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Lecture 5
Rational functions and partial fraction

expansion

• (review of) polynomials
• rational functions
• pole-zero plots
• partial fraction expansion
• repeated poles
• nonproper rational functions
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Polynomials and roots

polynomials
a(s) = a0 + a1s+ · · ·+ ans

n

• a is a polynomial in the variable s

• ai are the coefficients of a (usually real, but occasionally complex)

• n is the degree of a (assuming an 6= 0)

roots (or zeros) of a polynomial a: λ ∈ C that satisfy

a(λ) = 0

examples

• a(s) = 3 has no roots

• a(s) = s3 − 1 has three roots: 1, (−1 + j
√

3)/2, (−1− j
√

3)/2
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factoring out roots of a polynomial

if a has a root at s = λ we can factor out s− λ:

• dividing a by s− λ yields a polynomial:

b(s) =
a(s)

s− λ

is a polynomial (of degree one less than the degree of a)

• we can express a as
a(s) = (s− λ)b(s)

for some polynomial b

example: s3 − 1 has a root at s = 1

s3 − 1 = (s− 1)(s2 + s+ 1)
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the multiplicity of a root λ is the number of factors s− λ we can factor
out, i.e., the largest k such that

a(s)

(s− λ)k

is a polynomial

example:
a(s) = s3 + s2 − s− 1

• a has a zero at s = −1

• a(s)

s+ 1
=
s3 + s2 − s− 1

s+ 1
= s2 − 1 also has a zero at s = −1

• a(s)

(s+ 1)2
=
s3 + s2 − s− 1

(s+ 1)2
= s− 1 does not have a zero at s = −1

so the multiplicity of the zero at s = −1 is 2
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Fundamental theorem of algebra

a polynomial of degree n has exactly n roots, counting multiplicities

this means we can write a in factored form

a(s) = ans
n + · · ·+ a0 = an(s− λ1) · · · (s− λn)

where λ1, . . . , λn are the n roots of a

example: s3 + s2 − s− 1 = (s+ 1)2(s− 1)

the relation between the coefficients ai and the λi is complicated in
general, but

a0 = an

n∏

i=1

(−λi), an−1 = −an
n∑

i=1

λi

are two identities that are worth remembering
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Conjugate symmetry

if the coefficients a0, . . . , an are real, and λ ∈ C is a root, i.e.,

a(λ) = a0 + a1λ+ · · ·+ anλ
n = 0

then we have

a(λ) = a0 + a1λ+ · · ·+ anλ
n

= (a0 + a1λ+ · · ·+ anλn) = a(λ) = 0

in other words: λ is also a root

• if λ is real this isn’t interesting
• if λ is complex, it gives us another root for free
• complex roots come in complex conjugate pairs
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example:
PSfrag replacements =

<

λ1

λ2

λ3

λ4

λ5

λ6

λ3 and λ6 are real; λ1, λ2 are a complex conjugate pair; λ4, λ5 are a
complex conjugate pair

if a has real coefficients, we can factor it as

a(s) = an

(
r∏

i=1

(s− λi)

)(
m∏

i=r+1

(s− λi)(s− λi)

)

where λ1, . . . , λr are the real roots; λr+1, λr+1, . . . , λm, λm are the
complex roots
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Real factored form

(s− λ)(s− λ) = s2 − 2(<λ) s+ |λ|2

is a quadratic with real coefficients

real factored form of a polynomial a:

a(s) = an

(
r∏

i=1

(s− λi)

)(
m∏

i=r+1

(s2 + αis+ βi)

)

• λ1, . . . , λr are the real roots

• αi, βi are real and satisfy α
2
i < 4βi

any polynomial with real coefficients can be factored into a product of

• degree one polynomials with real coefficients
• quadratic polynomials with real coefficients
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example: s3 − 1 has roots

s = 1, s =
−1 + j

√
3

2
, s =

−1− j
√

3

2

• complex factored form

s3 − 1 = (s− 1)
(

s+ (1 + j
√

3)/2
) (

s+ (1− j
√

3)/2
)

• real factored form

s3 − 1 = (s− 1)(s2 + s+ 1)
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Rational functions

a rational function has the form

F (s) =
b(s)

a(s)
=
b0 + b1s+ · · ·+ bms

m

a0 + a1s+ · · ·+ ansn
,

i.e., a ratio of two polynomials (where a is not the zero polynomial)

• b is called the numerator polynomial

• a is called the denominator polynomial

examples of rational functions:

1

s+ 1
, s2 + 3,

1

s2 + 1
+

s

2s+ 3
=

s3 + 3s+ 3

2s3 + 3s2 + 2s+ 3
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rational function F (s) =
b(s)

a(s)

polynomials b and a are not uniquely determined, e.g.,

1

s+ 1
=

3

3s+ 3
=

s2 + 3

(s+ 1)(s2 + 3)

(except at s = ±j
√

3. . . )

rational functions are closed under addition, subtraction, multiplication,
division (except by the rational function 0)
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Poles & zeros

F (s) =
b(s)

a(s)
=
b0 + b1s+ · · ·+ bms

m

a0 + a1s+ · · ·+ ansn
,

assume b and a have no common factors (cancel them out if they do . . . )

• the m roots of b are called the zeros of F ; λ is a zero of F if F (λ) = 0

• the n roots of a are called the poles of F ; λ is a pole of F if
lims→λ |F (s)| = ∞

the multiplicity of a zero (or pole) λ of F is the multiplicity of the root λ
of b (or a)

example:
6s+ 12

s2 + 2s+ 1
has one zero at s = −2, two poles at s = −1
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factored or pole-zero form of F :

F (s) =
b0 + b1s+ · · ·+ bms

m

a0 + a1s+ · · ·+ ansn
= k

(s− z1) · · · (s− zm)

(s− p1) · · · (s− pn)

where

• k = bm/an

• z1, . . . , zm are the zeros of F (i.e., roots of b)

• p1, . . . , pn are the poles of F (i.e., roots of a)

(assuming the coefficients of a and b are real) complex poles or zeros come
in complex conjugate pairs

can also have real factored form . . .
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Pole-zero plots

poles & zeros of a rational functions are often shown in a pole-zero plot

PSfrag replacements

=

<1

j

(× denotes a pole; ◦ denotes a zero)

this example is for

F (s) = k
(s+ 1.5)(s+ 1 + 2j)(s+ 1− 2j)

(s+ 2.5)(s− 2)(s− 1− j)(s− 1 + j)

= k
(s+ 1.5)(s2 + 2s+ 5)

(s+ 2.5)(s− 2)(s2 − 2s+ 2)

(the plot doesn’t tell us k)
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Partial fraction expansion

F (s) =
b(s)

a(s)
=
b0 + b1s+ · · ·+ bms

m

a0 + a1s+ · · ·+ ansn

let’s assume (for now)

• no poles are repeated, i.e., all roots of a have multiplicity one
• m < n

then we can write F in the form

F (s) =
r1

s− λ1
+ · · ·+ rn

s− λn

called partial fraction expansion of F

• λ1, . . . , λn are the poles of F

• the numbers r1, . . . , rn are called the residues

• when λk = λl, rk = rl
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example:

s2 − 2

s3 + 3s2 + 2s
=
−1

s
+

1

s+ 1
+

1

s+ 2

let’s check:

−1

s
+

1

s+ 1
+

1

s+ 2
=
−1(s+ 1)(s+ 2) + s(s+ 2) + s(s+ 1)

s(s+ 1)(s+ 2)

in partial fraction form, inverse Laplace transform is easy:

L−1(F ) = L−1

(
r1

s− λ1
+ · · ·+ rn

s− λn

)

= r1e
λ1t + · · ·+ rne

λnt

(this is real since whenever the poles are conjugates, the corresponding
residues are also)
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Finding the partial fraction expansion

two steps:

• find poles λ1, . . . , λn (i.e., factor a(s))

• find residues r1, . . . , rn (several methods)

method 1: solve linear equations

we’ll illustrate for m = 2, n = 3

b0 + b1s+ b2s
2

(s− λ1)(s− λ2)(s− λ3)
=

r1
s− λ1

+
r2

s− λ2
+

r3
s− λ3
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clear denominators:

b0+b1s+b2s
2 = r1(s−λ2)(s−λ3)+r2(s−λ1)(s−λ3)+r3(s−λ1)(s−λ2)

equate coefficients:

• coefficient of s0:

b0 = (λ2λ3)r1 + (λ1λ3)r2 + (λ1λ2)r3

• coefficient of s1:

b1 = (−λ2 − λ3)r1 + (−λ1 − λ3)r2 + (−λ1 − λ2)r3

• coefficient of s2:
b2 = r1 + r2 + r3

now solve for r1, r2, r3 (three equations in three variables)
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method 2: to get r1, multiply both sides by s− λ1 to get

(s− λ1)(b0 + b1s+ b2s
2)

(s− λ1)(s− λ2)(s− λ3)
= r1 +

r2(s− λ1)

s− λ2
+
r3(s− λ1)

s− λ3

cancel s− λ1 term on left and set s = λ1:

b0 + b1λ1 + b2λ
2
1

(λ1 − λ2)(λ1 − λ3)
= r1

an explicit formula for r1! (can get r2, r3 the same way)

in the general case we have the formula

rk = (s− λk)F (s)|s=λk

which means:

• multiply F by s− λk

• then cancel s− λk from numerator and denominator

• then evaluate at s = λk to get rk
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example:
s2 − 2

s(s+ 1)(s+ 2)
=
r1
s

+
r2

s+ 1
+

r3
s+ 2

• residue r1:

r1 =

(

r1 +
r2s

s+ 1
+

r3s

s+ 2

)∣
∣
∣
∣
s=0

=
s2 − 2

(s+ 1)(s+ 2)

∣
∣
∣
∣
s=0

= −1

• residue r2:

r2 =

(
r1(s+ 1)

s
+ r2 +

r3(s+ 1)

s+ 2

)∣
∣
∣
∣
s=−1

=
s2 − 2

s(s+ 2)

∣
∣
∣
∣
s=−1

= 1

• residue r3:

r3 =

(
r1(s+ 2)

s
+
r2(s+ 2)

s+ 1
+ r3

)∣
∣
∣
∣
s=−2

=
s2 − 2

s(s+ 1)

∣
∣
∣
∣
s=−2

= 1

so we have:
s2 − 2

s(s+ 1)(s+ 2)
=
−1

s
+

1

s+ 1
+

1

s+ 2
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method 3: another explicit and useful expression for rk is:

rk =
b(λk)

a′(λk)

to see this, note that

rk = lim
s→λk

(s− λk)b(s)

a(s)
= lim

s→λk

b(s) + b′(s)(s− λk)

a′(s)
=

b(λk)

a′(λk)

where we used l’Hôpital’s rule in second line

example (previous page):

s2 − 2

s(s+ 1)(s+ 2)
=

s2 − 2

s3 + 2s2 + 2s

hence,

r1 =
s2 − 2

3s2 + 4s+ 2

∣
∣
∣
∣
s=0

= −1
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Example

let’s solve
v′′′ − v = 0, v(0) = 1, v′(0) = v′′(0) = 0

1. take Laplace transform:

s3V (s)− s2
︸ ︷︷ ︸

L(v′′′)

−V (s) = 0

2. solve for V to get

V (s) =
s2

s3 − 1

3. the poles of V are the cuberoots of 1, i.e., ej2πk/3, k = 0, 1, 2

s3 − 1 = (s− 1)
(

s+ 1/2 + j
√

3/2
) (

s+ 1/2− j
√

3/2
)
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4. now convert V to partial fraction form

V (s) =
r1

s− 1
+

r2

s+ 1
2 + j

√
3

2

+
r2

s+ 1
2 − j

√
3

2

to find residues we’ll use

r1 =
b(1)

a′(1)
=

1

3
, r2 =

b(−1/2− j
√

3/2)

a′(−1/2− j
√

3/2)
=

1

3

so partial fraction form is

V (s) =
1
3

s− 1
+

1
3

s+ 1
2 + j

√
3

2

+
1
3

s+ 1
2 − j

√
3

2

(check this by just multiplying out . . . )
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5. take inverse Laplace transform to get v:

v(t) =
1

3
et +

1

3
e(−

1
2−j

√
3

2 )t +
1

3
e(−

1
2+j

√
3

2 )t

=
1

3
et +

2

3
e−

t
2 cos

√
3

2
t

6. check that v′′′ − v = 0, v(0) = 1, v′(0) = v′′(0) = 0
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Repeated poles

now suppose

F (s) =
b(s)

(s− λ1)k1 · · · (s− λl)kl

• the poles λi are distinct (λi 6= λj for i 6= j) and have multiplicity ki

• degree of b less than degree of a

partial fraction expansion has the form

F (s) =
r1,k1

(s− λ1)k1
+

r1,k1−1

(s− λ1)k1−1
+ · · ·+ r1,1

s− λ1

+
r2,k2

(s− λ2)k2
+

r2,k2−1

(s− λ2)k2−1
+ · · ·+ r2,1

s− λ2

+ · · ·+ rl,kl

(s− λl)kl
+

rl,kl−1

(s− λl)kl−1
+ · · ·+ rl,1

s− λl

n residues, just as before; terms involve higher powers of 1/(s− λ)
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example: F (s) =
1

s2(s+ 1)
has expansion

F (s) =
r1
s2

+
r2
s

+
r3

s+ 1

inverse Laplace transform of partial fraction form is easy since

L−1

(
r

(s− λ)k

)

