2) using A2DR.
Otherwise, we terminate and return a certificate of infeasibility.

D
ow

nl
oa

de
d

11
/0

9/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ANDERSON ACCELERATED DOUGLAS--RACHFORD SPLITTING A3569

Preconditioning. To precondition the problem, we scale the variables xi and the
linear constraints (rows of Ax = b), solve the problem with the scaled variables and
data, then unscale to recover the original variables. Scaling the variables and con-
straints does not change the theoretical convergence, but can improve the practical
convergence if the scaling factors are chosen well. A popular heuristic for improving
the practical convergence is to choose the scalings to minimize, or at least reduce, the
condition number of the coefficient matrix. In turn, a heuristic for reducing the condi-
tion number of the coefficient matrix is to equilibrate it, i.e., choose the scalings so that
all rows have approximately equal norm and all columns have approximately equal
norm. The regularized Sinkhorn--Knopp method described below does this, where the
regularization allows it to gracefully handle matrices that cannot be equilibrated or
would require very extreme scaling to equilibrate.

The details are as follows. First, we equilibrate A by choosing diagonal matrices
D = diag(d1, . . . , dm) and E = diag(e1In1

, . . . , eNInN
), with d1 > 0, . . . , dm > 0 and

e1 > 0, . . . , eN > 0, and forming the scaled matrix \^A = DAE. The scaled problem is

(5.1)
minimize

\sum N
i=1

\^fi(\^xi)

subject to
\sum N

i=1
\^Ai\^xi = \^b,

where
\^fi(\^xi) = fi(ei\^xi), \^A = D[A1 A2 \cdot \cdot \cdot AN]E, \^b = Db.

We apply A2DR to (5.1) to obtain \^x \star and recover the approximate solution to our
original problem (1.2) via x \star = E\^x \star .

To determine the scaling factors di and ej , we use the regularized Sinkhorn--
Knopp method [18]. First, we perform a change of variables to ui = 2 log(di) and
vj = 2 log(ej). Then we solve the optimization problem
(5.2)

minimize
\sum m

i=1

\sum N
j=1Bije

ui+vj - N1Tu - m1T v + \gamma
\Bigl(
N

\sum m
i=1 e

ui +m
\sum N

j=1 e
vj
\Bigr)

for u \in Rm and v \in RN , where Bij =
\sum n1+\cdot \cdot \cdot +nj

l=n1+\cdot \cdot \cdot +nj - 1+1A
2
il and \gamma > 0 is a regular-

ization parameter. This problem is strictly convex. At its solution, the arithmetic
means of the recovered scaling factors are equal. In our implementation, we set

\gamma =
m+N

mN

\surd
\epsilon mp,

where \epsilon mp is the machine precision. Notice that when \gamma = 0 and (5.2) has a solution,
the resulting \^A is equilibrated exactly, i.e., the rows all have the same \ell 2 norm,
and the columns all have the same \ell 2 norm in the blockwise sense (with block sizes
n1, . . . , nN).

We use coordinate descent to solve (5.2), which produces [18, Algorithm 2].
This algorithm typically returns a solution \~u, \~v in only a handful of iterations. We
then recover \~di = e\~ui/2 and \~ej = e\~vj/2. Define \~D = diag(\~d1, . . . , \~dm) and \~E =

diag(\~e1In1
, . . . , \~eNInN

). Although the arithmetic means of (\~d1, . . . , \~dm) and (\~e1, . . . ,
\~eN) are already equal, we also wish to enforce equality of their geometric means,
which corresponds to equality of the arithmetic means of the problem variables. This
leads to better performance in practice. Accordingly, we scale \~D and \~E to obtain D
and E such that the geometric mean of (d1, . . . , dm) equals that of (e1, . . . , eN) and
\| DAE\| F =

\sqrt{}
min(m,N).

D
ow

nl
oa

de
d

11
/0

9/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3570 ANQI FU, JUNZI ZHANG, AND STEPHEN P. BOYD

Since E is constant within each variable block, the proximal operator of \^fi can
be evaluated using the proximal operator of fi via

\^xi = proxt \^fi
(\^vi) = argmin\^xi

\bigl(
fi(ei\^xi) +

1
2t\| \^xi - \^vi\| 22

\bigr)
= 1

ei
argminxi

\bigl(
fi(xi) +

1
2t\| xi/ei - \^vi\| 22

\bigr)
= 1

ei
proxe2i tfi

(ei\^vi).

(5.3)

All other steps of A2DR (including the projection step in Algorithm 2.1, line 5) remain

the same, except with A and b replaced by \^A and \^b. We check the stopping criterion
directly on (5.1), trusting that our equilibration scheme provides an appropriate scal-
ing of the original problem. An alternative is to check the stopping criterion on (1.2)
using the unscaled variables.

Choice of t. With equilibration, the choice of parameter

t =
1

10

\left(N\prod
j=1

ej

\right) - 2/N

works well across a wide variety of problems. (Recall that convergence is guaranteed
in theory for any t > 0.) Our implementation uses this choice of t.

The intuition behind our choice is as follows. Consider the case of fi(xi) = xTi Qixi
with Qi \in Sni

+ , the set of symmetric positive semidefinite matrices. The associated
proxtfi(vi) = (2tQi + I) - 1vi is linear, and by (5.3),

proxt \^fi
(\^vi) = proxe2i tfi

(\^vi).

To avoid ill-conditioning when ei is an extreme value, we want to choose t such that
e2i t = c > 0, a constant for i = 1, . . . , N . However, this is impossible unless e1, . . . , eN
are all equal, so instead we minimize

\sum N
i=1(log t - log(ce - 2

i))2, where we have taken
logs because ei is on the exponential scale as discussed in the previous section. For
c = 1

10 , the solution is precisely our choice of t.

