Convex Optimization

Stephen Boyd Lieven Vandenberghe

Revised slides by Stephen Boyd, Lieven Vandenberghe, and Parth Nobel

1. Introduction

Outline

Mathematical optimization

Convex optimization

Convex Optimization

Optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $g_i(x) = 0$, $i = 1, ..., p$

- ▶ $x \in \mathbf{R}^n$ is (vector) variable to be chosen (*n* scalar variables x_1, \ldots, x_n)
- f_0 is the **objective function**, to be minimized
- f_1, \ldots, f_m are the inequality constraint functions
- g_1, \ldots, g_p are the equality constraint functions
- variations: maximize objective, multiple objectives, ...

Finding good (or best) actions

x represents some action, e.g.,

- trades in a portfolio
- airplane control surface deflections
- schedule or assignment
- resource allocation
- constraints limit actions or impose conditions on outcome
- the smaller the objective $f_0(x)$, the better
 - total cost (or negative profit)
 - deviation from desired or target outcome
 - risk
 - fuel use

Finding good models

- x represents the parameters in a model
- constraints impose requirements on model parameters (e.g., nonnegativity)
- objective $f_0(x)$ is sum of two terms:
 - a prediction error (or loss) on some observed data
 - a (regularization) term that penalizes model complexity

Worst-case analysis (pessimization)

- variables are actions or parameters out of our control (and possibly under the control of an adversary)
- constraints limit the possible values of the parameters
- minimizing $-f_0(x)$ finds worst possible parameter values
- if the worst possible value of $f_0(x)$ is tolerable, you're OK
- it's good to know what the worst possible scenario can be

Optimization-based models

model an entity as taking actions that solve an optimization problem

- an individual makes choices that maximize expected utility
- an organism acts to maximize its reproductive success
- reaction rates in a cell maximize growth
- currents in a circuit minimize total power
- (except the last) these are very crude models
- and yet, they often work very well

Basic use model for mathematical optimization

- instead of saying how to choose (action, model) x
- you articulate what you want (by stating the problem)
- then let an algorithm decide on (action, model) x

Can you solve it?

generally, no

but you can try to solve it approximately, and it often doesn't matter

the exception: convex optimization

- includes linear programming (LP), quadratic programming (QP), many others
- we can solve these problems reliably and efficiently
- come up in many applications across many fields

Nonlinear optimization

traditional techniques for general nonconvex problems involve compromises

local optimization methods (nonlinear programming)

- find a point that minimizes f_0 among feasible points near it
- can handle large problems, e.g., neural network training
- require initial guess, and often, algorithm parameter tuning
- provide no information about how suboptimal the point found is

global optimization methods

- find the (global) solution
- worst-case complexity grows exponentially with problem size
- often based on solving convex subproblems

Outline

Mathematical optimization

Convex optimization

Convex Optimization

Convex optimization

convex optimization problem:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

• variable $x \in \mathbf{R}^n$

- equality constraints are linear
- f_0, \ldots, f_m are **convex**: for $\theta \in [0, 1]$,

$$f_i(\theta x + (1 - \theta)y) \le \theta f_i(x) + (1 - \theta)f_i(y)$$

i.e., f_i have nonnegative (upward) curvature

When is an optimization problem hard to solve?

classical view:

- linear (zero curvature) is easy
- nonlinear (nonzero curvature) is hard

the classical view is wrong

- the correct view:
 - convex (nonnegative curvature) is easy
 - nonconvex (negative curvature) is hard

Solving convex optimization problems

many different algorithms (that run on many platforms)

- interior-point methods for up to 10000s of variables
- first-order methods for larger problems
- do not require initial point, babysitting, or tuning
- can develop and deploy quickly using modeling languages such as CVXPY
- solvers are reliable, so can be embedded
- code generation yields real-time solvers that execute in milliseconds (*e.g.*, on Falcon 9 and Heavy for landing)

Modeling languages for convex optimization

domain specific languages (DSLs) for convex optimization

- describe problem in high level language, close to the math
- can automatically transform problem to standard form, then solve

enables rapid prototyping

- it's now much easier to develop an optimization-based application
- ideal for teaching and research (can do a lot with short scripts)

> gets close to the basic idea: say what you want, not how to get it

CVXPY example: non-negative least squares

math:

- $\begin{array}{ll} \text{minimize} & \|Ax b\|_2^2\\ \text{subject to} & x \ge 0 \end{array}$
- variable is x
- ► A, b given
- $x \ge 0$ means $x_1 \ge 0, \ldots, x_n \ge 0$

CVXPY code:

import cvxpy as cp
A. b = ...

x = cp.Variable(n) obj = cp.norm2(A @ x - b)**2 constr = [x >= 0] prob = cp.Problem(cp.Minimize(obj), constr) prob.solve()

Brief history of convex optimization

theory (convex analysis): 1900–1970

algorithms

- 1947: simplex algorithm for linear programming (Dantzig)
- 1960s: early interior-point methods (Fiacco & McCormick, Dikin, ...)
- 1970s: ellipsoid method and other subgradient methods
- 1980s & 90s: interior-point methods (Karmarkar, Nesterov & Nemirovski)
- since 2000s: many methods for large-scale convex optimization

applications

- before 1990: mostly in operations research, a few in engineering
- since 1990: many applications in engineering (control, signal processing, communications, circuit design, ...)
- since 2000s: machine learning and statistics, finance

Summary

convex optimization problems

- are optimization problems of a special form
- arise in many applications
- can be solved effectively
- are easy to specify using DSLs

2. Convex sets

Outline

Some standard convex sets

Operations that preserve convexity

Generalized inequalities

Separating and supporting hyperplanes

Affine set

line through x_1, x_2 : all points of form $x = \theta x_1 + (1 - \theta)x_2$, with $\theta \in \mathbf{R}$

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations $\{x \mid Ax = b\}$ (conversely, every affine set can be expressed as solution set of system of linear equations)

Convex set

line segment between x_1 and x_2 : all points of form $x = \theta x_1 + (1 - \theta)x_2$, with $0 \le \theta \le 1$

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta) x_2 \in C$$

examples (one convex, two nonconvex sets)

Convex combination and convex hull

convex combination of $x_1, ..., x_k$: any point x of the form

 $x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$

with $\theta_1 + \cdots + \theta_k = 1$, $\theta_i \ge 0$

convex hull conv S: set of all convex combinations of points in S

Convex cone

conic (nonnegative) combination of x_1 and x_2 : any point of the form

 $x = \theta_1 x_1 + \theta_2 x_2$

with $\theta_1 \ge 0$, $\theta_2 \ge 0$

convex cone: set that contains all conic combinations of points in the set

Convex Optimization

Boyd and Vandenberghe

Hyperplanes and halfspaces

hyperplane: set of the form $\{x \mid a^T x = b\}$, with $a \neq 0$

hyperplanes are affine and convex; halfspaces are convex

Euclidean balls and ellipsoids

(Euclidean) ball with center x_c and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

ellipsoid: set of the form

$$\{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$

with $P \in \mathbf{S}_{++}^n$ (*i.e.*, *P* symmetric positive definite)

another representation: $\{x_c + Au \mid ||u||_2 \le 1\}$ with A square and nonsingular

Norm balls and norm cones

- ▶ norm: a function || · || that satisfies
 - $||x|| \ge 0; ||x|| = 0$ if and only if x = 0
 - ||tx|| = |t| ||x|| for $t \in \mathbf{R}$
 - $\|x + y\| \le \|x\| + \|y\|$
- ▶ notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{symb}$ is particular norm
- ▶ norm ball with center x_c and radius r: $\{x \mid ||x x_c|| \le r\}$
- norm cone: $\{(x, t) | ||x|| \le t\}$
- norm balls and cones are convex

