Lecture 5
 Rational functions and partial fraction expansion

- (review of) polynomials
- rational functions
- pole-zero plots
- partial fraction expansion
- repeated poles
- nonproper rational functions

Polynomials and roots

polynomials

$$
a(s)=a_{0}+a_{1} s+\cdots+a_{n} s^{n}
$$

- a is a polynomial in the variable s
- a_{i} are the coefficients of a (usually real, but occasionally complex)
- n is the degree of a (assuming $a_{n} \neq 0$)
roots (or zeros) of a polynomial $a: \lambda \in \mathbf{C}$ that satisfy

$$
a(\lambda)=0
$$

examples

- $a(s)=3$ has no roots
- $a(s)=s^{3}-1$ has three roots: $1,(-1+j \sqrt{3}) / 2,(-1-j \sqrt{3}) / 2$
factoring out roots of a polynomial
if a has a root at $s=\lambda$ we can factor out $s-\lambda$:
- dividing a by $s-\lambda$ yields a polynomial:

$$
b(s)=\frac{a(s)}{s-\lambda}
$$

is a polynomial (of degree one less than the degree of a)

- we can express a as

$$
a(s)=(s-\lambda) b(s)
$$

for some polynomial b
example: $s^{3}-1$ has a root at $s=1$

$$
s^{3}-1=(s-1)\left(s^{2}+s+1\right)
$$

the multiplicity of a root λ is the number of factors $s-\lambda$ we can factor out, i.e., the largest k such that

$$
\frac{a(s)}{(s-\lambda)^{k}}
$$

is a polynomial

example:

$$
a(s)=s^{3}+s^{2}-s-1
$$

- a has a zero at $s=-1$
- $\frac{a(s)}{s+1}=\frac{s^{3}+s^{2}-s-1}{s+1}=s^{2}-1$ also has a zero at $s=-1$
- $\frac{a(s)}{(s+1)^{2}}=\frac{s^{3}+s^{2}-s-1}{(s+1)^{2}}=s-1$ does not have a zero at $s=-1$
so the multiplicity of the zero at $s=-1$ is 2

Fundamental theorem of algebra

a polynomial of degree n has exactly n roots, counting multiplicities
this means we can write a in factored form

$$
a(s)=a_{n} s^{n}+\cdots+a_{0}=a_{n}\left(s-\lambda_{1}\right) \cdots\left(s-\lambda_{n}\right)
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are the n roots of a
example: $s^{3}+s^{2}-s-1=(s+1)^{2}(s-1)$
the relation between the coefficients a_{i} and the λ_{i} is complicated in general, but

$$
a_{0}=a_{n} \prod_{i=1}^{n}\left(-\lambda_{i}\right), \quad a_{n-1}=-a_{n} \sum_{i=1}^{n} \lambda_{i}
$$

are two identities that are worth remembering

Conjugate symmetry

if the coefficients a_{0}, \ldots, a_{n} are real, and $\lambda \in \mathbf{C}$ is a root, i.e.,

$$
a(\lambda)=a_{0}+a_{1} \lambda+\cdots+a_{n} \lambda^{n}=0
$$

then we have

$$
a(\bar{\lambda})=a_{0}+a_{1} \bar{\lambda}+\cdots+a_{n} \bar{\lambda}^{n}=\overline{\left(a_{0}+a_{1} \lambda+\cdots+a_{n} \lambda^{n}\right)}=\overline{a(\lambda)}=0
$$

in other words: $\bar{\lambda}$ is also a root

- if λ is real this isn't interesting
- if λ is complex, it gives us another root for free
- complex roots come in complex conjugate pairs
example:

λ_{3} and λ_{6} are real; λ_{1}, λ_{2} are a complex conjugate pair; λ_{4}, λ_{5} are a complex conjugate pair
if a has real coefficients, we can factor it as

$$
a(s)=a_{n}\left(\prod_{i=1}^{r}\left(s-\lambda_{i}\right)\right)\left(\prod_{i=r+1}^{m}\left(s-\lambda_{i}\right)\left(s-\overline{\lambda_{i}}\right)\right)
$$

where $\lambda_{1}, \ldots, \lambda_{r}$ are the real roots; $\lambda_{r+1}, \overline{\lambda_{r+1}}, \ldots, \lambda_{m}, \overline{\lambda_{m}}$ are the complex roots

Real factored form

$$
(s-\lambda)(s-\bar{\lambda})=s^{2}-2(\Re \lambda) s+|\lambda|^{2}
$$

is a quadratic with real coefficients
real factored form of a polynomial a :

$$
a(s)=a_{n}\left(\prod_{i=1}^{r}\left(s-\lambda_{i}\right)\right)\left(\prod_{i=r+1}^{m}\left(s^{2}+\alpha_{i} s+\beta_{i}\right)\right)
$$

- $\lambda_{1}, \ldots, \lambda_{r}$ are the real roots
- α_{i}, β_{i} are real and satisfy $\alpha_{i}^{2}<4 \beta_{i}$
any polynomial with real coefficients can be factored into a product of
- degree one polynomials with real coefficients
- quadratic polynomials with real coefficients
example: $s^{3}-1$ has roots

$$
s=1, \quad s=\frac{-1+j \sqrt{3}}{2}, \quad s=\frac{-1-j \sqrt{3}}{2}
$$

- complex factored form

$$
s^{3}-1=(s-1)(s+(1+j \sqrt{3}) / 2)(s+(1-j \sqrt{3}) / 2)
$$

- real factored form

$$
s^{3}-1=(s-1)\left(s^{2}+s+1\right)
$$

Rational functions

a rational function has the form

$$
F(s)=\frac{b(s)}{a(s)}=\frac{b_{0}+b_{1} s+\cdots+b_{m} s^{m}}{a_{0}+a_{1} s+\cdots+a_{n} s^{n}}
$$

i.e., a ratio of two polynomials (where a is not the zero polynomial)

- b is called the numerator polynomial
- a is called the denominator polynomial
examples of rational functions:

$$
\frac{1}{s+1}, \quad s^{2}+3, \quad \frac{1}{s^{2}+1}+\frac{s}{2 s+3}=\frac{s^{3}+3 s+3}{2 s^{3}+3 s^{2}+2 s+3}
$$

rational function $F(s)=\frac{b(s)}{a(s)}$
polynomials b and a are not uniquely determined, e.g.,

$$
\frac{1}{s+1}=\frac{3}{3 s+3}=\frac{s^{2}+3}{(s+1)\left(s^{2}+3\right)}
$$

(except at $s= \pm j \sqrt{3} \ldots$)
rational functions are closed under addition, subtraction, multiplication, division (except by the rational function 0)

Poles \& zeros

$$
F(s)=\frac{b(s)}{a(s)}=\frac{b_{0}+b_{1} s+\cdots+b_{m} s^{m}}{a_{0}+a_{1} s+\cdots+a_{n} s^{n}}
$$

assume b and a have no common factors (cancel them out if they do ...)

- the m roots of b are called the zeros of F; λ is a zero of F if $F(\lambda)=0$
- the n roots of a are called the poles of F; λ is a pole of F if $\lim _{s \rightarrow \lambda}|F(s)|=\infty$
the multiplicity of a zero (or pole) λ of F is the multiplicity of the root λ of b (or a)
example: $\frac{6 s+12}{s^{2}+2 s+1}$ has one zero at $s=-2$, two poles at $s=-1$
factored or pole-zero form of F :

$$
F(s)=\frac{b_{0}+b_{1} s+\cdots+b_{m} s^{m}}{a_{0}+a_{1} s+\cdots+a_{n} s^{n}}=k \frac{\left(s-z_{1}\right) \cdots\left(s-z_{m}\right)}{\left(s-p_{1}\right) \cdots\left(s-p_{n}\right)}
$$

where

- $k=b_{m} / a_{n}$
- z_{1}, \ldots, z_{m} are the zeros of F (i.e., roots of b)
- p_{1}, \ldots, p_{n} are the poles of F (i.e., roots of a)
(assuming the coefficients of a and b are real) complex poles or zeros come in complex conjugate pairs
can also have real factored form . . .