6. Implementation. We now describe the implementation details and user in-
terface of our A2DR solver.

Least squares evaluation. There are three places in A2DR that require the solution
of a least squares problem. First, to evaluate the FDRS projection

\Pi (vk+1/2) = vk+1/2 - A\dagger (Avk+1/2 - b),

we solve
minimize \| Ad - (Avk+1/2 - b)\| 2

with respect to d \in Rn to obtain dk = A\dagger (Avk+1/2 - b). This is accomplished in our
implementation with LSQR, a conjugate gradient (CG) method [37]. Specifically, we
store A as a sparse matrix and call scipy.sparse.linalg.lsqr with warm start at
each iteration. LSQR has low memory requirements and converges extremely fast on
well-conditioned systems, making it ideal for the problems we typically encounter.

Second, to compute the approximate dual variable \lambda k in (2.2), we minimize
\| rkdual\| 2. We use LSQR with a warm start for this as well.

Finally, to solve the regularized least squares problem (3.4), we offer two options:
the first is again LSQR, and the second is numpy.linalg.lstsq, an SVD-based least
squares solver. Our implementation defaults to the second choice. This direct method
is more stable, and since Yk is a tall matrix with very few columns, the SVD is
relatively efficient to compute at each iteration.

D
ow

nl
oa

de
d

11
/0

9/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ANDERSON ACCELERATED DOUGLAS--RACHFORD SPLITTING A3571

Solver interface. The A2DR solver is called with the command

result = a2dr(p list, A list, b)

where p list is the list of proximal operators of fi, A list is the list of Ai, and
b is the vector b. The lists p list and A list must be given in the same order of
i = 1, . . . , N . Each element of p list is a Python function, which takes as input a
vector v and parameter t > 0 and outputs the proximal operator of fi evaluated at
(v, t). For example, if N = 2 with f1(x1) = \| x1\| 22 and f2(x2) = \scrI \bfR n

+
(x2),

p list = [lambda v, t: v/(1.0 + 2*t), lambda v, t:

numpy.maximum(v,0)]

is a valid implementation. The result is a Python dictionary comprised of the

key/value pairs x vals: a list of x
k \star +1/2
1 , . . . , x

k \star +1/2
N from the iteration k \star with the

smallest \| rk \star \| 2, primal and dual: arrays containing the residual norms \| rkprim\| 2 and

\| rkdual\| 2, respectively, at each iteration k, num iters: the total number of iterations,
and solve time: the algorithm runtime.

Arguments A list and b are optional, and when omitted, the solver recognizes
the problem as (1.2) without the constraint Ax = b. All other hyperparameters in
Algorithm 3.1, the initial point v0, as well as the choice of whether to use precondi-
tioning and/or AA, are also optional. By default, both preconditioning and AA are
enabled.

Last but not least, the distributed execution of the iteration steps, including the
evaluation of the proximal operators and componentwise summation and subtraction,
is implemented with the multiprocessing package in Python.

7. Numerical experiments. The following experiments were carried out on a
Linux server with 64 8-core Intel Xeon E5-4620 / 2.20 GHz processors and 503 GB
of RAM. We used the default A2DR solver parameters throughout. In particular,
the AA max-memory Mmax = 10, regularization coefficient \eta = 10 - 8, safeguarding
constants D = 106, \epsilon = 10 - 6, and R = 10, and initial v0 = 0. We set the stopping
tolerances to \epsilon abs = 10 - 6 and \epsilon rel = 10 - 8 and limited the maximum number of
iterations to 1000 unless otherwise specified. All data were generated such that the
problems are feasible and bounded, and hence convergence of the primal and dual
residuals is guaranteed. While it is possible to improve convergence with additional
parameter tuning, we emphasize that A2DR consistently outperforms DRS by a factor
of three or more using the solver defaults. This performance gain is robust across all
problem instances.

For each experiment, we plotted the residual norm \| rk\| 2 at each iteration k for
both A2DR and vanilla DRS. The plots against runtime are very similar since the AA
overhead is less than 10\% of the per-iteration cost, so we refrain from showing them
here. We also compared the final objective value and constraint violations with the
solution obtained by CVXPY [15, 2]. In all but a few problem instances, the results
match within 10 - 4. The results that differ are due to CVXPY's solver failure, which
we discuss in more detail below.

7.1. Nonnegative least squares. The nonnegative least squares problem is

(7.1)
minimize \| Fz - g\| 22
subject to z \geq 0,

D
ow

nl
oa

de
d

11
/0

9/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3572 ANQI FU, JUNZI ZHANG, AND STEPHEN P. BOYD

0 200 400 600 800 1000
10 7

10 5

10 3

10 1

101
Residuals (DRS)
Residuals (A2DR)

Fig. 1. Nonnegative least squares: convergence of residual norms \| rk\| 2.

where z \in Rq is the variable, and F \in Rp\times q and g \in Rp are problem data. This
problem may be rewritten in form (1.2) by letting

f1(x1) = \| Fx1 - g\| 22, f2(x2) = \scrI \bfR n
+
(x2)

for x1, x2 \in Rq and enforcing the constraint x1 = x2 with A1 = I, A2 = - I, and
b = 0. The proximal operators of f1 and f2 are

proxtf1(v) = argminx1

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[F
1\surd
2t
I

\biggr]
x1 -

\biggl[
g
1\surd
2t
v

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 2
2

,

proxtf2(v) = (v)+.

(7.2)

We evaluate proxtf1 using LSQR.
Problem instance. Let p = 10000 and q = 8000. We took F to be a sparse

random matrix with 0.1\% nonzero entries, which are drawn i.i.d. (independently and
identically distributed) from \scrN (0, 1), and g to be a random vector from \scrN (0, I).

The convergence results are shown in Figure 1. A2DR achieves \| rk\| 2 \leq 10 - 6

in under 400 iterations, while DRS flattens out at \| rk\| 2 \approx 10 - 2 until the maximum
number of iterations is reached. Our algorithm's speed is a notable improvement
over other popular solvers. We solved the same problem using an operator splitting
quadratic program (OSQP) solver [50] and SCS, which took, respectively, 349 and
327 seconds to return a solution with tolerance 10 - 6. In contrast, A2DR converged in
only 55 seconds and produced the smallest objective value up to a precision of 10 - 10.

