% Optimal doping profile optimization via GP % (a figure is generated). % % This is an example taken directly from the paper: % % Optimal Doping Profiles via Geometric Programming, % IEEE Transactions on Electron Devices, December, 2005, % by S. Joshi, S. Boyd, and R. Dutton. % (see pages 3-8 for problem details) % % Determines the optimal doping profile that minimizes base transit % time in a (homojunction) bipolar junction transistor. % This problem can be posed as a GP: % % minimize tau_B % s.t. Nmin <= v <= Nmax % y_(i+1) + v_i^const1 <= y_i % w_(i+1) + v_i^const2 <= w_i, etc... % % where variables are v_i, y_i, and w_i. % % Almir Mutapcic and Siddharth Joshi 10/05 clear all; % discretization size M = 100; % M = 1000; % takes a few minutes to process constraints % problem constants g1 = 0.42; g2 = 0.69; Nmax = 5*10^18; Nmin = 5*10^16; Nref = 10^17; Dn0 = 20.72; ni0= 1.4*(10^10); WB = 10^(-5); C = WB^2/((M^2)*(Nref^g1)*Dn0); % exponent powers pwi = g2 -1; pwj = 1+g1-g2; % optimization variables gpvar v(M) y(M) w(M) % problem constraints constr = [ Nmin*ones(M,1) <= v; v <= Nmax*ones(M,1); ]; for i = 1:M-1 if( mod(i,100) == 0 ), disp(i), end; constr(end+1) = y(i+1) + v(i)^pwj <= y(i); constr(end+1) = w(i+1) + y(i)*v(i)^pwi <= w(i); end constr(end+1) = y(M) == v(M)^pwj; constr(end+1) = w(M) == y(M)*v(M)^pwi; % objective function is the base transmit time tau_B = C*w(1); % solve the optimal doping profile problem [opt_val sol status] = gpsolve(tau_B, constr); assign(sol); % plot the basic optimal doping profile nbw = 0:1/M:1-1/M; semilogy(nbw,v,'LineWidth',2); axis([0 1 1e16 1e19]); xlabel('base'); ylabel('doping'); text(0,Nmin,'Nmin ', 'HorizontalAlignment','right'); text(0,Nmax,'Nmax ', 'HorizontalAlignment','right');