Euclidean norm cone

 $\{(x,t) \mid ||x||_2 \le t\} \subset \mathbf{R}^{n+1}$

is called second-order cone

Boyd and Vandenberghe

Convex Optimization

Polyhedra

> polyhedron is solution set of finitely many linear inequalities and equalities

 $\{x \mid Ax \le b, \ Cx = d\}$

 $(A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, \leq \text{ is componentwise inequality})$

- intersection of finite number of halfspaces and hyperplanes
- example with no equality constraints; a_i^T are rows of A

Positive semidefinite cone

notation:

- **S**ⁿ is set of symmetric $n \times n$ matrices
- ▶ $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \ge 0\}$: positive semidefinite (symmetric) $n \times n$ matrices

$$X \in \mathbf{S}^n_+ \quad \Longleftrightarrow \quad z^T X z \ge 0 \text{ for all } z$$

- ► S_{+}^{n} is a convex cone, the **positive semidefinite cone**
- ▶ $\mathbf{S}_{++}^n = \{X \in \mathbf{S}^n \mid X > 0\}$: positive definite (symmetric) $n \times n$ matrices

example: $\begin{bmatrix} x & y \\ y & z \end{bmatrix} \in \mathbf{S}^2_+$

Convex Optimization

Boyd and Vandenberghe

Outline

Some standard convex sets

Operations that preserve convexity

Generalized inequalities

Separating and supporting hyperplanes

Convex Optimization

Showing a set is convex

methods for establishing convexity of a set ${\it C}$

- 1. apply definition: show $x_1, x_2 \in C$, $0 \le \theta \le 1 \implies \theta x_1 + (1 \theta) x_2 \in C$
 - recommended only for **very simple** sets
- 2. use convex functions (next lecture)
- 3. show that *C* is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, ...) by operations that preserve convexity
 - intersection
 - affine mapping
 - perspective mapping
 - linear-fractional mapping

you'll mostly use methods 2 and 3

Intersection

the intersection of (any number of) convex sets is convex

example:

- $S = \{x \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3\}, \text{ with } p(t) = x_1 \cos t + \dots + x_m \cos mt$
- write $S = \bigcap_{|t| \le \pi/3} \{x \mid |p(t)| \le 1\}$, *i.e.*, an intersection of (convex) slabs

• picture for m = 2:

Convex Optimization

Boyd and Vandenberghe

Affine mappings

▶ suppose $f : \mathbf{R}^n \to \mathbf{R}^m$ is affine, *i.e.*, f(x) = Ax + b with $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^m$

the image of a convex set under f is convex

$$S \subseteq \mathbf{R}^n$$
 convex $\implies f(S) = \{f(x) \mid x \in S\}$ convex

• the **inverse image** $f^{-1}(C)$ of a convex set under f is convex

 $C \subseteq \mathbf{R}^m$ convex $\implies f^{-1}(C) = \{x \in \mathbf{R}^n \mid f(x) \in C\}$ convex

Convex Optimization

Boyd and Vandenberghe

Examples

- ▶ scaling, translation: $aS + b = \{ax + b \mid x \in S\}, a, b \in \mathbf{R}$
- ▶ projection onto some coordinates: $\{x \mid (x, y) \in S\}$
- if $S \subseteq \mathbf{R}^n$ is convex and $c \in \mathbf{R}^n$, $c^T S = \{c^T x \mid x \in S\}$ is an interval
- ▶ solution set of linear matrix inequality $\{x \mid x_1A_1 + \cdots + x_mA_m \leq B\}$ with $A_i, B \in \mathbb{S}^p$
- ▶ hyperbolic cone $\{x \mid x^T P x \le (c^T x)^2, c^T x \ge 0\}$ with $P \in \mathbf{S}^n_+$

Perspective and linear-fractional function

• perspective function $P : \mathbf{R}^{n+1} \to \mathbf{R}^n$:

P(x, t) = x/t, **dom** $P = \{(x, t) | t > 0\}$

images and inverse images of convex sets under perspective are convex

linear-fractional function $f : \mathbf{R}^n \to \mathbf{R}^m$:

$$f(x) = \frac{Ax+b}{c^T x+d},$$
 dom $f = \{x \mid c^T x+d > 0\}$

images and inverse images of convex sets under linear-fractional functions are convex

Linear-fractional function example

Boyd and Vandenberghe

Outline

Some standard convex sets

Operations that preserve convexity

Generalized inequalities

Separating and supporting hyperplanes

Convex Optimization

Proper cones

a convex cone $K \subseteq \mathbf{R}^n$ is a **proper cone** if

- K is closed (contains its boundary)
- ► *K* is solid (has nonempty interior)
- ► *K* is pointed (contains no line)

examples

- ▶ nonnegative orthant $K = \mathbf{R}_{+}^{n} = \{x \in \mathbf{R}^{n} \mid x_{i} \ge 0, i = 1, ..., n\}$
- positive semidefinite cone $K = \mathbf{S}_{+}^{n}$
- nonnegative polynomials on [0, 1]:

$$K = \{x \in \mathbf{R}^n \mid x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1} \ge 0 \text{ for } t \in [0, 1]\}$$

Generalized inequality

(nonstrict and strict) generalized inequality defined by a proper cone K:

$$x \leq_K y \iff y - x \in K, \qquad x \prec_K y \iff y - x \in \operatorname{int} K$$

examples

- componentwise inequality $(K = \mathbf{R}^n_+)$: $x \leq \mathbf{R}^n_+ y \iff x_i \leq y_i, \quad i = 1, \dots, n$
- matrix inequality $(K = \mathbf{S}_{+}^{n})$: $X \leq_{\mathbf{S}^{n}} Y \iff Y X$ positive semidefinite

these two types are so common that we drop the subscript in \leq_K

• many properties of \leq_K are similar to \leq on **R**, *e.g.*,

$$x \leq_K y, \quad u \leq_K v \implies x + u \leq_K y + v$$

Outline

Some standard convex sets

Operations that preserve convexity

Generalized inequalities

Separating and supporting hyperplanes

Separating hyperplane theorem

▶ if C and D are nonempty disjoint (*i.e.*, $C \cap D = \emptyset$) convex sets, there exist $a \neq 0$, b s.t.

$$a^T x \le b$$
 for $x \in C$, $a^T x \ge b$ for $x \in D$

- the hyperplane $\{x \mid a^T x = b\}$ separates *C* and *D*
- ▶ strict separation requires additional assumptions (*e.g.*, *C* is closed, *D* is a singleton)

Supporting hyperplane theorem

• suppose x_0 is a boundary point of set $C \subset \mathbf{R}^n$

supporting hyperplane to *C* at x_0 has form $\{x \mid a^T x = a^T x_0\}$, where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$

supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

3. Convex functions

Outline

Convex functions

Operations that preserve convexity

Constructive convex analysis

Perspective and conjugate

Quasiconvexity

Definition

▶ $f : \mathbf{R}^n \to \mathbf{R}$ is convex if **dom** *f* is a convex set and for all $x, y \in \mathbf{dom} f$, $0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