In a second experiment, we set p = 300 and q = 500 and compared the perfor-
mance under adaptive regularization, as described in (3.4), with no regularization and
constant regularization. Figure 2 shows that adaptive regularization results in better
convergence. By 1000 iterations, the residual norm is nearly 10 - 6 in the adaptive
case, while it is roughly 10 - 3 under the other two regularization schemes. Similar
improvement arises in the examples below, but we have not included the plots for the
sake of brevity.

D
ow

nl
oa

de
d

11
/0

9/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ANDERSON ACCELERATED DOUGLAS--RACHFORD SPLITTING A3573

0 200 400 600 800 1000
10 7

10 5

10 3

10 1

101
Residuals (no-reg)
Residuals (constant-reg)
Residuals (ada-reg)

Fig. 2. Nonnegative least squares: A2DR with no, constant, and adaptive regularization.

7.2. Sparse inverse covariance estimation. Suppose that z1, . . . , zp are i.i.d.
N(0,\Sigma) with \Sigma - 1 known to be sparse. We can estimate the covariance matrix \Sigma \in Sq

+

by solving the optimization problem [19, 8]

(7.3) minimize - log det(S) + tr(SQ) + \alpha \| S\| 1,

where S \in Sq (the set of symmetric matrices) is the variable, Q = 1
p

\sum p
l=1 zlz

T
l is the

sample covariance, and \alpha > 0 is a hyperparameter. We then take \^\Sigma = S - 1 as an
estimate of \Sigma . Here \| S\| 1 is the elementwise \ell 1 norm and log det is understood to be
an extended real-valued function, i.e., log det(S) = - \infty whenever S \nsucc 0.

Let xi \in Rq(q+1)/2 be some vectorization of Si \in Sq for i = 1, 2. Problem (7.3)
can be represented in standard form (1.2) by setting

f1(x1) = - log det(S1) + tr(S1Q), f2(x2) = \alpha \| S2\| 1,

and A1 = I, A2 = - I, and b = 0.
The proximal operator of f1 can be computed by combining the affine addition

rule in [39, section 2.2] with [39, section 6.7.5], while the proximal operator of f2 is
simply the shrinkage operator [39, section 6.5.2]. The overall computational cost is
dominated by the eigenvalue decomposition involved in evaluating proxtf1 , which has
complexity O(q3).

Problem instance. We generated S \in Sq
++, the set of symmetric positive definite

matrices, with q = 100 and approximately 10\% nonzero entries. Then we calculated Q
using p = 1000 i.i.d. samples from \scrN (0, S - 1). Let \alpha max = supi \not =j | Qij | be the smallest
\alpha for which the solution of (7.3) is trivially the diagonal matrix (diag(Q) + \alpha I) - 1

[8]. We solved (7.3) using \alpha = 0.001\alpha max, which produced an estimate of S with 7\%
nonzero entries.

Figure 3 depicts the residual norm curves. A2DR achieves \| rk\| 2 \leq 10 - 6 in less
than 400 iterations, while DRS fails to fall below 10 - 4 even at 1000 iterations. The
fluctuations in the A2DR residuals may be smoothed out by increasing the adaptive
regularization coefficient \eta , but this generally leads to slower convergence.

D
ow

nl
oa

de
d

11
/0

9/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3574 ANQI FU, JUNZI ZHANG, AND STEPHEN P. BOYD

0 200 400 600 800 1000
10 7

10 5

10 3

10 1

101
Residuals (DRS)
Residuals (A2DR)

Fig. 3. Sparse inverse covariance estimation: convergence of residual norms \| rk\| 2.

We also ran A2DR on instances with q = 1200 and q = 2000 (vectorizations on
the order of 106) and compared its performance to SCS. In the former case, A2DR
took 1 hour to converge to a tolerance of 10 - 3, while SCS took 11 hours to achieve a
tolerance of 10 - 1 and yielded a much worse objective value. In the latter case, A2DR
converged in 2.6 hours to a tolerance of 10 - 3, while SCS failed immediately with an
out-of-memory error.

7.3. \ell \bfone trend filtering. The \ell 1 trend filtering problem is [23]

(7.4) minimize 1
2\| y - z\| 22 + \alpha \| Dz\| 1,

where z \in Rq is the variable, y \in Rq is the problem data (e.g., time series), \alpha \geq 0 is

a smoothing parameter, and D \in R(q - 2)\times q is the second difference operator

D =

\left[
1 - 2 1 0 . . . 0 0
0 1 - 2 1 . . . 0 0
...

...
. . .

. . .
. . .

...
...

0 0 . . . 1 - 2 1 0
0 0 . . . 0 1 - 2 1

\right] .

Again, we can rewrite the above problem in standard form (1.2) by letting

f1(x1) =
1

2
\| y - x1\| 22, f2(x2) = \alpha \| x2\| 1

with variables x1 \in Rq, x2 \in Rq - 2 and constraint matrices A1 = D,A2 = - I, and
b = 0. The proximal operator of f1 is simply proxtf1(v) = ty+v

t+1 , and the proximal
operator of f2 is the shrinkage operator [39, section 6.5.2]. Since D is tridiagonal, the
projection \Pi (vk+1/2) can be computed in O(q).

Problem instance. We drew y from \scrN (0, I) with q = 106 and solved (7.4) using
\alpha = 0.01\alpha max, where \alpha max = \| y\| \infty is the smallest \alpha for which the solution is trivially
zero.

D
ow

nl
oa

de
d

11
/0

9/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ANDERSON ACCELERATED DOUGLAS--RACHFORD SPLITTING A3575

0 200 400 600 800 1000
10 7

10 5

10 3

10 1

101
Residuals (DRS)
Residuals (A2DR)

Fig. 4. \ell 1 trend filtering: convergence of residual norms \| rk\| 2.

The results are shown in Figure 4. A2DR converges about three times faster than
DRS, reaching a tolerance of 10 - 6 in 360 iterations.

7.4. Single commodity flow optimization. Consider a network with p nodes
and q (directed) arcs described by an incidence matrix B \in Rp\times q with

Bij =

\left\{ 1 arc j enters node i,
 - 1 arc j leaves node i,
0 otherwise.

