Lecture 2 Systems

- meaning \& notation
- common examples \& block diagram representations
- electronic realizations
- linearity
- interconnected systems
- differential equations

Systems

- a system transforms input signals into output signals
- a system is a function mapping input signals into output signals
we concentrate on systems with one input and one output signal, i.e., single-input, single-output (SISO) systems
notation:
- $y=S u$ or $y=S(u)$ means the system S acts on input signal u to produce output signal y
- $y=S u$ does not (in general) mean multiplication!

Block diagrams

systems often denoted by block diagram:

- lines with arrows denote signals (not wires)
- boxes denote systems; arrows show inputs \& outputs
- special symbols for some systems

Examples

(with input signal u and output signal y)
scaling system: $y(t)=a u(t)$

- called an amplifier if $|a|>1$
- called an attenuator if $|a|<1$
- called inverting if $a<0$
- a is called the gain or scale factor
sometimes denoted by triangle or circle in block diagram:

differentiator: $y(t)=u^{\prime}(t)$
integrator: $y(t)=\int_{a}^{t} u(\tau) d \tau(a$ is often 0 or $-\infty)$
common notation for integrator:

running average system: $y(t)=\frac{1}{t} \int_{0}^{t} u(\tau) d \tau$
time shift system: $y(t)=u(t-T)$
- called a delay system if $T>0$
- called a predictor system if $T<0$
sign detector or 1-bit limiter system:

$$
y(t)=\operatorname{sgn}(u(t))=\left\{\begin{aligned}
1, & u(t) \geq 0 \\
-1, & u(t)<0
\end{aligned}\right.
$$

convolution system:

$$
y(t)=\int u(t-\tau) h(\tau) d \tau
$$

where h is a given function (you'll be hearing much more about this!)

Examples with multiple inputs

(with inputs u_{1}, u_{2}, and output y)

- summing system: $y(t)=u_{1}(t)+u_{2}(t)$
- difference system: $y(t)=u_{1}(t)-u_{2}(t)$
- multiplier system: $y(t)=u_{1}(t) u_{2}(t)$

- comparator system: $y(t)=\left\{\begin{aligned} 1, & u_{1}(t) \geq u_{2}(t) \\ -1, & u_{1}(t)<u_{2}(t)\end{aligned}\right.$

Electronic realizations

the systems described above can be realized as electronic circuits, e.g., with op-amps
scaling: $y(t)=\left(1+R_{2} / R_{1}\right) u(t)$

difference: $y(t)=u_{1}(t)-u_{2}(t)$

integrator: $y(t)=-1 /(R C) \int^{t} u(\tau) d \tau$

- these are circuit schematics, not block diagrams
- signals are represented by voltages (which is common but not universal)

Linearity

a system F is linear if the following two properties hold:

1. homogeneity: if u is any signal and a is any scalar,

$$
F(a u)=a F(u)
$$

2. superposition: if u and \tilde{u} are any two signals,

$$
F(u+\tilde{u})=F u+F \tilde{u}
$$

(watch out - just a few symbols here express a very complex meaning) in words, linearity means:

- scaling before or after the system is the same
- summing before or after the system is the same
linearity means the following pairs of block diagrams are equivalent, i.e., have the same output for any input(s)

examples of linear systems: scaling system, differentiator, integrator, running average, time shift, convolution, summer, difference systems
examples of nonlinear systems: sign detector, multiplier, comparator

Interconnections of systems

we can interconnect systems to form new systems, e.g., cascade (or series): $y=G(F u)=G F u$

(note that block diagrams and algebra are reversed)
sum (or parallel): $y=F u+G u$

feedback: $y=F(u-G y)$

- the minus sign is just a tradition, and often isn't there
- we'll study this arrangement later
in general,
- block diagrams are just a symbolic way to describe a connection of systems
- we can just as well write out the equations relating the signals