Pole-zero plots

poles \& zeros of a rational functions are often shown in a pole-zero plot

this example is for

$$
\begin{aligned}
F(s) & =k \frac{(s+1.5)(s+1+2 j)(s+1-2 j)}{(s+2.5)(s-2)(s-1-j)(s-1+j)} \\
& =k \frac{(s+1.5)\left(s^{2}+2 s+5\right)}{(s+2.5)(s-2)\left(s^{2}-2 s+2\right)}
\end{aligned}
$$

(the plot doesn't tell us k)

Partial fraction expansion

$$
F(s)=\frac{b(s)}{a(s)}=\frac{b_{0}+b_{1} s+\cdots+b_{m} s^{m}}{a_{0}+a_{1} s+\cdots+a_{n} s^{n}}
$$

let's assume (for now)

- no poles are repeated, i.e., all roots of a have multiplicity one
- $m<n$
then we can write F in the form

$$
F(s)=\frac{r_{1}}{s-\lambda_{1}}+\cdots+\frac{r_{n}}{s-\lambda_{n}}
$$

called partial fraction expansion of F

- $\lambda_{1}, \ldots, \lambda_{n}$ are the poles of F
- the numbers r_{1}, \ldots, r_{n} are called the residues
- when $\lambda_{k}=\overline{\lambda_{l}}, r_{k}=\overline{r_{l}}$
example:

$$
\frac{s^{2}-2}{s^{3}+3 s^{2}+2 s}=\frac{-1}{s}+\frac{1}{s+1}+\frac{1}{s+2}
$$

let's check:

$$
\frac{-1}{s}+\frac{1}{s+1}+\frac{1}{s+2}=\frac{-1(s+1)(s+2)+s(s+2)+s(s+1)}{s(s+1)(s+2)}
$$

in partial fraction form, inverse Laplace transform is easy:

$$
\begin{aligned}
\mathcal{L}^{-1}(F) & =\mathcal{L}^{-1}\left(\frac{r_{1}}{s-\lambda_{1}}+\cdots+\frac{r_{n}}{s-\lambda_{n}}\right) \\
& =r_{1} e^{\lambda_{1} t}+\cdots+r_{n} e^{\lambda_{n} t}
\end{aligned}
$$

(this is real since whenever the poles are conjugates, the corresponding residues are also)

Finding the partial fraction expansion

two steps:

- find poles $\lambda_{1}, \ldots, \lambda_{n}$ (i.e., factor $\left.a(s)\right)$
- find residues r_{1}, \ldots, r_{n} (several methods)
method 1: solve linear equations
we'll illustrate for $m=2, n=3$

$$
\frac{b_{0}+b_{1} s+b_{2} s^{2}}{\left(s-\lambda_{1}\right)\left(s-\lambda_{2}\right)\left(s-\lambda_{3}\right)}=\frac{r_{1}}{s-\lambda_{1}}+\frac{r_{2}}{s-\lambda_{2}}+\frac{r_{3}}{s-\lambda_{3}}
$$

clear denominators:

$$
b_{0}+b_{1} s+b_{2} s^{2}=r_{1}\left(s-\lambda_{2}\right)\left(s-\lambda_{3}\right)+r_{2}\left(s-\lambda_{1}\right)\left(s-\lambda_{3}\right)+r_{3}\left(s-\lambda_{1}\right)\left(s-\lambda_{2}\right)
$$

equate coefficients:

- coefficient of s^{0} :

$$
b_{0}=\left(\lambda_{2} \lambda_{3}\right) r_{1}+\left(\lambda_{1} \lambda_{3}\right) r_{2}+\left(\lambda_{1} \lambda_{2}\right) r_{3}
$$

- coefficient of s^{1} :

$$
b_{1}=\left(-\lambda_{2}-\lambda_{3}\right) r_{1}+\left(-\lambda_{1}-\lambda_{3}\right) r_{2}+\left(-\lambda_{1}-\lambda_{2}\right) r_{3}
$$

- coefficient of s^{2} :

$$
b_{2}=r_{1}+r_{2}+r_{3}
$$

now solve for r_{1}, r_{2}, r_{3} (three equations in three variables)
method 2: to get r_{1}, multiply both sides by $s-\lambda_{1}$ to get

$$
\frac{\left(s-\lambda_{1}\right)\left(b_{0}+b_{1} s+b_{2} s^{2}\right)}{\left(s-\lambda_{1}\right)\left(s-\lambda_{2}\right)\left(s-\lambda_{3}\right)}=r_{1}+\frac{r_{2}\left(s-\lambda_{1}\right)}{s-\lambda_{2}}+\frac{r_{3}\left(s-\lambda_{1}\right)}{s-\lambda_{3}}
$$

cancel $s-\lambda_{1}$ term on left and set $s=\lambda_{1}$:

$$
\frac{b_{0}+b_{1} \lambda_{1}+b_{2} \lambda_{1}^{2}}{\left(\lambda_{1}-\lambda_{2}\right)\left(\lambda_{1}-\lambda_{3}\right)}=r_{1}
$$

an explicit formula for r_{1} ! (can get r_{2}, r_{3} the same way)
in the general case we have the formula

$$
r_{k}=\left.\left(s-\lambda_{k}\right) F(s)\right|_{s=\lambda_{k}}
$$

which means:

- multiply F by $s-\lambda_{k}$
- then cancel $s-\lambda_{k}$ from numerator and denominator
- then evaluate at $s=\lambda_{k}$ to get r_{k}
example:

$$
\frac{s^{2}-2}{s(s+1)(s+2)}=\frac{r_{1}}{s}+\frac{r_{2}}{s+1}+\frac{r_{3}}{s+2}
$$

- residue r_{1} :

$$
r_{1}=\left.\left(r_{1}+\frac{r_{2} s}{s+1}+\frac{r_{3} s}{s+2}\right)\right|_{s=0}=\left.\frac{s^{2}-2}{(s+1)(s+2)}\right|_{s=0}=-1
$$

- residue r_{2} :

$$
r_{2}=\left.\left(\frac{r_{1}(s+1)}{s}+r_{2}+\frac{r_{3}(s+1)}{s+2}\right)\right|_{s=-1}=\left.\frac{s^{2}-2}{s(s+2)}\right|_{s=-1}=1
$$

- residue r_{3} :

$$
r_{3}=\left.\left(\frac{r_{1}(s+2)}{s}+\frac{r_{2}(s+2)}{s+1}+r_{3}\right)\right|_{s=-2}=\left.\frac{s^{2}-2}{s(s+1)}\right|_{s=-2}=1
$$

so we have:

$$
\frac{s^{2}-2}{s(s+1)(s+2)}=\frac{-1}{s}+\frac{1}{s+1}+\frac{1}{s+2}
$$

method 3: another explicit and useful expression for r_{k} is:

$$
r_{k}=\frac{b\left(\lambda_{k}\right)}{a^{\prime}\left(\lambda_{k}\right)}
$$

to see this, note that

$$
r_{k}=\lim _{s \rightarrow \lambda_{k}} \frac{\left(s-\lambda_{k}\right) b(s)}{a(s)}=\lim _{s \rightarrow \lambda_{k}} \frac{b(s)+b^{\prime}(s)\left(s-\lambda_{k}\right)}{a^{\prime}(s)}=\frac{b\left(\lambda_{k}\right)}{a^{\prime}\left(\lambda_{k}\right)}
$$