Suppose a single commodity flows in this network. Let z \in Rq denote the arc flows
and s \in Rp the node sources. We have the flow conservation constraint Bz + s = 0.
This in turn implies 1T s = 0 since BT1 = 0 by construction. The total cost of
traffic on the network is the sum of a flow cost, represented by \psi : Rq \rightarrow R \cup \{ \infty \} ,
and a source cost, represented by \phi : Rp \rightarrow R \cup \{ \infty \} . We assume that these costs
are separable with respect to the flows and sources, i.e., \psi (z) =

\sum q
j=1 \psi j(zj) and

\phi (s) =
\sum p

i=1 \phi i(si). Our goal is to choose flow and source vectors such that the
network cost is minimized:

(7.5)
minimize \psi (z) + \phi (s)
subject to Bz + s = 0

with respect to z and s.
We consider a special case modeled on the DC power flow problem in power

engineering [32]. The flow costs are quadratic with a capacity constraint:

\psi j(zj) =

\Biggl\{
cjz

2
j , | zj | \leq zmax

j ,

+\infty otherwise.

The source costs are determined by the node type, which can fall into one of three
categories:

D
ow

nl
oa

de
d

11
/0

9/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3576 ANQI FU, JUNZI ZHANG, AND STEPHEN P. BOYD

1. Transfer/way-point nodes fixed at si = 0, i.e., \phi i(si) = \scrI \{ 0\} (si).
2. Sink nodes fixed at si = Li (for Li < 0), i.e., \phi i(si) = \scrI \{ Li\} (si).
3. Source nodes with cost

\phi i(si) =

\Biggl\{
dis

2
i , 0 \leq si \leq smax

i ,

+\infty otherwise.

The vectors c \in Rq
+, d \in Rp

+, z
max \in Rq, and smax \in Rp are constants.

This problem may be restated as (1.2) with x1 \in Rq, x2 \in Rp, f1(x1) = \psi (x1),
f2(x2) = \phi (x2), A1 = B,A2 = I, and b = 0. Since costs are separable, the proximal
operators can be calculated elementwise as

(proxtf1(v))j = \Pi [- zmax
j ,zmax

j]

\biggl(
vj

2tcj + 1

\biggr)
, j = 1, . . . , q,

(proxtf2(w))i = \Pi [0,smax
i]

\biggl(
wi

2tdi + 1

\biggr)
, i is a source node.

(7.6)

Here \Pi \scrC denotes the projection onto the set \scrC . Notice that in evaluating the proxi-
mal operator, we implicitly solve a linear system related to L = BBT , which is the
Laplacian associated with the network.

Problem instance. We set p = 4000 and q = 7000 and generated the incidence
matrix as follows. Let \~B \in Rp\times (q - p+1), where each column j is zero except for two
entries \~Bij = 1 and \~Bi\prime j = - 1, whose positions are chosen uniformly at random.

Define \^B \in Rp\times (p - 1) with \^Bii = 1 and \^B(i+1)i = - 1 for i = 1, . . . , p - 1. The final

incidence matrix is B = [\~B \^B].
To construct the source vector, we first drew \u s \in Rp i.i.d. from \scrN (0, I) and

defined

\~si =

\left\{
0, i = 1, . . . , \lfloor p

3\rfloor ,
 - | \u si| , i = \lfloor p

3\rfloor + 1, . . . , \lfloor 2p
3 \rfloor ,\sum \lfloor 2p/3\rfloor

l=\lfloor p/3\rfloor +1 | \u sl| /(p - \lfloor 2p
3 \rfloor), i = \lfloor 2p

3 \rfloor + 1, . . . , p.

We took the first \lfloor p
3\rfloor entries to be the transfer nodes, the second \lfloor 2p

3 \rfloor - \lfloor p
3\rfloor entries to

be the sink nodes with Li = \~si, and the last p - \lfloor 2p
3 \rfloor entries to be the source nodes,

where

smax
i =

\Biggl\{
\~si + 0.001, i = \lfloor 2p

3 \rfloor , . . . , \lfloor 5p
6 \rfloor ,

2(\~si + 0.001), i = \lfloor 5p
6 \rfloor , . . . , p.

To get the flow bounds, we solved B\~x = - \~s for \~x, and let

xmax
j =

\Biggl\{
| \~xj | + 0.001, j = 1, . . . , \lfloor q

2\rfloor ,
2(| \~xj | + 0.001), j = \lfloor q

2\rfloor + 1, . . . , q.

Finally, the entries of c and d were drawn i.i.d. from Uniform(0, 1).
Figure 5 depicts the results of our experiment. A2DR converges to a tolerance

of 10 - 6 in less than 1200 iterations, while DRS remains above 10 - 4 even once the
maximum iterations of 2000 is reached. For this problem, we also attempted to find
a solution using SCS, but the solver failed to converge to its default tolerance of 10 - 5

in 5000 iterations, finishing with a linear constraint violation of \| Bz + s\| 2 > 0.3. In
contrast, A2DR's final result yields \| Bz + s\| 2 \approx 10 - 6.

D
ow

nl
oa

de
d

11
/0

9/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ANDERSON ACCELERATED DOUGLAS--RACHFORD SPLITTING A3577

0 250 500 750 1000 1250 1500 1750 2000
10 7

10 5

10 3

10 1

101
Residuals (DRS)
Residuals (A2DR)

Fig. 5. Single commodity flow: convergence of residual norms \| rk\| 2.

7.5. Optimal control. We are interested in the following finite-horizon optimal
control problem:

(7.7)
minimize

\sum L
l=1 \phi l(zl, ul)

subject to zl+1 = Flzl +Glul + hl, l = 1, . . . , L - 1,
z1 = zinit, zL = zterm

with state variables zl \in Rq, control variables ul \in Rp, and cost functions \phi l :
Rq \times Rp \rightarrow R \cup \{ \infty \} . The data consist of an initial state zinit \in Rq, a terminal
state zterm \in Rq, and dynamics matrices Fl \in Rq\times q, Gl \in Rq\times p, and hl \in Rq for
l = 1, . . . , L - 1. Let z = (z1, . . . , zL) \in RLq and u = (u1, . . . , uL) \in RLp. If we define

\~F =

\left[

I 0 . . . 0 0
 - F1 I . . . 0 0
0 - F2 . . . 0 0
...

