Lecture 2 Systems

- meaning & notation
- common examples & block diagram representations
- electronic realizations
- linearity
- interconnected systems
- differential equations

Systems

- a system transforms *input signals* into *output signals*
- a system is a *function* mapping input signals into output signals

we concentrate on systems with one input and one output signal, *i.e.*, *single-input*, *single-output* (SISO) systems

notation:

- y = Su or y = S(u) means the system S acts on input signal u to produce output signal y
- y = Su does not (in general) mean multiplication!

Block diagrams

systems often denoted by *block diagram*:

- lines with arrows denote signals (*not* wires)
- boxes denote systems; arrows show inputs & outputs
- special symbols for some systems

Examples

(with input signal u and output signal y)

scaling system: y(t) = au(t)

- called an *amplifier* if |a| > 1
- called an *attenuator* if |a| < 1
- called *inverting* if a < 0
- *a* is called the *gain* or *scale factor*

sometimes denoted by triangle or circle in block diagram:

differentiator: y(t) = u'(t)

integrator:
$$y(t) = \int_{a}^{t} u(\tau) d\tau$$
 (a is often 0 or $-\infty$)

common notation for integrator:

running average system: $y(t) = \frac{1}{t} \int_0^t u(\tau) \ d\tau$

time shift system: y(t) = u(t - T)

- called a *delay system* if T > 0
- called a *predictor system* if T < 0

sign detector or 1-bit limiter system:

$$y(t) = \operatorname{sgn}(u(t)) = \begin{cases} 1, & u(t) \ge 0\\ -1, & u(t) < 0 \end{cases}$$

convolution system:

$$y(t) = \int u(t-\tau)h(\tau) d\tau,$$

where h is a given function (you'll be hearing much more about this!)

Examples with multiple inputs

(with inputs u_1 , u_2 , and output y)

• summing system: $y(t) = u_1(t) + u_2(t)$

• difference system: $y(t) = u_1(t) - u_2(t)$

• multiplier system: $y(t) = u_1(t)u_2(t)$

 u_1

 u_2

 $u_1 + -$

 u_2

Electronic realizations

the systems described above can be *realized* as electronic circuits, *e.g.*, with op-amps

scaling: $y(t) = (1 + R_2/R_1)u(t)$

difference: $y(t) = u_1(t) - u_2(t)$

integrator: $y(t) = -1/(RC) \int^t u(\tau) d\tau$

- these are *circuit schematics*, not *block diagrams*
- signals are represented by *voltages* (which is common but *not* universal)

Linearity

a system F is **linear** if the following two properties hold:

1. homogeneity: if u is any signal and a is any scalar,

$$F(au) = aF(u)$$

2. superposition: if u and \tilde{u} are any two signals,

$$F(u+\tilde{u}) = Fu + F\tilde{u}$$

(watch out — just a few symbols here express a *very complex* meaning) in words, linearity means:

- scaling before or after the system is the same
- summing before or after the system is the same

linearity means the following pairs of block diagrams are equivalent, i.e., have the same output for any input(s)

examples of linear systems: scaling system, differentiator, integrator, running average, time shift, convolution, summer, difference systems

examples of nonlinear systems: sign detector, multiplier, comparator

Interconnections of systems

we can interconnect systems to form new systems, e.g.,

cascade (or series): y = G(Fu) = GFu

(note that block diagrams and algebra are *reversed*)

sum (or parallel): y = Fu + Gu

feedback: y = F(u - Gy)

- the minus sign is just a tradition, and often isn't there
- we'll study this arrangement later

in general,

- block diagrams are just a symbolic way to describe a connection of systems
- we can just as well write out the equations relating the signals

Example: Two-stage amplifier

- input signal u, output signal y
- noise signals n_1 , n_2
- first stage gain a_1 , second stage gain a_2

$$y = a_2(a_1(u+n_1)+n_2) = (a_1a_2)u + (a_1a_2)n_1 + (a_2)n_2$$

- input to first amplifier is $u + n_1$
- output of first amplifier is $a_1(u+n_1)$
- input to second amplifier is $a_1(u+n_1)+n_2$
- output of second amplifier is $a_2(a_1(u+n_1)+n_2)$

Example: Integrator with feedback

input to integrator is u - ay, so

$$\int^t (u(\tau) - ay(\tau)) \, d\tau = y(t)$$

(soon we'll be able to give an explicit expression for y in terms of u)

another (useful) method: the *input* to an integrator is the derivative of its output, so we have

$$u - ay = y'$$

(of course, same as above)

Systems described by differential equations

many systems are described by a *linear constant coefficient ordinary differential equation* (LCCODE):

$$a_n y^{(n)} + \dots + a_2 y'' + a_1 y' + a_0 y = b_m u^{(m)} + \dots + b_1 u'' + b_1 u' + b_0 u$$

with given initial conditions

$$y^{(n-1)}(0), y^{(n-2)}, \dots, y'(0), y(0)$$

(which fixes y, given u)

- n is called the *order* of the system
- $b_0, \ldots, b_m, a_0, \ldots, a_n$ are the *coefficients* of the system
- when initial conditions are all zero, LCCODE systems are **linear**

an LCCODE gives an *implicit* description of a system; soon we'll be able to *explicitly* express y in terms of u

Examples

simple examples

- scaling system ($a_0 = 1$, $b_0 = a$)
- integrator $(a_1 = 1, b_0 = 1)$
- differentiator ($a_0 = 1$, $b_1 = 1$)
- integrator with feedback (page 2–15)

RC circuit

current flowing into capacitor is $Cy'(t) = \frac{u(t) - y(t)}{R}$

rewrite as first-order LCCODE: RCy'(t) + y(t) = u(t)

second-order RC circuit

• current into
$$C_2$$
 is $C_2 y' = \frac{v_1 - y}{R_2}$
• current into C_1 is $C_1 v'_1 = \frac{u - v_1}{R_1} - \frac{v_1 - y}{R_2}$

using $v_1 = y + R_2 C_2 y'$ in the 2nd equation yields:

$$C_1(y + R_2C_2y')' = \frac{u}{R_1} + \frac{y}{R_2} - \left(\frac{1}{R_1} + \frac{1}{R_2}\right)(y + R_2C_2y')$$

rewrite (eventually) as second-order LCCODE

 $(R_1C_1R_2C_2)y'' + (R_1C_1 + R_1C_2 + R_2C_2)y' + y = u$

mechanical system (mass-spring-damper)

(can represent suspension system, building during earthquake, . . .)

- u(t) is displacement of base; y(t) is displacement of mass
- spring force is k(u-y); damping force is b(u-y)'
- Newton's equation is my'' = b(u y)' + k(u y)

rewrite as second-order LCCODE

$$my'' + by' + ky = bu' + ku$$