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Lecture 2
Systems

• meaning & notation

• common examples & block diagram representations

• electronic realizations

• linearity

• interconnected systems

• differential equations
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Systems

• a system transforms input signals into output signals

• a system is a function mapping input signals into output signals

we concentrate on systems with one input and one output signal, i.e.,
single-input, single-output (SISO) systems

notation:

• y = Su or y = S(u) means the system S acts on input signal u to
produce output signal y

• y = Su does not (in general) mean multiplication!
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Block diagrams

systems often denoted by block diagram:
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• lines with arrows denote signals (not wires)

• boxes denote systems; arrows show inputs & outputs

• special symbols for some systems

Systems 2–3



Examples

(with input signal u and output signal y)

scaling system: y(t) = au(t)

• called an amplifier if |a| > 1

• called an attenuator if |a| < 1

• called inverting if a < 0

• a is called the gain or scale factor

sometimes denoted by triangle or circle in block diagram:
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differentiator: y(t) = u′(t)

integrator: y(t) =

∫ t

a

u(τ) dτ (a is often 0 or −∞)

common notation for integrator:
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u y∫

running average system: y(t) =
1

t

∫ t

0

u(τ) dτ

time shift system: y(t) = u(t− T )

• called a delay system if T > 0

• called a predictor system if T < 0
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sign detector or 1-bit limiter system:

y(t) = sgn(u(t)) =

{

1, u(t) ≥ 0
−1, u(t) < 0

PSfrag replacements u y

convolution system:

y(t) =

∫

u(t− τ)h(τ) dτ,

where h is a given function (you’ll be hearing much more about this!)
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Examples with multiple inputs

(with inputs u1, u2, and output y)

• summing system: y(t) = u1(t) + u2(t)
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• difference system: y(t) = u1(t)− u2(t)
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• multiplier system: y(t) = u1(t)u2(t)
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• comparator system: y(t) =

{

1, u1(t) ≥ u2(t)
−1, u1(t) < u2(t)
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Electronic realizations

the systems described above can be realized as electronic circuits, e.g.,
with op-amps

scaling: y(t) = (1 + R2/R1)u(t)
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difference: y(t) = u1(t)− u2(t)
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integrator: y(t) = −1/(RC)

∫ t

u(τ) dτ
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• these are circuit schematics, not block diagrams

• signals are represented by voltages (which is common but not universal)
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Linearity

a system F is linear if the following two properties hold:

1. homogeneity: if u is any signal and a is any scalar,

F (au) = aF (u)

2. superposition: if u and ũ are any two signals,

F (u + ũ) = Fu + Fũ

(watch out — just a few symbols here express a very complex meaning)

in words, linearity means:

• scaling before or after the system is the same

• summing before or after the system is the same
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linearity means the following pairs of block diagrams are equivalent, i.e.,
have the same output for any input(s)
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examples of linear systems: scaling system, differentiator, integrator,
running average, time shift, convolution, summer, difference systems

examples of nonlinear systems: sign detector, multiplier, comparator
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Interconnections of systems

we can interconnect systems to form new systems, e.g.,

cascade (or series): y = G(Fu) = GFuPSfrag replacements
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(note that block diagrams and algebra are reversed)

sum (or parallel): y = Fu + Gu
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feedback: y = F (u−Gy)
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• the minus sign is just a tradition, and often isn’t there

• we’ll study this arrangement later

in general,

• block diagrams are just a symbolic way to describe a connection of
systems

• we can just as well write out the equations relating the signals
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Example: Two-stage amplifier
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n1 n2

a1 a2

• input signal u, output signal y

• noise signals n1, n2

• first stage gain a1, second stage gain a2

y = a2(a1(u + n1) + n2) = (a1a2)u + (a1a2)n1 + (a2)n2

• input to first amplifier is u + n1

• output of first amplifier is a1(u + n1)

• input to second amplifier is a1(u + n1) + n2

• output of second amplifier is a2(a1(u + n1) + n2)

Systems 2–14



Example: Integrator with feedback
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input to integrator is u− ay, so

∫ t

(u(τ)− ay(τ)) dτ = y(t)

(soon we’ll be able to give an explicit expression for y in terms of u)

another (useful) method: the input to an integrator is the derivative of its
output, so we have

u− ay = y′

(of course, same as above)
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Systems described by differential equations

many systems are described by a linear constant coefficient ordinary
differential equation (LCCODE):

any
(n) + · · ·+ a2y

′′ + a1y
′ + a0y = bmu(m) + · · ·+ b1u

′′ + b1u
′ + b0u

with given initial conditions

y(n−1)(0), y(n−2), . . . , y′(0), y(0)

(which fixes y, given u)

• n is called the order of the system

• b0, . . . , bm, a0, . . . , an are the coefficients of the system

• when initial conditions are all zero, LCCODE systems are linear

an LCCODE gives an implicit description of a system; soon we’ll be able to
explicitly express y in terms of u
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Examples

simple examples

• scaling system (a0 = 1, b0 = a)

• integrator (a1 = 1, b0 = 1)

• differentiator (a0 = 1, b1 = 1)

• integrator with feedback (page 2–15)

RC circuit
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current flowing into capacitor is Cy′(t) =
u(t)− y(t)

R

rewrite as first-order LCCODE: RCy′(t) + y(t) = u(t)
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second-order RC circuit
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• current into C2 is C2y
′ =

v1 − y

R2

• current into C1 is C1v
′
1 =

u− v1

R1
−

v1 − y

R2

using v1 = y + R2C2y
′ in the 2nd equation yields:

C1(y + R2C2y
′)′ =

u

R1
+

y

R2
−

(

1

R1
+

1

R2

)

(y + R2C2y
′)

rewrite (eventually) as second-order LCCODE

(R1C1R2C2)y
′′ + (R1C1 + R1C2 + R2C2)y

′ + y = u
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mechanical system (mass-spring-damper)
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(can represent suspension system, building during earthquake, . . . )

• u(t) is displacement of base; y(t) is displacement of mass

• spring force is k(u− y); damping force is b(u− y)′

• Newton’s equation is my′′ = b(u− y)′ + k(u− y)

rewrite as second-order LCCODE

my′′ + by′ + ky = bu′ + ku
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