...
. . .

...
...

0 0 . . . - FL - 1 I
0 0 . . . 0 I

\right]
, \~G =

\left[

0 0 . . . 0 0
 - G1 0 . . . 0 0
0 - G2 . . . 0 0
...

...
. . .

...
...

0 0 . . . - GL - 1 0
0 0 . . . 0 0

\right]
,

and \~h = (zinit, h1, . . . , hL - 1, zterm), then the constraints can be written compactly as
\~Fz + \~Gu = \~h.

We focus on a time-invariant linear quadratic version of (7.7) with Fl = F,Gl =
G, hl = 0, and

\phi l(zl, ul) = \| zl\| 22 + \| ul\| 22 + \scrI \{ u : \| u\| \infty \leq 1\} (ul), l = 1, . . . , L.

This problem is equivalent to (1.2) with x1 \in RLq, x2 \in RLp,

f1(x1) = \| x1\| 22, f2(x2) = \| x2\| 22 + \scrI \{ u : \| u\| \infty \leq 1\} (x2),

and constraint matrices A1 = \~F ,A2 = \~G, and b = \~h. The proximal operators of fi
have closed forms proxtf1(v) =

v
2t+1 and proxtf2(w) = \Pi [- 1,1]

\bigl(
w

2t+1

\bigr)
.

D
ow

nl
oa

de
d

11
/0

9/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3578 ANQI FU, JUNZI ZHANG, AND STEPHEN P. BOYD

0 100 200 300 400 500
10 7

10 5

10 3

10 1

101
Residuals (DRS)
Residuals (A2DR)

Fig. 6. Optimal control: convergence of residual norms \| rk\| 2.

Problem instance. We set p = 80, q = 150, and L = 20 and drew the entries of
F,G, h, and zinit i.i.d. from \scrN (0, 1). The matrix F was scaled by its spectral radius so
its largest eigenvalue has magnitude one. To determine zterm, we drew \^ul \in Rp i.i.d.
from \scrN (0, I), normalized to get \~ul = \^ul/\| \^ul\| \infty , and computed \~zl+1 = F \~zl +G\~ul + h
for l = 1, . . . , L - 1 starting from \~z1 = zinit. We then chose the terminal state to be
zterm = \~zL.

Figure 6 depicts the residual curves for problem (7.7). DRS requires over five
times as many iterations to converge as A2DR, which reaches a tolerance of 10 - 6 in
just under 100 iterations. For comparison, we solved the same problem in CVXPY
with OSQP and SCS and found that neither solver converged to its default tolerance
(10 - 4 and 10 - 5, respectively) by its maximum number of iterations. Indeed, OSQP
returned a solver error, while SCS terminated with a linear constraint violation of
\| \~Fz + \~Gu - \~h\| 2 > 0.9. A2DR's final constraint violation is only about 10 - 6.

7.6. Coupled quadratic program. We consider a quadratic program in which
L variable blocks are coupled through a set of s linear constraints, represented as

(7.8)
minimize

\sum L
l=1 z

T
l Qlzl + cTl zl

subject to Flzl \leq dl, l = 1, . . . , L,\sum L
l=1Glzl = h

with respect to z = (z1, . . . , zL), where zl \in Rql , Ql \in Sql
+ , cl \in Rql , Fl \in Rpl\times ql , dl \in

Rpl , Gl \in Rs\times ql , and h \in Rs for l = 1, . . . , L.
We can rewrite (7.8) in standard form with N = L, x = z,

fi(xi) = xTi Qixi + cTi xi + \scrI \{ x :Fix\leq di\} (xi), i = 1, . . . , L,

A = [G1 \cdot \cdot \cdot GL], and b = h. The proximal operator proxtfi(vi) is evaluated by
solving

(7.9)
minimize xTi

\bigl(
Qi +

1
2tI

\bigr)
xi + (ci - 1

t vi)
Txi

subject to Fixi \leq di

with respect to xi \in Rqi .

D
ow

nl
oa

de
d

11
/0

9/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ANDERSON ACCELERATED DOUGLAS--RACHFORD SPLITTING A3579

0 100 200 300 400 500 600 700
10 7

10 5

10 3

10 1

101
Residuals (DRS)
Residuals (A2DR)

Fig. 7. Coupled quadratic program: convergence of residual norms \| rk\| 2.

Problem instance. Let L = 8, s = 50, ql = 300, and pl = 200 for l = 1, . . . , L. We
generated the entries of cl \in Rql , Fl \in Rpl\times ql , Gl \in Rs\times ql , \~zl \in Rql , and Hl \in Rql\times ql

i.i.d. from \scrN (0, 1). We then formed dl = Fl\~zl + 0.1, Ql = HT
l Hl, and h =

\sum L
l=1Gl\~zl.

To evaluate the proximal operators, we constructed problem (7.9) in CVXPY and
solved it using OSQP with the default tolerance.

The results of our experiment are shown in Figure 7. A2DR produces an over
ten-fold speedup, converging to the desired tolerance of 10 - 6 in only 60 iterations.

7.7. Multitask regularized logistic regression. Consider the following multi-
task regression problem:

(7.10) minimize \phi (W\theta , Y) + r(\theta)

with variable \theta = [\theta 1 \cdot \cdot \cdot \theta L] \in Rs\times L. Here \phi : Rp\times L\times Rp\times L \rightarrow R is the loss function,
r : Rs\times L \rightarrow R is the regularizer, W \in Rp\times s is the feature matrix shared across the L
tasks, and Y = [y1 \cdot \cdot \cdot yL] \in Rp\times L contains the p class labels for each task l = 1, . . . , L.