• f is concave if -f is convex

► *f* is strictly convex if **dom***f* is convex and for $x, y \in$ **dom***f*, $x \neq y$, $0 < \theta < 1$,

$$f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$$

Convex Optimization

Examples on R

convex functions:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- exponential: e^{ax} , for any $a \in \mathbf{R}$
- ▶ powers: x^{α} on \mathbf{R}_{++} , for $\alpha \ge 1$ or $\alpha \le 0$
- ▶ powers of absolute value: $|x|^p$ on **R**, for $p \ge 1$
- positive part (relu): max{0, x}

concave functions:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++} , for $0 \leq \alpha \leq 1$
- ▶ logarithm: log x on **R**₊₊
- entropy: $-x \log x$ on \mathbf{R}_{++}
- negative part: min{0, x}

Examples on R^{*n*}

convex functions:

- affine functions: $f(x) = a^T x + b$
- ▶ any norm, *e.g.*, the ℓ_p norms
 - $||x||_p = (|x_1|^p + \dots + |x_n|^p)^{1/p} \text{ for } p \ge 1$ - $||x||_{\infty} = \max\{|x_1|, \dots, |x_n|\}$
- sum of squares: $||x||_2^2 = x_1^2 + \dots + x_n^2$
- max function: $\max(x) = \max\{x_1, x_2, \dots, x_n\}$
- softmax or log-sum-exp function: $log(exp x_1 + \cdots + exp x_n)$

Examples on \mathbf{R}^{m \times n}

- $X \in \mathbf{R}^{m \times n}$ ($m \times n$ matrices) is the variable
- general affine function has form

$$f(X) = \mathbf{tr}(A^{T}X) + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}X_{ij} + b$$

for some $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}$

spectral norm (maximum singular value) is convex

$$f(X) = \|X\|_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$$

▶ log-determinant: for $X \in \mathbf{S}_{++}^n$, $f(X) = \log \det X$ is concave

Extended-value extension

- suppose f is convex on \mathbf{R}^n , with domain $\mathbf{dom} f$
- ▶ its extended-value extension \tilde{f} is function $\tilde{f} : \mathbf{R}^n \to \mathbf{R} \cup \{\infty\}$

$$\tilde{f}(x) = \begin{cases} f(x) & x \in \operatorname{dom} f \\ \infty & x \notin \operatorname{dom} f \end{cases}$$

often simplifies notation; for example, the condition

$$0 \le \theta \le 1 \quad \Longrightarrow \quad \tilde{f}(\theta x + (1 - \theta)y) \le \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$$

(as an inequality in $\mathbf{R} \cup \{\infty\}$), means the same as the two conditions

- **dom**f is convex

$$-x, y \in \mathbf{dom} f, \ 0 \le \theta \le 1 \implies f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

Convex Optimization

Restriction of a convex function to a line

▶ $f : \mathbf{R}^n \to \mathbf{R}$ is convex if and only if the function $g : \mathbf{R} \to \mathbf{R}$,

 $g(t) = f(x + tv), \qquad \operatorname{dom} g = \{t \mid x + tv \in \operatorname{dom} f\}$

is convex (in t) for any $x \in \mathbf{dom} f$, $v \in \mathbf{R}^n$

can check convexity of f by checking convexity of functions of one variable

Example

►
$$f : \mathbf{S}^n \to \mathbf{R}$$
 with $f(X) = \log \det X$, $\mathbf{dom} f = \mathbf{S}^n_{++}$
► consider line in \mathbf{S}^n given by $X + tV$, $X \in \mathbf{S}^n_{++}$, $V \in \mathbf{S}^n$, $t \in \mathbf{R}$

$$g(t) = \log \det(X + tV)$$

= $\log \det \left(X^{1/2} \left(I + tX^{-1/2}VX^{-1/2} \right) X^{1/2} \right)$
= $\log \det X + \log \det \left(I + tX^{-1/2}VX^{-1/2} \right)$
= $\log \det X + \sum_{i=1}^{n} \log(1 + t\lambda_i)$

where λ_i are the eigenvalues of $X^{-1/2}VX^{-1/2}$

▶ g is concave in t (for any choice of $X \in \mathbf{S}_{++}^n$, $V \in \mathbf{S}^n$); hence f is concave

Convex Optimization

First-order condition

f is differentiable if dom f is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right) \in \mathbf{R}^n$$

exists at each $x \in \mathbf{dom} f$

▶ 1st-order condition: differentiable *f* with convex domain is convex if and only if

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
 for all $x, y \in \mathbf{dom} f$

• first order Taylor approximation of convex f is a **global underestimator** of f

Convex Optimization

Second-order conditions

► f is twice differentiable if dom f is open and the Hessian $\nabla^2 f(x) \in \mathbf{S}^n$,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n,$$

exists at each $x \in \mathbf{dom} f$

> 2nd-order conditions: for twice differentiable f with convex domain

- *f* is convex if and only if $\nabla^2 f(x) \ge 0$ for all *x* ∈ **dom***f*
- if $\nabla^2 f(x) > 0$ for all $x \in \mathbf{dom} f$, then f is strictly convex

Examples

▶ quadratic function: $f(x) = (1/2)x^T P x + q^T x + r$ (with $P \in \mathbf{S}^n$) $\nabla f(x) = P x + q$, $\nabla^2 f(x) = P$

convex if $P \ge 0$ (concave if $P \le 0$) • least-squares objective: $f(x) = ||Ax - b||_2^2$

$$\nabla f(x) = 2A^T (Ax - b), \qquad \nabla^2 f(x) = 2A^T A$$

convex (for any A)

• quadratic-over-linear: $f(x, y) = x^2/y$, y > 0

$$\nabla^2 f(x,y) = \frac{2}{y^3} \left[\begin{array}{c} y \\ -x \end{array} \right] \left[\begin{array}{c} y \\ -x \end{array} \right]^T \ge 0$$

convex for y > 0

Convex Optimization

More examples

• **log-sum-exp**: $f(x) = \log \sum_{k=1}^{n} \exp x_k$ is convex

$$\nabla^2 f(x) = \frac{1}{\mathbf{1}^T z} \operatorname{diag}(z) - \frac{1}{(\mathbf{1}^T z)^2} z z^T \qquad (z_k = \exp x_k)$$

▶ to show $\nabla^2 f(x) \ge 0$, we must verify that $v^T \nabla^2 f(x) v \ge 0$ for all v:

$$v^{T} \nabla^{2} f(x) v = \frac{(\sum_{k} z_{k} v_{k}^{2}) (\sum_{k} z_{k}) - (\sum_{k} v_{k} z_{k})^{2}}{(\sum_{k} z_{k})^{2}} \ge 0$$

since $(\sum_k v_k z_k)^2 \le (\sum_k z_k v_k^2)(\sum_k z_k)$ (from Cauchy-Schwarz inequality)

geometric mean: $f(x) = (\prod_{k=1}^{n} x_k)^{1/n}$ on \mathbf{R}_{++}^n is concave (similar proof as above)

Convex Optimization

Epigraph and sublevel set

• α -sublevel set of $f : \mathbf{R}^n \to \mathbf{R}$ is $C_{\alpha} = \{x \in \mathbf{dom} f \mid f(x) \le \alpha\}$

- sublevel sets of convex functions are convex sets (but converse is false)
- epigraph of $f : \mathbf{R}^n \to \mathbf{R}$ is epi $f = \{(x, t) \in \mathbf{R}^{n+1} \mid x \in \operatorname{dom} f, f(x) \le t\}$

f is convex if and only if epif is a convex set

Jensen's inequality

basic inequality: if f is convex, then for $x, y \in \mathbf{dom} f$, $0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

