Lecture 8
 Transfer functions and convolution

- convolution \& transfer functions
- properties
- examples
- interpretation of convolution
- representation of linear time-invariant systems

Convolution systems

convolution system with input $u(u(t)=0, t<0)$ and output y :

$$
y(t)=\int_{0}^{t} h(\tau) u(t-\tau) d \tau=\int_{0}^{t} h(t-\tau) u(\tau) d \tau
$$

abbreviated: $y=h * u$
in the frequency domain: $Y(s)=H(s) U(s)$

- H is called the transfer function (TF) of the system
- h is called the impulse response of the system
block diagram notation(s):

Properties

1. convolution systems are linear: for all signals u_{1}, u_{2} and all $\alpha, \beta \in \mathbf{R}$,

$$
h *\left(\alpha u_{1}+\beta u_{2}\right)=\alpha\left(h * u_{1}\right)+\beta\left(h * u_{2}\right)
$$

2. convolution systems are causal: the output $y(t)$ at time t depends only on past inputs $u(\tau), 0 \leq \tau \leq t$
3. convolution systems are time-invariant: if we shift the input signal u over $T>0$, i.e., apply the input

$$
\widetilde{u}(t)= \begin{cases}0 & t<T \\ u(t-T) & t \geq 0\end{cases}
$$

to the system, the output is

$$
\widetilde{y}(t)= \begin{cases}0 & t<T \\ y(t-T) & t \geq 0\end{cases}
$$

in other words: convolution systems commute with delay
4. composition of convolution systems corresponds to

- multiplication of transfer functions
- convolution of impulse responses

ramifications:
- can manipulate block diagrams with transfer functions as if they were simple gains
- convolution systems commute with each other

Example: feedback connection

in time domain, we have complicated integral equation

$$
y(t)=\int_{0}^{t} g(t-\tau)(u(\tau)-y(\tau)) d \tau
$$

which is not easy to understand or solve . . . in frequency domain, we have $Y=G(U-Y)$; solve for Y to get

$$
Y(s)=H(s) U(s), \quad H(s)=\frac{G(s)}{1+G(s)}
$$

(as if G were a simple scaling system!)

General examples

first order LCCODE: $y^{\prime}+y=u, y(0)=0$
take Laplace transform to get

$$
Y(s)=\frac{1}{s+1} U(s)
$$

transfer function is $1 /(s+1)$; impulse response is e^{-t}
integrator: $y(t)=\int_{0}^{t} u(\tau) d \tau$
transfer function is $1 / s$; impulse response is 1
delay: with $T \geq 0$,

$$
y(t)= \begin{cases}0 & t<T \\ u(t-T) & t \geq T\end{cases}
$$

impulse response is $\delta(t-T)$; transfer function is $e^{-s T}$

Vehicle suspension system

(simple model of) vehicle suspension system:

- input u is road height (along vehicle path); output y is vehicle height
- vehicle dynamics: $m y^{\prime \prime}+b y^{\prime}+k y=b u^{\prime}+k u$
assuming $y(0)=0, y^{\prime}(0)=0,\left(\right.$ and $\left.u\left(0_{-}\right)=0\right)$,

$$
\left(m s^{2}+b s+k\right) Y=(b s+k) U
$$

TF from road height to vehicle height is $H(s)=\frac{b s+k}{m s^{2}+b s+k}$

DC motor

$$
J \theta^{\prime \prime}+b \theta^{\prime}=k i
$$

(J is rotational inertia of shaft \& load; b is mechanical resistance of shaft \& load; k is motor constant)
assuming $\theta(0)=\theta^{\prime}(0)=0$,

$$
J s^{2} \Theta(s)+b s \Theta(s)=k I(s), \quad \Theta(s)=\frac{k}{J s^{2}+b s} I(s)
$$

i.e., transfer function H from i to θ is

$$
H(s)=\frac{k}{J s^{2}+b s}
$$

Circuit examples

consider a circuit with linear elements, zero initial conditions for inductors and capacitors,

- one independent source with value u
- y is a voltage or current somewhere in the circuit then we have $Y(s)=H(s) U(s)$
example: RC circuit

$$
R C y^{\prime}(t)+y(t)=u(t), \quad Y(s)=\frac{1}{1+s R C} U(s)
$$

impulse response is $\mathcal{L}^{-1}\left(\frac{1}{1+s R C}\right)=\frac{1}{R C} e^{-t / R C}$
to find H : write circuit equations in frequency domain:

- resistor: $v(t)=R i(t)$ becomes $V(s)=R I(s)$
- capacitor: $i(t)=C v^{\prime}(t)$ becomes $I(s)=s C V(s)$
- inductor: $v(t)=L i^{\prime}(t)$ becomes $V(s)=s L I(s)$
in frequency domain, circuit equations become algebraic equations

let's find TF from $v_{\text {in }}$ to $v_{\text {out }}$ (assuming zero initial voltages for capacitors)
- by voltage divider rule, $V_{+}=V_{\mathrm{in}} \frac{1}{1+1 / s}=V_{\mathrm{in}} \frac{s}{s+1}$
- current in lefthand resistor is (using $V_{-}=V_{+}$):

$$
I=\frac{V_{\mathrm{in}}-V_{-}}{1 \Omega}=\left(1-\frac{s}{s+1}\right) V_{\mathrm{in}}=\frac{1}{s+1} V_{\mathrm{in}}
$$

- I flows through $1 \mathrm{~F} \| 1 \Omega$, yielding voltage

$$
V_{\mathrm{in}} \frac{1}{s+1} \frac{(1)(1 / s)}{1+1 / s}=V_{\mathrm{in}} \frac{1}{(s+1)^{2}}
$$

- finally we have $V_{\text {out }}=V_{-}-V_{\text {in }} \frac{1}{(s+1)^{2}}=V_{\text {in }} \frac{s^{2}+s-1}{(s+1)^{2}}$
so transfer function is

$$
H(s)=\frac{s^{2}+s-1}{(s+1)^{2}}=1-\frac{1}{s+1}-\frac{1}{(s+1)^{2}}
$$

impulse response is

$$
h(t)=\mathcal{L}^{-1}(H)=\delta(t)-e^{-t}-t e^{-t}
$$

we have

$$
v_{\mathrm{out}}(t)=v_{\mathrm{in}}(t)-\int_{0}^{t}(1+\tau) e^{-\tau} v_{\mathrm{in}}(t-\tau) d \tau
$$

Interpretation of convolution

$$
y(t)=\int_{0}^{t} h(\tau) u(t-\tau) d \tau
$$

- $y(t)$ is current output; $u(t-\tau)$ is what the input was τ seconds ago
- $h(\tau)$ shows how much current output depends on what input was τ seconds ago
for example,
- $h(21)$ big means current output depends quite a bit on what input was, 21 sec ago
- if $h(\tau)$ is small for $\tau>3$, then $y(t)$ depends mostly on what the input has been over the last 3 seconds
- $h(\tau) \rightarrow 0$ as $\tau \rightarrow \infty$ means $y(t)$ depends less and less on remote past input

Graphical interpretation

$$
y(t)=\int_{0}^{t} h(t-\tau) u(\tau) d \tau
$$

to find $y(t)$:

- flip impulse response $h(\tau)$ backwards in time (yields $h(-\tau)$)
- drag to the right over t (yields $h(t-\tau)$)
- multiply pointwise by u (yields $u(\tau) h(t-\tau)$)
- integrate over τ to get $y(t)$

Example

communication channel, e.g., twisted pair cable

impulse response:

a delay ≈ 1, plus smoothing
simple signalling at $0.5 \mathrm{bit} / \mathrm{sec}$; Boolean signal $0,1,0,1,1, \ldots$

output is delayed, smoothed version of input
1's \& 0's easily distinguished in y
simple signalling at $4 \mathrm{bit} / \mathrm{sec}$; same Boolean signal

smoothing makes 1's \& 0 's very hard to distinguish in y

Linear time-invariant systems

consider a system \mathcal{A} which is

- linear
- time-invariant (commutes with delays)
- causal $(y(t)$ depends only on $u(\tau)$ for $0 \leq \tau \leq t)$
called a linear time-invariant (LTI) causal system
we have seen that any convolution system is LTI and causal; the converse is also true: any LTI causal system can be represented by a convolution system
convolution/transfer function representation gives universal description for LTI causal systems
(precise statement \& proof is not simple . . .)