We focus on the binary classification problem, so that all entries of Y are \pm 1.
Accordingly, we take our loss function to be the logistic loss summed over samples
and tasks,

\phi (Z, Y) =

L\sum
l=1

p\sum
i=1

log (1 + exp(- YilZil)) ,

where Z \in Rp\times L, and our regularizer to be a linear combination of the group lasso
penalty [20] and the nuclear norm,

r(\theta) = \alpha \| \theta \| 2,1 + \beta \| \theta \| \ast ,

where \| \theta \| 2,1 =
\sum L

l=1 \| \theta l\| 2 and \alpha > 0, \beta > 0 are regularization parameters.
Problem (7.10) can be converted to standard form (1.2) by letting

f1(Z) = \phi (Z, Y), f2(\theta) = \alpha \| \theta \| 2,1, f3(\~\theta) = \beta \| \~\theta \| \ast ,

D
ow

nl
oa

de
d

11
/0

9/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3580 ANQI FU, JUNZI ZHANG, AND STEPHEN P. BOYD

0 200 400 600 800 1000
10 7

10 5

10 3

10 1

101
Residuals (DRS)
Residuals (A2DR)

Fig. 8. Multitask regularized logistic regression: convergence of residual norms \| rk\| 2.

A =

\biggl[
I - W 0
0 I - I

\biggr]
, x =

\left[Z
\theta
\~\theta

\right] , b = 0.

The proximal operator of f1 can be evaluated efficiently via Newton type methods
applied to each component in parallel [14], while the proximal operators of the regu-
larization terms have closed-form expressions [39, sections 6.5.4 and 6.7.3].

Problem instance. We let p = 300, s = 500, L = 10, and \alpha = \beta = 0.1. The
entries of W \in Rp\times s and \theta \star \in Rs\times L were drawn i.i.d. from \scrN (0, 1). We calculated
Y = sign(W\theta \star), where the signum function is applied elementwise with the con-
vention sign(0) = - 1. To evaluate proxtf1 , we used the Newton-CG method from
scipy.optimize.minimize, warm starting each iteration with the output from the
previous iteration. (Further performance improvements may be achieved by imple-
menting Newton's method with unit step size and initial point zero for each component
in parallel [14].)

Figure 8 shows the residual plots for A2DR and DRS. The A2DR curve exhibits
a steep drop in the first few steps and continues falling until convergence at 500
iterations. In contrast, the DRS residual norms never make it below a tolerance of
10 - 2.

8. Conclusions. We have presented an algorithm for solving linearly constrained
convex optimization problems, where the objective function is only accessible via its
proximal operator. Our algorithm is an application of type-II Anderson accelera-
tion to Douglas--Rachford splitting (A2DR). Under relatively mild conditions, we
prove that A2DR either converges to a global optimum or provides a certificate
of infeasibility/unboundedness. Moreover, when the objective is block separable,
its steps partially decouple so that they may be computed in parallel, enabling
fast distributed implementations. We provide one such Python implementation at
https://github.com/cvxgrp/a2dr. Using only the default parameters, we show that
our solver achieves rapid convergence on a wide range of problems, making it a robust
choice for general large-scale convex optimization.

D
ow

nl
oa

de
d

11
/0

9/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://github.com/cvxgrp/a2dr

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ANDERSON ACCELERATED DOUGLAS--RACHFORD SPLITTING A3581

In the future, we plan to release a user-friendly interface, which automatically
reduces a problem to the standard form (1.2) input of the A2DR solver, similar
to the Epsilon system [58]. This will allow us to integrate A2DR into a high-level
domain specific language for convex optimization. We also intend to expand the
library of proximal operators. As problems grow larger, we aim to support more
parallel computing architectures, allowing users to leverage GPU acceleration and
high-performance clusters for distributed optimization.

Acknowledgment. The authors would like to thank Brendan O'Donoghue for
his advice on preconditioning and his inspirational work developing solvers with An-
derson acceleration, pioneered by SCS 2.0.

REFERENCES

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, U.S. National Bureau of Standards, Washington, DC,
1964.

[2] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd, A rewriting system for convex
optimization problems, J. Control Decis., 5 (2018), pp. 42--60.

[3] A. C. Aitken, On Bernoulli's numerical solution of algebraic equations, Proc. Roy. Soc. Ed-
inburgh, 46 (1927), pp. 289--305.

[4] A. Ali, E. Wong, and J. Z. Kolter, A semismooth Newton method for fast, generic convex
programming, in Proceedings of the International Conference on Machine Learning, 2017,
pp. 70--79.

[5] D. G. Anderson, Iterative procedures for nonlinear integral equations, J. Assoc. Comput.
Mach., 12 (1965), pp. 547--560.

[6] N. S. Aybat, Z. Wang, T. Lin, and S. Ma, Distributed linearized alternating direction method
of multipliers for composite convex consensus optimization, IEEE Trans. Automat. Con-
trol, 63 (2018), pp. 5--20.

[7] F. Bach, Acceleration without pain, https://francisbach.com/acceleration-without-pain, Feb.
4, 2020.

[8] O. Banerjee, L. E. Ghaoui, and A. d'Aspremont, Model selection through sparse maximum
likelihood estimation for multivariate Gaussian or binary data, J. Mach. Learn. Res., 9
(2008), pp. 485--516.

[9] P. Bansode, K. C. Kosaraju, S. R. Wagh, R. Pasumarthy, and N. M. Singh, Accelerated
distributed primal-dual dynamics using adaptive synchronization, IEEE Access, 7 (2019),
pp. 120424--120440.

[10] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and
statistical learning via the alternating direction method of multipliers, Found. Trends Mach.
Learn., 3 (2011), pp. 1--122.

[11] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cam-
bridge, 2004.

[12] C. Brezinski, M. Redivo-Zaglia, and Y. Saad, Shanks sequence transformations and
Anderson acceleration, SIAM Rev., 60 (2018), pp. 646--669, https://doi.org/10.1137/
17M1120725.

[13] X. Chen and C. T. Kelley, Convergence of the EDIIS algorithm for nonlinear equations,
SIAM J. Sci. Comput., 41 (2019), pp. A365--A379, https://doi.org/10.1137/18M1171084.