• extension: if f is convex and z is a random variable on **dom** f,

 $f(\mathbf{E}\,z) \le \mathbf{E}f(z)$

basic inequality is special case with discrete distribution

 $\operatorname{prob}(z = x) = \theta$, $\operatorname{prob}(z = y) = 1 - \theta$

Convex Optimization

Example: log-normal random variable

- ▶ suppose $X \sim \mathcal{N}(\mu, \sigma^2)$
- with $f(u) = \exp u$, Y = f(X) is log-normal
- we have $\mathbf{E}f(X) = \exp(\mu + \sigma^2/2)$
- Jensen's inequality is

$$f(\mathbf{E}X) = \exp\mu \le \mathbf{E}f(X) = \exp(\mu + \sigma^2/2)$$

which indeed holds since $\exp \sigma^2/2 > 1$

Example: log-normal random variable

Convex Optimization

Outline

Convex functions

Operations that preserve convexity

Constructive convex analysis

Perspective and conjugate

Quasiconvexity

Showing a function is convex

methods for establishing convexity of a function \boldsymbol{f}

- 1. verify definition (often simplified by restricting to a line)
- 2. for twice differentiable functions, show $\nabla^2 f(x) \geq 0$
 - recommended only for very simple functions
- 3. show that f is obtained from simple convex functions by operations that preserve convexity
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maximum and supremum
 - composition
 - minimization
 - perspective

you'll mostly use methods 2 and 3 $\,$

Nonnegative scaling, sum, and integral

• nonnegative multiple: αf is convex if f is convex, $\alpha \ge 0$

- **sum:** $f_1 + f_2$ convex if f_1, f_2 convex
- infinite sum: if f_1, f_2, \ldots are convex functions, infinite sum $\sum_{i=1}^{\infty} f_i$ is convex

▶ **integral:** if
$$f(x, \alpha)$$
 is convex in x for each $\alpha \in \mathcal{A}$, then $\int_{\alpha \in \mathcal{A}} f(x, \alpha) d\alpha$ is convex

there are analogous rules for concave functions

Composition with affine function

(pre-)composition with affine function: f(Ax + b) is convex if f is convex

examples

log barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom} f = \{x \mid a_i^T x < b_i, i = 1, \dots, m\}$$

• norm approximation error: f(x) = ||Ax - b|| (any norm)

Convex Optimization

Pointwise maximum

if $f_1, ..., f_m$ are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex

examples

- piecewise-linear function: $f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$
- sum of r largest components of $x \in \mathbf{R}^n$:

$$f(x) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$

 $(x_{[i]} \text{ is } i \text{th largest component of } x)$

proof: $f(x) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\}$

Convex Optimization

Pointwise supremum

if f(x, y) is convex in x for each $y \in \mathcal{A}$, then $g(x) = \sup_{y \in \mathcal{A}} f(x, y)$ is convex

examples

- ► distance to farthest point in a set C: $f(x) = \sup_{y \in C} ||x y||$
- ▶ maximum eigenvalue of symmetric matrix: for $X \in \mathbf{S}^n$, $\lambda_{\max}(X) = \sup_{\|y\|_2=1} y^T X y$ is convex
- ▶ support function of a set C: $S_C(x) = \sup_{y \in C} y^T x$ is convex

Partial minimization

▶ the function $g(x) = \inf_{y \in C} f(x, y)$ is called the **partial minimization** of f (w.r.t. y)

• if f(x, y) is convex in (x, y) and C is a convex set, then partial minimization g is convex

examples

•
$$f(x, y) = x^T A x + 2x^T B y + y^T C y$$
 with

$$\left[\begin{array}{cc} A & B \\ B^T & C \end{array}\right] \ge 0, \qquad C > 0$$

minimizing over y gives $g(x) = \inf_y f(x, y) = x^T (A - BC^{-1}B^T)x$ g is convex, hence Schur complement $A - BC^{-1}B^T \ge 0$

• distance to a set: $dist(x, S) = inf_{y \in S} ||x - y||$ is convex if S is convex

Convex Optimization

Composition with scalar functions

▶ composition of $g : \mathbf{R}^n \to \mathbf{R}$ and $h : \mathbf{R} \to \mathbf{R}$ is f(x) = h(g(x)) (written as $f = h \circ g$)

- composition f is convex if
 - g convex, h convex, \tilde{h} nondecreasing
 - or g concave, h convex, \tilde{h} nonincreasing

(monotonicity must hold for extended-value extension \tilde{h})

▶ proof (for n = 1, differentiable g, h)

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

examples

- $f(x) = \exp g(x)$ is convex if g is convex
- f(x) = 1/g(x) is convex if g is concave and positive

Convex Optimization

General composition rule

- composition of $g : \mathbf{R}^n \to \mathbf{R}^k$ and $h : \mathbf{R}^k \to \mathbf{R}$ is $f(x) = h(g(x)) = h(g_1(x), g_2(x), \dots, g_k(x))$
- f is convex if h is convex and for each i one of the following holds
 - g_i convex, \tilde{h} nondecreasing in its *i*th argument
 - g_i concave, \tilde{h} nonincreasing in its *i*th argument
 - $-g_i$ affine

- you will use this composition rule constantly throughout this course
- you need to commit this rule to memory

Examples

- $\log \sum_{i=1}^{m} \exp g_i(x)$ is convex if g_i are convex
- $f(x) = p(x)^2/q(x)$ is convex if
 - p is nonnegative and convex
 - q is positive and concave

- composition rule subsumes others, e.g.,
 - αf is convex if f is, and $\alpha \ge 0$
 - sum of convex (concave) functions is convex (concave)
 - max of convex functions is convex
 - min of concave functions is concave

Outline

Convex functions

Operations that preserve convexity

Constructive convex analysis

Perspective and conjugate

Quasiconvexity

Constructive convexity verification

- start with function f given as expression
- build parse tree for expression
 - leaves are variables or constants
 - nodes are functions of child expressions
- use composition rule to tag subexpressions as convex, concave, affine, or none
- ▶ if root node is labeled convex (concave), then *f* is convex (concave)
- extension: tag sign of each expression, and use sign-dependent monotonicity
- ▶ this is sufficient to show *f* is convex (concave), but not necessary
- this method for checking convexity (concavity) is readily automated

Example

the function

$$f(x, y) = \frac{(x - y)^2}{1 - \max(x, y)}, \qquad x < 1, \quad y < 1$$

is convex

constructive analysis:

- ▶ (leaves) *x*, *y*, and 1 are affine
- $\max(x, y)$ is convex; x y is affine
- $1 \max(x, y)$ is concave
- function u^2/v is convex, monotone decreasing in v for v > 0
- ► f is composition of u^2/v with u = x y, $v = 1 \max(x, y)$, hence convex

Example (from dcp.stanford.edu)

Disciplined convex programming

in **disciplined convex programming** (DCP) users construct convex and concave functions as expressions using constructive convex analysis

- expressions formed from
 - variables,
 - constants,
 - and atomic functions from a library
- atomic functions have known convexity, monotonicity, and sign properties
- all subexpressions match general composition rule
- a valid DCP function is
 - convex-by-construction
 - 'syntactically' convex (can be checked 'locally')
- convexity depends only on attributes of atomic functions, not their meanings
 - e.g., could swap $\sqrt{\cdot}$ and $\sqrt[4]{\cdot},$ or $exp \cdot$ and $(\cdot)_+,$ since their attributes match

CVXPY example

$$\frac{(x-y)^2}{1-\max(x,y)}, \qquad x < 1, \quad y < 1$$

```
import cvxpy as cp
x = cp.Variable()
y = cp.Variable()
expr = cp.quad_over_lin(x - y, 1 - cp.maximum(x, y))
expr.curvature # Convex
expr.sign # Positive
expr.is_dcp() # True
```