where we used l'Hôpital's rule in second line
example (previous page):

$$
\frac{s^{2}-2}{s(s+1)(s+2)}=\frac{s^{2}-2}{s^{3}+2 s^{2}+2 s}
$$

hence,

$$
r_{1}=\left.\frac{s^{2}-2}{3 s^{2}+4 s+2}\right|_{s=0}=-1
$$

Example

let's solve

$$
v^{\prime \prime \prime}-v=0, \quad v(0)=1, \quad v^{\prime}(0)=v^{\prime \prime}(0)=0
$$

1. take Laplace transform:

$$
\underbrace{s^{3} V(s)-s^{2}}_{\mathcal{L}\left(v^{\prime \prime \prime}\right)}-V(s)=0
$$

2. solve for V to get

$$
V(s)=\frac{s^{2}}{s^{3}-1}
$$

3. the poles of V are the cuberoots of 1 , i.e., $e^{j 2 \pi k / 3}, k=0,1,2$

$$
s^{3}-1=(s-1)(s+1 / 2+j \sqrt{3} / 2)(s+1 / 2-j \sqrt{3} / 2)
$$

4. now convert V to partial fraction form

$$
V(s)=\frac{r_{1}}{s-1}+\frac{r_{2}}{s+\frac{1}{2}+j \frac{\sqrt{3}}{2}}+\frac{\overline{r_{2}}}{s+\frac{1}{2}-j \frac{\sqrt{3}}{2}}
$$

to find residues we'll use

$$
r_{1}=\frac{b(1)}{a^{\prime}(1)}=\frac{1}{3}, \quad r_{2}=\frac{b(-1 / 2-j \sqrt{3} / 2)}{a^{\prime}(-1 / 2-j \sqrt{3} / 2)}=\frac{1}{3}
$$

so partial fraction form is

$$
V(s)=\frac{\frac{1}{3}}{s-1}+\frac{\frac{1}{3}}{s+\frac{1}{2}+j \frac{\sqrt{3}}{2}}+\frac{\frac{1}{3}}{s+\frac{1}{2}-j \frac{\sqrt{3}}{2}}
$$

(check this by just multiplying out . . .)
5. take inverse Laplace transform to get v :

$$
\begin{aligned}
v(t) & =\frac{1}{3} e^{t}+\frac{1}{3} e^{\left(-\frac{1}{2}-j \frac{\sqrt{3}}{2}\right) t}+\frac{1}{3} e^{\left(-\frac{1}{2}+j \frac{\sqrt{3}}{2}\right) t} \\
& =\frac{1}{3} e^{t}+\frac{2}{3} e^{-\frac{t}{2}} \cos \frac{\sqrt{3}}{2} t
\end{aligned}
$$

6. check that $v^{\prime \prime \prime}-v=0, v(0)=1, v^{\prime}(0)=v^{\prime \prime}(0)=0$

Repeated poles

now suppose

$$
F(s)=\frac{b(s)}{\left(s-\lambda_{1}\right)^{k_{1}} \cdots\left(s-\lambda_{l}\right)^{k_{l}}}
$$

- the poles λ_{i} are distinct ($\lambda_{i} \neq \lambda_{j}$ for $i \neq j$) and have multiplicity k_{i}
- degree of b less than degree of a partial fraction expansion has the form

