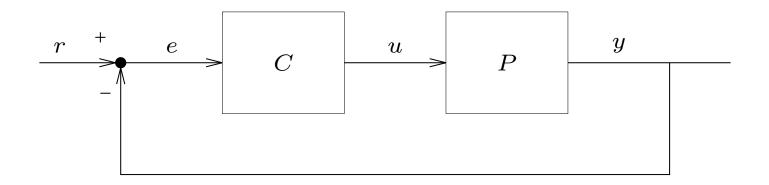
Lecture 14 Integral action

- integral action
- PI control

Proportional control

standard feedback control configuration:



so far we have looked at **proportional control**: C(s) = k is constant

DC sensitivity is S(0) = 1/(1 + P(0)C(0))

to make S(0) small, we make C(0) large

Integral action

extreme case: what if $C(0) = \infty$, *i.e.*, C has a **pole** at s = 0?

then S(0)1/(1 + P(0)C(0)) = 0, which means:

- we have perfect DC tracking: for constant $r, \ y(t) \to r \text{ as } t \to \infty$
- for small $\delta P(0)$, $\delta T(0) \approx 0$

but, is it possible? could it ever work?

PI control

C has a pole at s=0 if C has a term like 1/s in it, as in

$$C(s) = k_p + \frac{k_i}{s}$$

- called a proportional plus integral (PI) control law
- used very widely in practice
- k_p is called the proportional gain; k_i is called the integral gain

PI control law is expressed in time domain as

$$u(t) = k_p e(t) + k_i \int_0^t e(\tau) \, d\tau$$

we add another 'corrective' or 'restoring' term, proportional to the *integral* of error

Integral action

a constant error \boldsymbol{e}

- yields a constant corrective reaction (u) for proportional controller
- yields a growing corrective reaction (u) for PI controller

Example

plant from plate heating example:

$$P(s) = \frac{1}{(1+0.1s)(1+0.2s)(1+0.3s)},$$

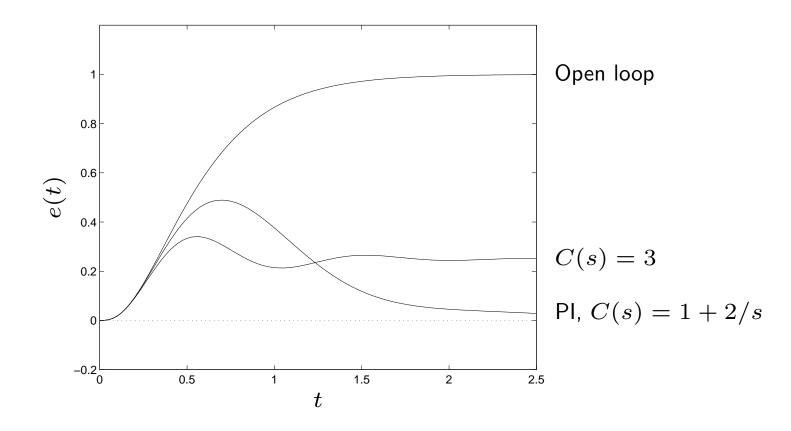
with PI controller C(s) = 1 + 2/s

closed-loop transfer function from disturbance power D to temperature error e is then

$$\frac{P}{1+PC} = \frac{\frac{1}{(1+0.1s)(1+0.2s)(1+0.3s)}}{1+\frac{1}{(1+0.1s)(1+0.2s)(1+0.3s)}(1+2/s)}$$
$$= \frac{s}{s(1+0.1s)(1+0.2s)(1+0.3s)+s+2}$$

which is stable, with poles -12.2, $-2.32 \pm 3.57 j$, -1.51

Integral action



note that the temperature error \boldsymbol{e} converges to zero

General case

a control system has integral action if

- L (*i.e.*, P or C or both) has a pole at s = 0
- closed-loop transfer function T = L/(1+L) is stable

with integral action, $S(0)=\frac{1}{1+L}\bigg|_{s=0}=0$ which implies if r(t) is constant,

- $e(t) \rightarrow 0$ as $t \rightarrow \infty$, *i.e.*, zero steady-state error
- $y(t) \rightarrow r$ as $t \rightarrow \infty$ (called **asymptotic tracking**)