(atom quad_over_lin(u,v) includes domain constraint v>0)

Convex Optimization

DCP is only sufficient

- consider convex function $f(x) = \sqrt{1 + x^2}$
- expression f1 = cp.sqrt(1+cp.square(x)) is not DCP
- expression f2 = cp.norm2([1,x]) is DCP
- CVXPY will not recognize f1 as convex, even though it represents a convex function

Outline

Convex functions

Operations that preserve convexity

Constructive convex analysis

Perspective and conjugate

Quasiconvexity

Convex Optimization

Perspective

• the **perspective** of a function $f : \mathbf{R}^n \to \mathbf{R}$ is the function $g : \mathbf{R}^n \times \mathbf{R} \to \mathbf{R}$,

g(x,t) = tf(x/t), dom $g = \{(x,t) \mid x/t \in \text{dom} f, t > 0\}$

► g is convex if f is convex

examples

• $f(x) = x^T x$ is convex; so $g(x, t) = x^T x/t$ is convex for t > 0

► $f(x) = -\log x$ is convex; so relative entropy $g(x, t) = t \log t - t \log x$ is convex on \mathbf{R}_{++}^2

Convex Optimization

Conjugate function

• the **conjugate** of a function f is $f^*(y) = \sup_{x \in \text{dom}_f} (y^T x - f(x))$

- f^* is convex (even if f is not)
- will be useful in chapter 5

Examples

• negative logarithm $f(x) = -\log x$

$$f^*(y) = \sup_{x>0} (xy + \log x) = \begin{cases} -1 - \log(-y) & y < 0\\ \infty & \text{otherwise} \end{cases}$$

▶ strictly convex quadratic, $f(x) = (1/2)x^TQx$ with $Q \in \mathbf{S}_{++}^n$

$$f^*(y) = \sup_{x} (y^T x - (1/2)x^T Q x) = \frac{1}{2} y^T Q^{-1} y$$

Convex Optimization

Outline

Convex functions

Operations that preserve convexity

Constructive convex analysis

Perspective and conjugate

Quasiconvexity

Quasiconvex functions

• $f : \mathbf{R}^n \to \mathbf{R}$ is **quasiconvex** if **dom** f is convex and the sublevel sets

 $S_{\alpha} = \{ x \in \mathbf{dom} f \mid f(x) \le \alpha \}$

are convex for all α

• f is **quasiconcave** if -f is quasiconvex

 \blacktriangleright f is **quasilinear** if it is quasiconvex and quasiconcave

Examples

- $\sqrt{|x|}$ is quasiconvex on **R**
- $\operatorname{ceil}(x) = \inf\{z \in \mathbb{Z} \mid z \ge x\}$ is quasilinear
- ▶ $\log x$ is quasilinear on \mathbf{R}_{++}
- $f(x_1, x_2) = x_1 x_2$ is quasiconcave on \mathbf{R}^2_{++}
- linear-fractional function

$$f(x) = \frac{a^T x + b}{c^T x + d},$$
 dom $f = \{x \mid c^T x + d > 0\}$

is quasilinear

Example: Internal rate of return

- cash flow $x = (x_0, ..., x_n)$; x_i is payment in period i (to us if $x_i > 0$)
- we assume $x_0 < 0$ (*i.e.*, an initial investment) and $x_0 + x_1 + \cdots + x_n > 0$
- net present value (NPV) of cash flow x, for interest rate r, is $PV(x,r) = \sum_{i=0}^{n} (1+r)^{-i} x_i$
- **internal rate of return** (IRR) is smallest interest rate for which PV(x, r) = 0:

 $IRR(x) = \inf\{r \ge 0 \mid PV(x, r) = 0\}$

IRR is quasiconcave: superlevel set is intersection of open halfspaces

$$\operatorname{IRR}(x) \ge R \quad \Longleftrightarrow \quad \sum_{i=0}^{n} (1+r)^{-i} x_i > 0 \text{ for } 0 \le r < R$$

Properties of quasiconvex functions

modified Jensen inequality: for quasiconvex f

$$0 \le \theta \le 1 \implies f(\theta x + (1 - \theta)y) \le \max\{f(x), f(y)\}$$

first-order condition: differentiable *f* with convex domain is quasiconvex if and only if

$$f(y) \le f(x) \implies \nabla f(x)^T (y - x) \le 0$$

sum of quasiconvex functions is not necessarily quasiconvex

Convex Optimization

4. Convex optimization problems

Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization

Optimization problem in standard form

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & h_i(x) = 0, \quad i = 1, \dots, p \end{array}$$

- $x \in \mathbf{R}^n$ is the optimization variable
- $f_0 : \mathbf{R}^n \to \mathbf{R}$ is the objective or cost function
- ▶ $f_i : \mathbf{R}^n \to \mathbf{R}, i = 1, ..., m$, are the inequality constraint functions
- ▶ $h_i : \mathbf{R}^n \to \mathbf{R}$ are the equality constraint functions

Feasible and optimal points

- ▶ $x \in \mathbf{R}^n$ is **feasible** if $x \in \mathbf{dom} f_0$ and it satisfies the constraints
- optimal value is $p^* = \inf\{f_0(x) \mid f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p\}$
- $p^{\star} = \infty$ if problem is infeasible
- $p^{\star} = -\infty$ if problem is **unbounded below**
- a feasible x is **optimal** if $f_0(x) = p^*$
- ► X_{opt} is the set of optimal points

Locally optimal points

x is **locally optimal** if there is an R > 0 such that x is optimal for

Boyd and Vandenberghe

Examples

examples with n = 1, m = p = 0

►
$$f_0(x) = 1/x$$
, $\operatorname{dom} f_0 = \mathbf{R}_{++}$: $p^* = 0$, no optimal point

•
$$f_0(x) = -\log x$$
, **dom** $f_0 = \mathbf{R}_{++}$: $p^* = -\infty$

►
$$f_0(x) = x \log x$$
, $\operatorname{dom} f_0 = \mathbf{R}_{++}$: $p^* = -1/e$, $x = 1/e$ is optimal

►
$$f_0(x) = x^3 - 3x$$
: $p^* = -\infty$, $x = 1$ is locally optimal

Convex Optimization

Implicit and explicit constraints

standard form optimization problem has implicit constraint

$$x \in \mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i,$$

• we call $\mathcal D$ the **domain** of the problem

• the constraints $f_i(x) \le 0$, $h_i(x) = 0$ are the **explicit constraints**

▶ a problem is **unconstrained** if it has no explicit constraints (m = p = 0)

example:

minimize
$$f_0(x) = -\sum_{i=1}^k \log(b_i - a_i^T x)$$

is an unconstrained problem with implicit constraints $a_i^T x < b_i$

Convex Optimization

Feasibility problem

find
$$x$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

can be considered a special case of the general problem with $f_0(x) = 0$:

minimize 0
subject to
$$f_i(x) \le 0$$
, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

Convex Optimization

Standard form convex optimization problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $a_i^T x = b_i$, $i = 1, ..., p$

- objective and inequality constraints f_0 , f_1 , ..., f_m are convex
- equality constraints are affine, often written as Ax = b
- feasible and optimal sets of a convex optimization problem are convex

> problem is **quasiconvex** if f_0 is quasiconvex, f_1 , ..., f_m are convex, h_1, \ldots, h_p are affine