$$
\begin{aligned}
F(s)= & \frac{r_{1, k_{1}}}{\left(s-\lambda_{1}\right)^{k_{1}}}+\frac{r_{1, k_{1}-1}}{\left(s-\lambda_{1}\right)^{k_{1}-1}}+\cdots+\frac{r_{1,1}}{s-\lambda_{1}} \\
& +\frac{r_{2, k_{2}}}{\left(s-\lambda_{2}\right)^{k_{2}}}+\frac{r_{2, k_{2}-1}^{\left(s-\lambda_{2}\right)^{k_{2}-1}}+\cdots+\frac{r_{2,1}}{s-\lambda_{2}}}{} \\
& +\cdots+\frac{r_{l, k_{l}}}{\left(s-\lambda_{l}\right)^{k_{l}}}+\frac{r_{l, k_{l}-1}^{\left(s-\lambda_{l}\right)^{k_{l}-1}}+\cdots+\frac{r_{l, 1}}{s-\lambda_{l}}}{}
\end{aligned}
$$

n residues, just as before; terms involve higher powers of $1 /(s-\lambda)$
example: $F(s)=\frac{1}{s^{2}(s+1)}$ has expansion

$$
F(s)=\frac{r_{1}}{s^{2}}+\frac{r_{2}}{s}+\frac{r_{3}}{s+1}
$$

inverse Laplace transform of partial fraction form is easy since

$$
\mathcal{L}^{-1}\left(\frac{r}{(s-\lambda)^{k}}\right)=\frac{r}{(k-1)!} t^{k-1} e^{\lambda t}
$$

same types of tricks work to find the $r_{i, j}$'s

- solve linear equations (method 1)
- can find the residues for nonrepeated poles as before
example:

$$
\frac{1}{s^{2}(s+1)}=\frac{r_{1}}{s^{2}}+\frac{r_{2}}{s}+\frac{r_{3}}{s+1}
$$

we get (as before)

$$
r_{3}=\left.(s+1) F(s)\right|_{s=-1}=1
$$

now clear denominators to get

$$
\begin{aligned}
r_{1}(s+1)+r_{2} s(s+1)+s^{2} & =1 \\
\left(1+r_{2}\right) s^{2}+\left(r_{1}+r_{2}\right) s+1 & =1
\end{aligned}
$$

which yields $r_{2}=-1, r_{1}=1$, so

$$
F(s)=\frac{1}{s^{2}}-\frac{1}{s}+\frac{1}{s+1}
$$

extension of method 2: to get $r_{i, k_{i}}$,

- multiply on both sides by $\left(s-\lambda_{i}\right)^{k_{i}}$
- evaluate at $s=\lambda_{i}$
gives

$$
\left.F(s)\left(s-\lambda_{i}\right)^{k_{i}}\right|_{s=\lambda_{i}}=r_{i, k_{i}}
$$

to get other r 's, we have extension

$$
\left.\frac{1}{j!} \frac{d^{j}}{d s^{j}}\left(F(s)\left(s-\lambda_{i}\right)^{k_{i}}\right)\right|_{s=\lambda_{i}}=r_{i, k_{i}-j}
$$

usually the k_{i} 's are small (e.g., 1 or 2), so fortunately this doesn't come up too often

example (ctd.):

$$
F(s)=\frac{r_{1}}{s^{2}}+\frac{r_{2}}{s}+\frac{r_{3}}{s+1}
$$

- multiply by s^{2} :

$$
s^{2} F(s)=\frac{1}{s+1}=r_{1}+r_{2} s+\frac{r_{3} s^{2}}{s+1}
$$

- evaluate at $s=0$ to get $r_{1}=1$
- differentiate with respect to s :

$$
-\frac{1}{(s+1)^{2}}=r_{2}+\frac{d}{d s}\left(\frac{r_{3} s^{2}}{s+1}\right)
$$

- evaluate at $s=0$ to get $r_{2}=-1$
(same as what we got above)