[14] A. Defazio, A simple practical accelerated method for finite sums, in Proceedings of the 30th
International Conference on Neural Information Processing Systems, 2016, pp. 676--684.

[15] S. Diamond and S. Boyd, CVXPY: A Python-embedded modeling language for convex opti-
mization, J. Mach. Learn. Res., 17 (2016), pp. 1--5.

[16] C. Evans, S. Pollock, L. G. Rebholz, and M. Xiao, A Proof that Anderson Acceleration
Increases the Convergence Rate in Linearly Converging Fixed Point Methods (But Not in
Quadratically Converging Ones), preprint, https://arxiv.org/abs/1810.08455, 2018.

[17] H. Fang and Y. Saad, Two classes of multisecant methods for nonlinear acceleration, Numer.
Linear Algebra Appl., 16 (2009), pp. 197--221.

[18] C. Fougner and S. Boyd, Parameter selection and preconditioning for a graph form solver,
in Emerging Applications of Control and Systems Theory, R. Tempo, S. Yurkovich, and
P. Misra, eds., Lect. Notes Control Inf. Sci. Proc., Springer, Cham, pp. 41--61.

D
ow

nl
oa

de
d

11
/0

9/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://francisbach.com/acceleration-without-pain
https://doi.org/10.1137/17M1120725
https://doi.org/10.1137/17M1120725
https://doi.org/10.1137/18M1171084
https://arxiv.org/abs/1810.08455

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3582 ANQI FU, JUNZI ZHANG, AND STEPHEN P. BOYD

[19] J. Friedman, T. Hastie, and R. Tibshirani, Sparse inverse covariance estimation with the
graphical lasso, Biostatistics, 9 (2008), pp. 432--441.

[20] J. Friedman, T. Hastie, and R. Tibshirani, A Note on the Group Lasso and a Sparse Group
Lasso, preprint, https://arxiv.org/abs/1001.0736, 2010.

[21] B. S. He, H. Yang, and S. L. Wang, Alternating direction method with self-adaptive penalty
parameters for monotone variational inequalities, J. Optim. Theory Appl., 106 (2000),
pp. 337--356.

[22] H. He and D. Han, A distributed Douglas-Rachford splitting method for multi-block convex
minimization problems, Adv. Comput. Math., 42 (2016), pp. 27--53.

[23] S.-J. Kim, K. Koh, S. Boyd, and D. Gorinevsky, \ell 1 trend filtering, SIAM Rev., 51 (2009),
pp. 339--360, https://doi.org/10.1137/070690274.

[24] K. N. Kudin and G. E. Scuseria, A black-box self-consistent field convergence algorithm: One
step closer, J. Chem. Phys., 116 (2002), pp. 8255--8261.

[25] Z. Li and J. Li, An Anderson-Chebyshev Mixing Method for Nonlinear Optimization, preprint,
https://arxiv.org/abs/1809.02341, 2018.

[26] Y. Liu, E. K. Ryu, and W. Yin, A new use of Douglas-Rachford splitting for identifying infea-
sible, unbounded, and pathological conic programs, Math. Program., 177 (2019), pp. 225--
253.

[27] J. Loffeld and C. S. Woodward, Considerations on the implementation and use of Anderson
acceleration on distributed memory and GPU-based parallel computers, in Advances in the
Mathematical Sciences, Springer, Cham, 2016, pp. 417--436.

[28] A. J. Macleod, Acceleration of vector sequences by multi-dimensional \Delta 2 methods, Commun.
Appl. Numer. Methods, 2 (1986), pp. 385--392.

[29] V. V. Mai and M. Johansson, Nonlinear acceleration of constrained optimization algorithms,
in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, 2019, pp. 4903--4907.

[30] M. Me\v sina, Convergence acceleration for the iterative solution of the equations X = AX + f ,
Comput. Methods Appl. Mech. Eng., 10 (1977), pp. 165--173.

[31] A. Milzarek, X. Xiao, S. Cen, Z. Wen, and M. Ulbrich, A stochastic semismooth Newton
method for nonsmooth nonconvex optimization, SIAM J. Optim., 29 (2019), pp. 2916--2948,
https://doi.org/10.1137/18M1181249.

[32] N. Moehle, E. Busseti, S. Boyd, and M. Wytock, Dynamic energy management, in
Large Scale Optimization in Supply Chains and Smart Manufacturing, J. M. Vel\'asquez-
Berm\'udez, M. Khakifirooz, and M. Fathi, eds., Springer Optim. Appl. 149, Springer, Cham,
2019, pp. 69--126.

[33] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Kluwer Aca-
demic Publishers, Boston, 2004.

[34] J. Nocedal and S. Wright, Numerical Optimization, Springer, New York, 2006.
[35] B. O'Donoghue, E. Chu, N. Parikh, and S. Boyd, Conic optimization via operator splitting

and homogeneous self-dual embedding, J. Optim. Theory Appl., 169 (2016), pp. 1042--1068.
[36] B. O'Donoghue, E. Chu, N. Parikh, and S. Boyd, SCS: Splitting conic solver, version 2.1.2.

https://github.com/cvxgrp/scs, November 2019.
[37] C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse

least squares, ACM Trans. Math. Softw., 8 (1982), pp. 43--71.
[38] N. Parikh and S. Boyd, Block splitting for distributed optimization, Math. Program. Comput.,

6 (2014), pp. 77--102.
[39] N. Parikh and S. Boyd, Proximal algorithms, Found. Trends Optim., 1 (2014), pp. 127--239.
[40] Y. Peng, B. Deng, J. Zhang, F. Geng, W. Qin, and L. Liu, Anderson acceleration for

geometry optimization and physics simulation, ACM Trans. Graph., 37 (2018), 42.
[41] S. Pollock and L. Rebholz, Anderson Acceleration for Contractive and Noncontractive Op-

erators, preprint, https://arxiv.org/abs/1909.04638, 2019.
[42] T. Rohwedder and R. Schneider, An analysis for the DIIS acceleration method used in

quantum chemistry calculations, J. Math. Chem., 49 (2011), pp. 1889--1914.
[43] E. K. Ryu and S. Boyd, A primer on monotone operator methods, Appl. Comput. Math, 15

(2016), pp. 3--43.
[44] E. K. Ryu, Y. Liu, and W. Yin, Douglas-Rachford splitting and ADMM for pathological

convex optimization, Comput. Optim. Appl., 74 (2019), pp. 747--778.
[45] D. Scieur, F. Bach, and A. d'Aspremont, Nonlinear acceleration of stochastic algorithms, in

Advances in Neural Information Processing Systems, Curran Associates, Red Hook, NY,
2017, pp. 3982--3991.