Example

standard form problem

minimize
$$f_0(x) = x_1^2 + x_2^2$$

subject to $f_1(x) = x_1/(1+x_2^2) \le 0$
 $h_1(x) = (x_1+x_2)^2 = 0$

- ► f_0 is convex; feasible set $\{(x_1, x_2) | x_1 = -x_2 \le 0\}$ is convex
- not a convex problem (by our definition) since f_1 is not convex, h_1 is not affine
- equivalent (but not identical) to the convex problem

minimize
$$x_1^2 + x_2^2$$

subject to $x_1 \le 0$
 $x_1 + x_2 = 0$

Convex Optimization

Local and global optima

any locally optimal point of a convex problem is (globally) optimal

proof:

- suppose x is locally optimal, but there exists a feasible y with $f_0(y) < f_0(x)$
- x locally optimal means there is an R > 0 such that

$$z$$
 feasible, $||z - x||_2 \le R \implies f_0(z) \ge f_0(x)$

• consider
$$z = \theta y + (1 - \theta)x$$
 with $\theta = R/(2||y - x||_2)$

- $||y x||_2 > R$, so $0 < \theta < 1/2$
- \triangleright z is a convex combination of two feasible points, hence also feasible
- ► $||z x||_2 = R/2$ and $f_0(z) \le \theta f_0(y) + (1 \theta)f_0(x) < f_0(x)$, which contradicts our assumption that x is locally optimal

Optimality criterion for differentiable f_0

 \blacktriangleright x is optimal for a convex problem if and only if it is feasible and

 $\nabla f_0(x)^T(y-x) \ge 0$ for all feasible y

▶ if nonzero, $\nabla f_0(x)$ defines a supporting hyperplane to feasible set X at x

Examples

- unconstrained problem: x minimizes $f_0(x)$ if and only if $\nabla f_0(x) = 0$
- equality constrained problem: x minimizes $f_0(x)$ subject to Ax = b if and only if there exists a v such that

$$Ax = b, \qquad \nabla f_0(x) + A^T v = 0$$

• minimization over nonnegative orthant: x minimizes $f_0(x)$ over \mathbf{R}^n_+ if and only if

$$x \ge 0, \qquad \begin{cases} \nabla f_0(x)_i \ge 0 & x_i = 0\\ \nabla f_0(x)_i = 0 & x_i > 0 \end{cases}$$

Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization

Linear program (LP)

$$\begin{array}{ll} \text{minimize} & c^T x + d \\ \text{subject to} & G x \leq h \\ & A x = b \end{array}$$

- convex problem with affine objective and constraint functions
- ► feasible set is a polyhedron

Example: Diet problem

- choose nonnegative quantities $x_1, ..., x_n$ of n foods
- one unit of food j costs c_j and contains amount A_{ij} of nutrient i
- healthy diet requires nutrient i in quantity at least b_i
- to find cheapest healthy diet, solve

minimize $c^T x$ subject to $Ax \ge b$, $x \ge 0$

express in standard LP form as

minimize
$$c^T x$$

subject to $\begin{bmatrix} -A \\ -I \end{bmatrix} x \leq \begin{bmatrix} -b \\ 0 \end{bmatrix}$

Convex Optimization

Example: Piecewise-linear minimization

• minimize convex piecewise-linear function $f_0(x) = \max_{i=1,...,m} (a_i^T x + b_i), x \in \mathbf{R}^n$

```
equivalent to LP
```

```
minimize t
subject to a_i^T x + b_i \le t, i = 1, ..., m
```

with variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$

• constraints describe $epi f_0$

Example: Chebyshev center of a polyhedron

Chebyshev center of $\mathcal{P} = \{x \mid a_i^T x \le b_i, i = 1, ..., m\}$ is center of largest inscribed ball $\mathcal{B} = \{x_c + u \mid ||u||_2 \le r\}$

• $a_i^T x \leq b_i$ for all $x \in \mathcal{B}$ if and only if

$$\sup\{a_i^T(x_c+u) \mid ||u||_2 \le r\} = a_i^T x_c + r ||a_i||_2 \le b_i$$

• hence, x_c , r can be determined by solving LP with variables x_c , r

maximize
$$r$$

subject to $a_i^T x_c + r ||a_i||_2 \le b_i$, $i = 1, ..., m$

Convex Optimization

Quadratic program (QP)

minimize
$$(1/2)x^T P x + q^T x + r$$

subject to $Gx \le h$
 $Ax = b$

- $P \in \mathbf{S}_{+}^{n}$, so objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Example: Least squares

- least squares problem: minimize $||Ax b||_2^2$
- analytical solution $x^{\star} = A^{\dagger}b$ (A^{\dagger} is pseudo-inverse)
- can add linear constraints, e.g.,
 - $-x \ge 0$ (nonnegative least squares)
 - $-x_1 \leq x_2 \leq \cdots \leq x_n$ (isotonic regression)

Example: Linear program with random cost

- LP with random cost c, with mean \bar{c} and covariance Σ
- hence, LP objective $c^T x$ is random variable with mean $\bar{c}^T x$ and variance $x^T \Sigma x$
- **risk-averse** problem:

minimize $\mathbf{E} c^T x + \gamma \operatorname{var}(c^T x)$ subject to $Gx \le h$, Ax = b

- γ > 0 is risk aversion parameter; controls the trade-off between expected cost and variance (risk)
- express as QP

minimize
$$\overline{c}^T x + \gamma x^T \Sigma x$$

subject to $Gx \leq h$, $Ax = b$

Quadratically constrained quadratic program (QCQP)

minimize
$$(1/2)x^T P_0 x + q_0^T x + r_0$$

subject to $(1/2)x^T P_i x + q_i^T x + r_i \le 0, \quad i = 1, \dots, m$
 $Ax = b$

- ▶ $P_i \in \mathbf{S}_+^n$; objective and constraints are convex quadratic
- ▶ if $P_1, \ldots, P_m \in \mathbf{S}_{++}^n$, feasible region is intersection of *m* ellipsoids and an affine set

Second-order cone programming

minimize
$$f^T x$$

subject to $||A_i x + b_i||_2 \le c_i^T x + d_i$, $i = 1, ..., m$
 $Fx = g$

 $(A_i \in \mathbf{R}^{n_i \times n}, F \in \mathbf{R}^{p \times n})$

inequalities are called second-order cone (SOC) constraints:

 $(A_i x + b_i, c_i^T x + d_i) \in$ second-order cone in \mathbf{R}^{n_i+1}

- ▶ for $n_i = 0$, reduces to an LP; if $c_i = 0$, reduces to a QCQP
- more general than QCQP and LP

Example: Robust linear programming

suppose constraint vectors a_i are uncertain in the LP

minimize
$$c^T x$$

subject to $a_i^T x \le b_i$, $i = 1, ..., m$,

two common approaches to handling uncertainty

• deterministic worst-case: constraints must hold for all $a_i \in \mathcal{E}_i$ (uncertainty ellipsoids)

minimize
$$c^T x$$

subject to $a_i^T x \le b_i$ for all $a_i \in \mathcal{E}_i$, $i = 1, ..., m$,

stochastic: a_i is random variable; constraints must hold with probability η

minimize
$$c^T x$$

subject to $\mathbf{prob}(a_i^T x \le b_i) \ge \eta, \quad i = 1, \dots, m$

Deterministic worst-case approach

- uncertainty ellipsoids are $\mathcal{E}_i = \{\bar{a}_i + P_i u \mid ||u||_2 \le 1\}, (\bar{a}_i \in \mathbf{R}^n, P_i \in \mathbf{R}^{n \times n})$
- center of \mathcal{E}_i is \bar{a}_i ; semi-axes determined by singular values/vectors of P_i
- robust LP

minimize
$$c^T x$$

subject to $a_i^T x \le b_i \quad \forall a_i \in \mathcal{E}_i, \quad i = 1, \dots, m$

equivalent to SOCP

minimize
$$c^T x$$

subject to $\bar{a}_i^T x + \|P_i^T x\|_2 \le b_i, \quad i = 1, \dots, m$

(follows from $\sup_{\|u\|_{2} \le 1} (\bar{a}_{i} + P_{i}u)^{T}x = \bar{a}_{i}^{T}x + \|P_{i}^{T}x\|_{2}$)