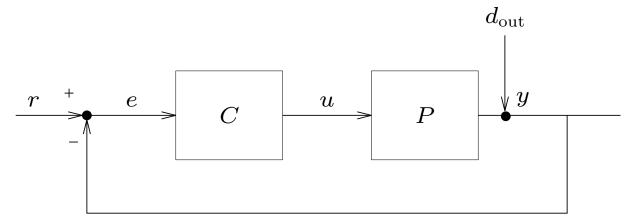
(recall S is the transfer function from r to e)

when r is constant (for long periods of time) it is sometimes called the **set-point** (for y)

integral action $\Rightarrow y$ converges to its set-point

Constant disturbances

consider output disturbance d_{out} :



S is transfer function from $d_{\rm out}$ to e

steady-state error induced by constant $d_{out} S(0)d_{out} = 0$

i.e., constant output disturbance induces zero steady-state error (called **asymptotic disturbance rejection**)

controller automatically counteracts ('nulls out') any constant disturbance (constant input disturbances are also rejected if C has a pole at s = 0)

Static sensitivity with integral control

suppose

- C has a pole at s = 0, but P does not
- T = L/(1+L) is stable

then we have T(0) = 1, regardless of P(0), since

$$T(0) = \frac{P(s)C(s)}{1 + P(s)C(s)}\Big|_{s=0}$$

and
$$C(s) \to \infty$$
 as $s \to 0$

variations in P(0) have no effect on T(0), *i.e.*, $\frac{\delta T(0)}{T(0)} = 0$ for any (not small) $\delta P(0)$ (as long as T remains stable)

controller pole at s = 0 implies: closed-loop DC or steady-state gain is completely insensitive to (even large) changes in plant DC gain (as long as T remains stable)

Choice of integral gain

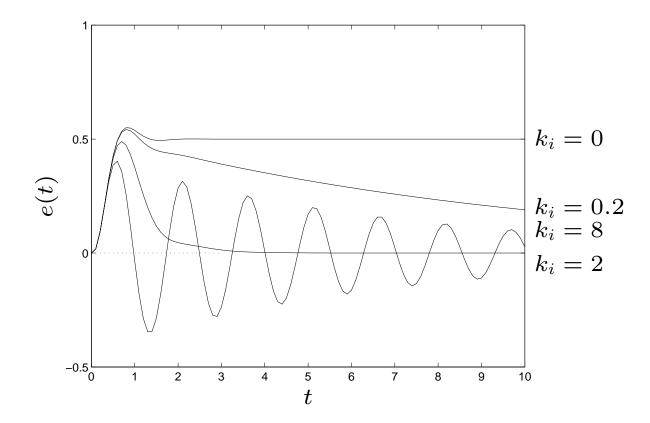
- k_i too small: get asymptotic tracking, disturbance rejection, but only after long time
- k_i too large: oscillatory response, or even instability

(more on choice of k_i later)

closed-loop step responses of heater example, with

$$C(s) = 1 + \frac{k_i}{s},$$

 $k_i = 0$ (proportional control; no integral action), $k_i = 0.2, 2, 8$:



for this example, maybe $k_i \approx 2$ is about right

Integral action

another common form for describing PI controller:

$$C(s) = k \left(1 + 1/(sT_{\rm int})\right)$$

- T_{int} is called the integral time constant
- $1/T_{\rm int}$ is called the reset rate

for a constant error e, it takes $T_{\rm int}$ sec for the integral term to equal the proportional term in u

Some plants have pole at s = 0, *i.e.*, integration 'built in', *e.g.*,

• u(t) = force on mass; y(t) = position of mass

$$P(s) = \frac{1}{ms^2}$$

• u(t) = voltage applied to DC motor; y(t) = shaft angular velocity

$$P(s) = \frac{k}{Js(1+sT)}$$

control systems for these plants automatically have integral action

Summary

PI control is widely used in industry

integral action means infinite loop gain at s = 0, hence

- zero steady-state tracking error
- zero steady-state effect of constant output disturbance
- zero sensitivity to DC plant gain

(cf. proportional control)

disadvantages of integral action:

- open-loop control system (*i.e.*, *L*) is unstable better make sure system doesn't operate open-loop
- excessive integral gain yields closed-loop instability

design tradeoff: how fast we achieve asymptotic tracking vs. stability