[46] D. Scieur, A. d'Aspremont, and F. Bach, Regularized nonlinear acceleration, in Proceedings
of the 30th International Conference on Neural Information Processing Systems, 2016,

D
ow

nl
oa

de
d

11
/0

9/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://arxiv.org/abs/1001.0736
https://doi.org/10.1137/070690274
https://arxiv.org/abs/1809.02341
https://doi.org/10.1137/18M1181249
https://github.com/cvxgrp/scs
https://arxiv.org/abs/1909.04638

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ANDERSON ACCELERATED DOUGLAS--RACHFORD SPLITTING A3583

pp. 712--720.
[47] D. Shanks, Non-linear transformations of divergent and slowly convergent sequences, J. Math.

and Phys., 34 (1955), pp. 1--42.
[48] D. A. Smith, W. F. Ford, and A. Sidi, Extrapolation methods for vector sequences, SIAM

Rev., 29 (1987), pp. 199--233, https://doi.org/10.1137/1029042.
[49] P. Sopasakis, K. Menounou, and P. Patrinos, SuperSCS: Fast and accurate large-scale conic

optimization, in Proceedings of the European Control Conference, 2019, pp. 1500--1505.
[50] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, OSQP: An operator

splitting solver for quadratic programs, in Proceedings of the UKACC International Con-
ference on Control, 2018, p. 339.

[51] A. Themelis and P. Patrinos, SuperMann: A superlinearly convergent algorithm for finding
fixed points of nonexpansive operators, IEEE Trans. Automat. Control, 64 (2019), pp. 4875--
4890.

[52] A. Toth, J. A. Ellis, T. Evans, S. Hamilton, C. T. Kelley, R. Pawlowski, and
S. Slattery, Local improvement results for Anderson acceleration with inaccurate func-
tion evaluations, SIAM J. Sci. Comput., 39 (2017), pp. S47--S65, https://doi.org/10.1137/
16M1080677.

[53] A. Toth and C. T. Kelley, Convergence analysis for Anderson acceleration, SIAM J. Numer.
Anal., 53 (2015), pp. 805--819, https://doi.org/10.1137/130919398.

[54] J. Tuck, S. Barratt, and S. Boyd, A Distributed Method for Fitting Laplacian Regularized
Stratified Models, preprint, https://arxiv.org/abs/1904.12017, 2019.

[55] H. F. Walker and P. Ni, Anderson acceleration for fixed-point iterations, SIAM J. Numer.
Anal., 49 (2011), pp. 1715--1735, https://doi.org/10.1137/10078356X.

[56] E. Wei and A. Ozdaglar, Distributed alternating direction method of multipliers, in Proceed-
ings of the IEEE Conference on Decision and Control, 2012, pp. 5445--5450.

[57] P. Wynn, On a device for computing the em(Sn) transformation, Math. Comp., 10 (1956),
pp. 91--96.

[58] M. Wytock, P.-W. Wang, and J. Z. Kolter, Convex Programming with Fast Proximal and
Linear Operators, preprint, https://arxiv.org/abs/1511.04815, 2015.

[59] X. Xiao, Y. Li, Z. Wen, and L. Zhang, A regularized semi-smooth Newton method with
projection steps for composite convex programs, J. Sci. Comput., 76 (2018), pp. 364--389.

[60] Z. Xu, G. Taylor, H. Li, M. Figueiredo, X. Yuan, and T. Goldstein, Adaptive consensus
ADMM for distributed optimization, in Proceedings of the International Conference on
Machine Learning, 2017, pp. 3841--3850.

[61] J. Zhang, B. O'Donoghue, and S. Boyd, Globally Convergent type-I Anderson Acceleration
for Non-smooth Fixed-Point Iterations, preprint, https://arxiv.org/abs/1808.03971, 2018.

[62] J. Zhang, Y. Peng, W. Ouyang, and B. Deng, Accelerating ADMM for efficient simulation
and optimization, ACM Trans. Graph., 38 (2019), 163.

[63] J. Zhang, C. A. Uribe, A. Mokhtari, and A. Jadbabaie, Achieving acceleration in distrib-
uted optimization via direct discretization of the heavy-ball ODE, in Proceedings of the
American Control Conference, 2019, pp. 3408--3413.

[64] Y. Zhang and M. M. Zavlanos, A consensus-based distributed augmented Lagrangian method,
in Proceedings of the IEEE Conference on Decision and Control, 2018, pp. 1763--1768.

D
ow

nl
oa

de
d

11
/0

9/
20

 to
 1

32
.1

74
.2

51
.2

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/1029042
https://doi.org/10.1137/16M1080677
https://doi.org/10.1137/16M1080677
https://doi.org/10.1137/130919398
https://arxiv.org/abs/1904.12017
https://doi.org/10.1137/10078356X
https://arxiv.org/abs/1511.04815
https://arxiv.org/abs/1808.03971

	Introduction
	Problem setting
	Related work
	Contribution

	Douglas–Rachford splitting
	Anderson accelerated DRS
	Anderson acceleration
	Main algorithm

	Global convergence
	Infeasibility and unboundedness
	Convergence results
	Solvable case
	Pathological case

	Presolve, equilibration, and parameter selection
	Implementation
	Numerical experiments
	Nonnegative least squares
	Sparse inverse covariance estimation
	1 trend filtering
	Single commodity flow optimization
	Optimal control
	Coupled quadratic program
	Multitask regularized logistic regression

	Conclusions
	References