Convex Optimization

Stochastic approach

• assume $a_i \sim \mathcal{N}(\bar{a}_i, \Sigma_i)$

•
$$a_i^T x \sim \mathcal{N}(\bar{a}_i^T x, x^T \Sigma_i x)$$
, so

$$\mathbf{prob}(a_i^T x \le b_i) = \Phi\left(\frac{b_i - \bar{a}_i^T x}{\|\boldsymbol{\Sigma}_i^{1/2} x\|_2}\right)$$

where $\Phi(u) = (1/\sqrt{2\pi}) \int_{-\infty}^{u} e^{-t^2/2} dt$ is $\mathcal{N}(0, 1)$ CDF

- $\operatorname{prob}(a_i^T x \le b_i) \ge \eta$ can be expressed as $\bar{a}_i^T x + \Phi^{-1}(\eta) \|\Sigma_i^{1/2} x\|_2 \le b_i$
- for $\eta \ge 1/2$, robust LP equivalent to SOCP

minimize
$$c^T x$$

subject to $\bar{a}_i^T x + \Phi^{-1}(\eta) \|\Sigma_i^{1/2} x\|_2 \le b_i, \quad i = 1, \dots, m$

Convex Optimization

Conic form problem

minimize
$$c^T x$$

subject to $Fx + g \leq_K 0$
 $Ax = b$

▶ constraint $Fx + g \leq_K 0$ involves a generalized inequality with respect to a proper cone K

- ▶ linear programming is a conic form problem with $K = \mathbf{R}_{+}^{m}$
- as with standard convex problem
 - feasible and optimal sets are convex
 - any local optimum is global

Semidefinite program (SDP)

minimize
$$c^T x$$

subject to $x_1F_1 + x_2F_2 + \dots + x_nF_n + G \le 0$
 $Ax = b$

with F_i , $G \in \mathbf{S}^k$

- inequality constraint is called linear matrix inequality (LMI)
- includes problems with multiple LMI constraints: for example,

$$x_1\hat{F}_1 + \dots + x_n\hat{F}_n + \hat{G} \le 0, \qquad x_1\tilde{F}_1 + \dots + x_n\tilde{F}_n + \tilde{G} \le 0$$

is equivalent to single LMI

$$x_1 \begin{bmatrix} \hat{F}_1 & 0 \\ 0 & \tilde{F}_1 \end{bmatrix} + x_2 \begin{bmatrix} \hat{F}_2 & 0 \\ 0 & \tilde{F}_2 \end{bmatrix} + \dots + x_n \begin{bmatrix} \hat{F}_n & 0 \\ 0 & \tilde{F}_n \end{bmatrix} + \begin{bmatrix} \hat{G} & 0 \\ 0 & \tilde{G} \end{bmatrix} \le 0$$

Convex Optimization

Example: Matrix norm minimization

minimize
$$||A(x)||_2 = (\lambda_{\max}(A(x)^T A(x)))^{1/2}$$

where $A(x) = A_0 + x_1 A_1 + \dots + x_n A_n$ (with given $A_i \in \mathbf{R}^{p \times q}$)
equivalent SDP
minimize t

subject to
$$\begin{bmatrix} tI & A(x) \\ A(x)^T & tI \end{bmatrix} \ge 0$$

- variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$
- constraint follows from

$$||A||_2 \le t \iff A^T A \le t^2 I, \quad t \ge 0$$
$$\iff \begin{bmatrix} tI & A \\ A^T & tI \end{bmatrix} \ge 0$$

LP and SOCP as SDP

LP and equivalent SDP

LP: minimize $c^T x$ SDP: minimize $c^T x$ subject to $Ax \le b$ subject to $\mathbf{diag}(Ax - b) \le 0$

(note different interpretation of generalized inequalities \leq in LP and SDP)

SOCP and equivalent SDP

SOCP: minimize
$$f^T x$$

subject to $||A_i x + b_i||_2 \le c_i^T x + d_i$, $i = 1, ..., m$

SDP: minimize
$$f^T x$$

subject to $\begin{bmatrix} (c_i^T x + d_i)I & A_i x + b_i \\ (A_i x + b_i)^T & c_i^T x + d_i \end{bmatrix} \ge 0, \quad i = 1, \dots, m$

Convex Optimization

Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization

Change of variables

• $\phi : \mathbf{R}^n \to \mathbf{R}^n$ is one-to-one with $\phi(\mathbf{dom} \phi) \supseteq \mathcal{D}$

consider (possibly non-convex) problem

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \qquad i = 1, \dots, m \\ & h_i(x) = 0, \qquad i = 1, \dots, p \end{array}$$

- change variables to z with $x = \phi(z)$
- can solve equivalent problem

$$\begin{array}{ll} \text{minimize} & \tilde{f}_0(z) \\ \text{subject to} & \tilde{f}_i(z) \leq 0, \qquad i=1,\ldots,m \\ & \tilde{h}_i(z)=0, \qquad i=1,\ldots,p \end{array}$$

where $\tilde{f}_i(z) = f_i(\phi(z))$ and $\tilde{h}_i(z) = h_i(\phi(z))$

• recover original optimal point as $x^* = \phi(z^*)$

Convex Optimization

Example

non-convex problem

minimize $x_1/x_2 + x_3/x_1$ subject to $x_2/x_3 + x_1 \le 1$

with implicit constraint x > 0

• change variables using $x = \phi(z) = \exp z$ to get

minimize $\exp(z_1 - z_2) + \exp(z_3 - z_1)$ subject to $\exp(z_2 - z_3) + \exp(z_1) \le 1$

which is convex

Transformation of objective and constraint functions

suppose

- ϕ_0 is monotone increasing
- $\psi_i(u) \leq 0$ if and only if $u \leq 0$, $i = 1, \ldots, m$
- $\varphi_i(u) = 0$ if and only if $u = 0, i = 1, \dots, p$

standard form optimization problem is equivalent to

$$\begin{array}{ll} \text{minimize} & \phi_0(f_0(x)) \\ \text{subject to} & \psi_i(f_i(x)) \leq 0, \qquad i = 1, \dots, m \\ & \varphi_i(h_i(x)) = 0, \qquad i = 1, \dots, p \end{array}$$

example: minimizing ||Ax - b|| is equivalent to minimizing $||Ax - b||^2$

Convex Optimization

Converting maximization to minimization

- suppose ϕ_0 is monotone decreasing
- the maximization problem

maximize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

is equivalent to the minimization problem

minimize
$$\phi_0(f_0(x))$$

subject to $f_i(x) \le 0$, $i = 1, \dots, m$
 $h_i(x) = 0$, $i = 1, \dots, p$

examples:

- $-\phi_0(u) = -u$ transforms maximizing a concave function to minimizing a convex function
- $\phi_0(u) = 1/u$ transforms maximizing a concave positive function to minimizing a convex function