Example: Two-stage amplifier

- input signal u, output signal y
- noise signals n_{1}, n_{2}
- first stage gain a_{1}, second stage gain a_{2}

$$
y=a_{2}\left(a_{1}\left(u+n_{1}\right)+n_{2}\right)=\left(a_{1} a_{2}\right) u+\left(a_{1} a_{2}\right) n_{1}+\left(a_{2}\right) n_{2}
$$

- input to first amplifier is $u+n_{1}$
- output of first amplifier is $a_{1}\left(u+n_{1}\right)$
- input to second amplifier is $a_{1}\left(u+n_{1}\right)+n_{2}$
- output of second amplifier is $a_{2}\left(a_{1}\left(u+n_{1}\right)+n_{2}\right)$

Example: Integrator with feedback

input to integrator is $u-a y$, so

$$
\int^{t}(u(\tau)-a y(\tau)) d \tau=y(t)
$$

(soon we'll be able to give an explicit expression for y in terms of u)
another (useful) method: the input to an integrator is the derivative of its output, so we have

$$
u-a y=y^{\prime}
$$

(of course, same as above)

Systems described by differential equations

many systems are described by a linear constant coefficient ordinary differential equation (LCCODE):

$$
a_{n} y^{(n)}+\cdots+a_{2} y^{\prime \prime}+a_{1} y^{\prime}+a_{0} y=b_{m} u^{(m)}+\cdots+b_{1} u^{\prime \prime}+b_{1} u^{\prime}+b_{0} u
$$

with given initial conditions

$$
y^{(n-1)}(0), \quad y^{(n-2)}, \quad \ldots \quad, y^{\prime}(0), \quad y(0)
$$

(which fixes y, given u)

- n is called the order of the system
- $b_{0}, \ldots, b_{m}, a_{0}, \ldots, a_{n}$ are the coefficients of the system
- when initial conditions are all zero, LCCODE systems are linear
an LCCODE gives an implicit description of a system; soon we'll be able to explicitly express y in terms of u

Examples

simple examples

- scaling system ($\left.a_{0}=1, b_{0}=a\right)$
- integrator $\left(a_{1}=1, b_{0}=1\right)$
- differentiator $\left(a_{0}=1, b_{1}=1\right)$
- integrator with feedback (page 2-15)

RC circuit

current flowing into capacitor is $C y^{\prime}(t)=\frac{u(t)-y(t)}{R}$ rewrite as first-order LCCODE: $R C y^{\prime}(t)+y(t)=u(t)$

second-order RC circuit

- current into C_{2} is $C_{2} y^{\prime}=\frac{v_{1}-y}{R_{2}}$
- current into C_{1} is $C_{1} v_{1}^{\prime}=\frac{u-v_{1}}{R_{1}}-\frac{v_{1}-y}{R_{2}}$ using $v_{1}=y+R_{2} C_{2} y^{\prime}$ in the 2 nd equation yields:

$$
C_{1}\left(y+R_{2} C_{2} y^{\prime}\right)^{\prime}=\frac{u}{R_{1}}+\frac{y}{R_{2}}-\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)\left(y+R_{2} C_{2} y^{\prime}\right)
$$

rewrite (eventually) as second-order LCCODE

$$
\left(R_{1} C_{1} R_{2} C_{2}\right) y^{\prime \prime}+\left(R_{1} C_{1}+R_{1} C_{2}+R_{2} C_{2}\right) y^{\prime}+y=u
$$

mechanical system (mass-spring-damper)

(can represent suspension system, building during earthquake, . . .)

- $u(t)$ is displacement of base; $y(t)$ is displacement of mass
- spring force is $k(u-y)$; damping force is $b(u-y)^{\prime}$
- Newton's equation is $m y^{\prime \prime}=b(u-y)^{\prime}+k(u-y)$
rewrite as second-order LCCODE

$$
m y^{\prime \prime}+b y^{\prime}+k y=b u^{\prime}+k u
$$

