Lecture 8 Transfer functions and convolution

- convolution & transfer functions
- properties
- examples
- interpretation of convolution
- representation of linear time-invariant systems

Convolution systems

convolution system with input u (u(t) = 0, t < 0) and output y:

$$y(t) = \int_0^t h(\tau)u(t-\tau) \, d\tau = \int_0^t h(t-\tau)u(\tau) \, d\tau$$

abbreviated: y = h * u

in the frequency domain: Y(s) = H(s)U(s)

- H is called the *transfer function* (TF) of the system
- h is called the *impulse response* of the system

block diagram notation(s):

Properties

1. convolution systems are **linear**: for all signals u_1 , u_2 and all α , $\beta \in \mathbf{R}$,

$$h * (\alpha u_1 + \beta u_2) = \alpha (h * u_1) + \beta (h * u_2)$$

2. convolution systems are **causal**: the output y(t) at time t depends only on past inputs $u(\tau)$, $0 \le \tau \le t$

3. convolution systems are **time-invariant**: if we shift the input signal u over T > 0, *i.e.*, apply the input

$$\widetilde{u}(t) = \begin{cases} 0 & t < T \\ u(t-T) & t \ge 0 \end{cases}$$

to the system, the output is

$$\widetilde{y}(t) = \begin{cases} 0 & t < T \\ y(t-T) & t \ge 0 \end{cases}$$

in other words: convolution systems commute with delay

- 4. composition of convolution systems corresponds to
- multiplication of transfer functions
- convolution of impulse responses

ramifications:

- can manipulate block diagrams with transfer functions as if they were simple gains
- convolution systems commute with each other

Example: feedback connection

in time domain, we have complicated integral equation

$$y(t) = \int_0^t g(t-\tau)(u(\tau) - y(\tau)) d\tau$$

which is not easy to understand or solve . . . in **frequency domain**, we have Y = G(U - Y); solve for Y to get

$$Y(s) = H(s)U(s), \quad H(s) = \frac{G(s)}{1 + G(s)}$$

(as if G were a simple scaling system!)

General examples

first order LCCODE: y' + y = u, y(0) = 0

take Laplace transform to get

$$Y(s) = \frac{1}{s+1}U(s)$$

transfer function is 1/(s+1); impulse response is e^{-t}

integrator:
$$y(t) = \int_0^t u(\tau) \ d\tau$$

transfer function is 1/s; impulse response is 1

delay: with $T \ge 0$,

$$y(t) = \begin{cases} 0 & t < T \\ u(t-T) & t \ge T \end{cases}$$

impulse response is $\delta(t-T)$; transfer function is e^{-sT}

Vehicle suspension system

(simple model of) vehicle suspension system:

- input u is road height (along vehicle path); output y is vehicle height
- vehicle dynamics: my'' + by' + ky = bu' + ku

assuming y(0) = 0, y'(0) = 0, (and $u(0_{-}) = 0$),

$$(ms^2 + bs + k)Y = (bs + k)U$$

TF from road height to vehicle height is $H(s) = \frac{bs+k}{ms^2+bs+k}$

DC motor

$$J\theta'' + b\theta' = ki$$

(J is rotational inertia of shaft & load; b is mechanical resistance of shaft & load; k is *motor constant*)

assuming $\theta(0)=\theta'(0)=0$,

$$Js^2\Theta(s) + bs\Theta(s) = kI(s), \quad \Theta(s) = \frac{k}{Js^2 + bs}I(s)$$

i.e., transfer function H from i to θ is

$$H(s) = \frac{k}{Js^2 + bs}$$

Circuit examples

consider a circuit with linear elements, zero initial conditions for inductors and capacitors,

- \bullet one independent source with value u
- y is a voltage or current somewhere in the circuit

then we have Y(s) = H(s)U(s)

example: RC circuit

to find H: write circuit equations in frequency domain:

- resistor: v(t) = Ri(t) becomes V(s) = RI(s)
- capacitor: i(t) = Cv'(t) becomes I(s) = sCV(s)
- inductor: v(t) = Li'(t) becomes V(s) = sLI(s)

in frequency domain, circuit equations become algebraic equations

let's find TF from $v_{\rm in}$ to $v_{\rm out}$ (assuming zero initial voltages for capacitors)

- by voltage divider rule, $V_+ = V_{in} \frac{1}{1+1/s} = V_{in} \frac{s}{s+1}$
- current in lefthand resistor is (using $V_{-} = V_{+}$):

$$I = \frac{V_{\rm in} - V_{-}}{1\Omega} = \left(1 - \frac{s}{s+1}\right)V_{\rm in} = \frac{1}{s+1}V_{\rm in}$$

• I flows through $1F||1\Omega$, yielding voltage

$$V_{\rm in} \frac{1}{s+1} \frac{(1)(1/s)}{1+1/s} = V_{\rm in} \frac{1}{(s+1)^2}$$

• finally we have
$$V_{\text{out}} = V_{-} - V_{\text{in}} \frac{1}{(s+1)^2} = V_{\text{in}} \frac{s^2 + s - 1}{(s+1)^2}$$

so transfer function is

$$H(s) = \frac{s^2 + s - 1}{(s+1)^2} = 1 - \frac{1}{s+1} - \frac{1}{(s+1)^2}$$

impulse response is

$$h(t) = \mathcal{L}^{-1}(H) = \delta(t) - e^{-t} - te^{-t}$$

we have

$$v_{\text{out}}(t) = v_{\text{in}}(t) - \int_0^t (1+\tau)e^{-\tau}v_{\text{in}}(t-\tau) d\tau$$

Transfer functions and convolution

Interpretation of convolution

$$y(t) = \int_0^t h(\tau)u(t-\tau) \ d\tau$$

- y(t) is current output; $u(t-\tau)$ is what the input was τ seconds ago
- $h(\tau)$ shows how much current output depends on what input was τ seconds ago

for example,

- h(21) big means current output depends quite a bit on what input was, $21 \mathrm{sec}$ ago
- if $h(\tau)$ is small for $\tau > 3$, then y(t) depends mostly on what the input has been over the last 3 seconds
- $h(\tau) \to 0$ as $\tau \to \infty$ means y(t) depends less and less on remote past input

Graphical interpretation

$$y(t) = \int_0^t h(t-\tau)u(\tau) \ d\tau$$

to find y(t):

- flip impulse response $h(\tau)$ backwards in time (yields $h(-\tau)$)
- drag to the right over t (yields $h(t \tau)$)
- multiply pointwise by u (yields $u(\tau)h(t-\tau)$)
- integrate over τ to get y(t)

Example

communication channel, e.g., twisted pair cable

impulse response:

a delay $\approx 1,~{\rm plus}~{\rm smoothing}$

simple signalling at 0.5 bit/sec; Boolean signal 0, 1, 0, 1, 1, ...

output is delayed, smoothed version of input

1's & 0's easily distinguished in \boldsymbol{y}

simple signalling at 4 bit/sec; same Boolean signal

smoothing makes 1's & 0's very hard to distinguish in \boldsymbol{y}

Linear time-invariant systems

consider a system $\ensuremath{\mathcal{A}}$ which is

• linear

- time-invariant (commutes with delays)
- causal $(y(t) \text{ depends only on } u(\tau) \text{ for } 0 \le \tau \le t)$

called a *linear time-invariant* (LTI) causal system

we have seen that any convolution system is LTI and causal; the converse is also true: any LTI causal system can be represented by a convolution system

convolution/transfer function representation gives *universal description* for LTI causal systems

```
(precise statement & proof is not simple . . . )
```