Nonproper rational functions

$$
F(s)=\frac{b(s)}{a(s)}=\frac{b_{0}+b_{1} s+\cdots+b_{m} s^{m}}{a_{0}+a_{1} s+\cdots+a_{n} s^{n}}
$$

is called proper if $m \leq n$, strictly proper if $m<n$, nonproper if $m>n$ partial fraction expansion requires strictly proper F; to find $\mathcal{L}^{-1}(F)$ for other cases, divide a into b :

$$
F(s)=b(s) / a(s)=c(s)+d(s) / a(s)
$$

where

$$
c(s)=c_{0}+\cdots+c_{m-n} s^{m-n}, \quad d=d_{0}+\cdots+d_{k} s^{k}, \quad k<n
$$

then

$$
\mathcal{L}^{-1}(F)=c_{0} \delta+\cdots+c_{m-n} \delta^{(m-n)}+\mathcal{L}^{-1}(d / a)
$$

d / a is strictly proper, hence has partial fraction form
example

$$
F(s)=\frac{5 s+3}{s+1}
$$

is proper, but not strictly proper

$$
F(s)=\frac{5(s+1)-5+3}{s+1}=5-\frac{2}{s+1}
$$

so

$$
\mathcal{L}^{-1}(F)=5 \delta(t)-2 e^{-t}
$$

in general,

- F strictly proper $\Longleftrightarrow f$ has no impulses at $t=0$
- F proper, not strictly proper $\Longleftrightarrow f$ has an impulse at $t=0$
- F nonproper $\Longleftrightarrow f$ has higher-order impulses at $t=0$
- $m-n$ determines order of impulse at $t=0$

Example

$$
F(s)=\frac{s^{4}+s^{3}-2 s^{2}+1}{s^{3}+2 s^{2}+s}
$$

1. write as a sum of a polynomial and a strictly proper rational function:

$$
\begin{aligned}
F(s) & =\frac{s\left(s^{3}+2 s^{2}+s\right)-s\left(2 s^{2}+s\right)+s^{3}-2 s^{2}+1}{s^{3}+2 s^{2}+s} \\
& =s+\frac{-s^{3}-3 s^{2}+1}{s^{3}+2 s^{2}+s} \\
& =s+\frac{-\left(s^{3}+2 s^{2}+s\right)+\left(2 s^{2}+s\right)-3 s^{2}+1}{s^{3}+2 s^{2}+s} \\
& =s-1+\frac{-s^{2}+s+1}{s^{3}+2 s^{2}+s} \\
& =s-1+\frac{-s^{2}+s+1}{s(s+1)^{2}}
\end{aligned}
$$

2. partial fraction expansion

$$
\frac{-s^{2}+s+1}{s(s+1)^{2}}=\frac{r_{1}}{s}+\frac{r_{2}}{s+1}+\frac{r_{3}}{(s+1)^{2}}
$$

- determine r_{1} :

$$
r_{1}=\left.\frac{-s^{2}+s+1}{(s+1)^{2}}\right|_{s=0}=1
$$

- determine r_{3} :

$$
r_{3}=\left.\frac{-s^{2}+s+1}{s}\right|_{s=-1}=1
$$

- determine r_{2} :

$$
r_{2}=\left.\frac{d}{d s}\left(\frac{-s^{2}+s+1}{s}\right)\right|_{s=-1}=\left.\frac{-s^{2}-1}{s^{2}}\right|_{s=-1}=-2
$$

(alternatively, just plug in some value of s other than $s=0$ or $s=-1$:

$$
\left.\left.\frac{-s^{2}+s+1}{s(s+1)^{2}}\right|_{s=1}=\frac{1}{4}=r_{1}+\frac{r_{2}}{2}+\frac{r_{3}}{4}=1+\frac{r_{2}}{2}+\frac{1}{4} \Longrightarrow r_{2}=-2\right)
$$

3. inverse Laplace transform

$$
\begin{aligned}
\mathcal{L}^{-1}(F(s)) & =\mathcal{L}^{-1}\left(s-1+\frac{1}{s}-\frac{2}{s+1}+\frac{1}{(s+1)^{2}}\right) \\
& =\delta^{\prime}(t)-\delta(t)+1-2 e^{-t}+t e^{-t}
\end{aligned}
$$