=
r

(k − 1)!
tk−1eλt

same types of tricks work to find the ri,j’s

• solve linear equations (method 1)
• can find the residues for nonrepeated poles as before

Rational functions and partial fraction expansion 5–26



example:
1

s2(s+ 1)
=
r1
s2

+
r2
s

+
r3

s+ 1

we get (as before)
r3 = (s+ 1)F (s)|s=−1 = 1

now clear denominators to get

r1(s+ 1) + r2s(s+ 1) + s2 = 1

(1 + r2)s
2 + (r1 + r2)s+ 1 = 1

which yields r2 = −1, r1 = 1, so

F (s) =
1

s2
− 1

s
+

1

s+ 1
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extension of method 2: to get ri,ki
,

• multiply on both sides by (s− λi)
ki

• evaluate at s = λi

gives
F (s)(s− λi)

ki
∣
∣
s=λi

= ri,ki

to get other r’s, we have extension

1

j!

dj

dsj
(
F (s)(s− λi)

ki
)
∣
∣
∣
∣
s=λi

= ri,ki−j

usually the ki’s are small (e.g., 1 or 2), so fortunately this doesn’t come up
too often
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example (ctd.):

F (s) =
r1
s2

+
r2
s

+
r3

s+ 1

• multiply by s2:

s2F (s) =
1

s+ 1
= r1 + r2s+

r3s
2

s+ 1

• evaluate at s = 0 to get r1 = 1

• differentiate with respect to s:

− 1

(s+ 1)2
= r2 +

d

ds

(
r3s

2

s+ 1

)

• evaluate at s = 0 to get r2 = −1

(same as what we got above)
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Nonproper rational functions

F (s) =
b(s)

a(s)
=
b0 + b1s+ · · ·+ bms

m

a0 + a1s+ · · ·+ ansn
,

is called proper if m ≤ n, strictly proper if m < n, nonproper if m > n

partial fraction expansion requires strictly proper F ; to find L−1(F ) for
other cases, divide a into b:

F (s) = b(s)/a(s) = c(s) + d(s)/a(s)

where

c(s) = c0 + · · ·+ cm−ns
m−n, d = d0 + · · ·+ dks

k, k < n

then
L−1(F ) = c0δ + · · ·+ cm−nδ

(m−n) + L−1(d/a)

d/a is strictly proper, hence has partial fraction form
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example

F (s) =
5s+ 3

s+ 1
is proper, but not strictly proper

F (s) =
5(s+ 1)− 5 + 3

s+ 1
= 5− 2

s+ 1
,

so
L−1(F ) = 5δ(t)− 2e−t

in general,

• F strictly proper ⇐⇒ f has no impulses at t = 0

• F proper, not strictly proper ⇐⇒ f has an impulse at t = 0

• F nonproper ⇐⇒ f has higher-order impulses at t = 0

• m− n determines order of impulse at t = 0
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Example

F (s) =
s4 + s3 − 2s2 + 1

s3 + 2s2 + s

1. write as a sum of a polynomial and a strictly proper rational function:

F (s) =
s(s3 + 2s2 + s)− s(2s2 + s) + s3 − 2s2 + 1

s3 + 2s2 + s

= s+
−s3 − 3s2 + 1

s3 + 2s2 + s

= s+
−(s3 + 2s2 + s) + (2s2 + s)− 3s2 + 1

s3 + 2s2 + s

= s− 1 +
−s2 + s+ 1

s3 + 2s2 + s

= s− 1 +
−s2 + s+ 1

s(s+ 1)2
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2. partial fraction expansion

−s2 + s+ 1

s(s+ 1)2
=
r1
s

+
r2

s+ 1
+

r3
(s+ 1)2

• determine r1:
r1 =

−s2 + s+ 1

(s+ 1)2

∣
∣
∣
∣
s=0

= 1

• determine r3:
r3 =

−s2 + s+ 1

s

∣
∣
∣
∣
s=−1

= 1

• determine r2:

r2 =
d

ds

(−s2 + s+ 1

s

)∣
∣
∣
∣
s=−1

=
−s2 − 1

s2

∣
∣
∣
∣
s=−1

= −2

(alternatively, just plug in some value of s other than s = 0 or s = −1:

−s2 + s+ 1

s(s+ 1)2

∣
∣
∣
∣
∣
s=1

=
1

4
= r1 +

r2

2
+
r3

4
= 1 +

r2

2
+

1

4
=⇒ r2 = −2)
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3. inverse Laplace transform

L−1(F (s)) = L−1

(

s− 1 +
1

s
− 2

s+ 1
+

1

(s+ 1)2

)

= δ′(t)− δ(t) + 1− 2e−t + te−t
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