Convex Optimization

Eliminating equality constraints

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

is equivalent to

minimize (over z)
$$f_0(Fz + x_0)$$

subject to $f_i(Fz + x_0) \le 0$, $i = 1, ..., m$

where F and x_0 are such that $Ax = b \iff x = Fz + x_0$ for some z

Introducing equality constraints

minimize
$$f_0(A_0x + b_0)$$

subject to $f_i(A_ix + b_i) \le 0$, $i = 1, ..., m$

is equivalent to

minimize (over x,
$$y_i$$
) $f_0(y_0)$
subject to $f_i(y_i) \le 0$, $i = 1, ..., m$
 $y_i = A_i x + b_i$, $i = 0, 1, ..., m$

Introducing slack variables for linear inequalities

minimize
$$f_0(x)$$

subject to $a_i^T x \le b_i$, $i = 1, ..., m$

is equivalent to

minimize (over x, s)
$$f_0(x)$$

subject to $a_i^T x + s_i = b_i, \quad i = 1, ..., m$
 $s_i \ge 0, \quad i = 1, ..., m$

Epigraph form

standard form convex problem is equivalent to

minimize (over x, t) t
subject to
$$f_0(x) - t \le 0$$

 $f_i(x) \le 0, \quad i = 1, ..., m$
 $Ax = b$

Minimizing over some variables

minimize
$$f_0(x_1, x_2)$$

subject to $f_i(x_1) \le 0$, $i = 1, ..., m$

is equivalent to

minimize
$$\tilde{f}_0(x_1)$$

subject to $f_i(x_1) \le 0$, $i = 1, \dots, m$

where $\tilde{f}_0(x_1) = \inf_{x_2} f_0(x_1, x_2)$

Convex relaxation

- ▶ start with **nonconvex problem**: minimize h(x) subject to $x \in C$
- ▶ find convex function \hat{h} with $\hat{h}(x) \le h(x)$ for all $x \in \operatorname{dom} h$ (*i.e.*, a pointwise lower bound on h)
- ▶ find set $\hat{C} \supseteq C$ (e.g., $\hat{C} = \operatorname{conv} C$) described by linear equalities and convex inequalities

$$\hat{C} = \{x \mid f_i(x) \le 0, i = 1, \dots, m, f_m(x) \le 0, Ax = b\}$$

convex problem

minimize
$$\hat{h}(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$, $Ax = b$

is a convex relaxation of the original problem

optimal value of relaxation is lower bound on optimal value of original problem

Example: Boolean LP

mixed integer linear program (MILP):

minimize
$$c^T(x,z)$$

subject to $F(x,z) \leq g$, $A(x,z) = b$, $z \in \{0,1\}^q$

with variables $x \in \mathbf{R}^n$, $z \in \mathbf{R}^q$

- z_i are called **Boolean variables**
- this problem is in general hard to solve
- ▶ **LP relaxation**: replace $z \in \{0, 1\}^q$ with $z \in [0, 1]^q$
- optimal value of relaxation LP is lower bound on MILP
- ► can use as heuristic for approximately solving MILP, e.g., relax and round

Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization

Disciplined convex program

specify objective as

- minimize {scalar convex expression}, or
- maximize {scalar concave expression}
- specify constraints as
 - {convex expression} <= {concave expression} or
 - {concave expression} >= {convex expression} or
 - {affine expression} == {affine expression}
- curvature of expressions are DCP certified, i.e., follow composition rule
- ▶ DCP-compliant problems can be automatically transformed to standard forms, then solved

CVXPY example

math:

 $\begin{array}{ll} \text{minimize} & \|x\|_1\\ \text{subject to} & Ax = b\\ & \|x\|_\infty \le 1 \end{array}$

x is the variable

A, b are given

CVXPY code:

```
import cvxpy as cp
A, b = ...
x = cp.Variable(n)
obj = cp.norm(x, 1)
constr = [
  A @ x == b.
  cp.norm(x, 'inf') \leq 1,
٦
prob = cp.Problem(cp.Minimize(obj), constr)
prob.solve()
```

How CVXPY works

- starts with your optimization problem \mathcal{P}_1
- ▶ finds a sequence of equivalent problems $\mathcal{P}_2, \ldots, \mathcal{P}_N$
- ▶ final problem P_N matches a standard form (*e.g.*, LP, QP, SOCP, or SDP)
- calls a specialized solver on \mathcal{P}_N
- retrieves solution of original problem by reversing the transformations

Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization

Geometric programming

monomial function:

$$f(x) = cx_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}, \quad \text{dom} f = \mathbf{R}_{++}^n$$

with c > 0; exponent a_i can be any real number

posynomial function: sum of monomials

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}, \qquad \mathbf{dom} f = \mathbf{R}_{++}^n$$

geometric program (GP)

minimize
$$f_0(x)$$

subject to $f_i(x) \le 1$, $i = 1, ..., m$
 $h_i(x) = 1$, $i = 1, ..., p$

with f_i posynomial, h_i monomial

Convex Optimization

Geometric program in convex form

▶ change variables to y_i = log x_i, and take logarithm of cost, constraints
 ▶ monomial f(x) = cx₁^{a₁} ··· x_n^{a_n} transforms to

$$\log f(e^{y_1},\ldots,e^{y_n}) = a^T y + b \qquad (b = \log c)$$

• posynomial $f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} x_2^{a_{2k}} \cdots x_n^{a_{nk}}$ transforms to

$$\log f(e^{y_1},\ldots,e^{y_n}) = \log\left(\sum_{k=1}^K e^{a_k^T y + b_k}\right) \qquad (b_k = \log c_k)$$

geometric program transforms to convex problem

minimize
$$\log \left(\sum_{k=1}^{K} \exp(a_{0k}^{T} y + b_{0k}) \right)$$

subject to $\log \left(\sum_{k=1}^{K} \exp(a_{ik}^{T} y + b_{ik}) \right) \le 0, \quad i = 1, \dots, m$
 $Gy + d = 0$

Convex Optimization

Examples: Frobenius norm diagonal scaling

we seek diagonal matrix D = diag(d), d > 0, to minimize ||DMD⁻¹||²_F
 express as

$$\|DMD^{-1}\|_F^2 = \sum_{i,j=1}^n \left(DMD^{-1}\right)_{ij}^2 = \sum_{i,j=1}^n M_{ij}^2 d_i^2 / d_j^2$$

- ▶ a posynomial in d (with exponents 0, 2, and -2)
- in convex form, with $y = \log d$,

$$\log \|DMD^{-1}\|_F^2 = \log \left(\sum_{i,j=1}^n \exp \left(2(y_i - y_j + \log |M_{ij}|) \right) \right)$$

Convex Optimization

Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization

Quasiconvex optimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

with $f_0 : \mathbf{R}^n \to \mathbf{R}$ quasiconvex, $f_1, ..., f_m$ convex

can have locally optimal points that are not (globally) optimal

 $(x, f_0(x))$

Linear-fractional program

linear-fractional program

minimize
$$(c^T x + d)/(e^T x + f)$$

subject to $Gx \le h$, $Ax = b$

with variable x and implicit constraint $e^T x + f > 0$

• equivalent to the LP (with variables y, z)

minimize
$$c^T y + dz$$

subject to $Gy \le hz$, $Ay = bz$
 $e^T y + fz = 1$, $z \ge 0$

• recover $x^{\star} = y^{\star}/z^{\star}$

Von Neumann model of a growing economy

- ▶ $x, x^+ \in \mathbf{R}^n_{++}$: activity levels of *n* economic sectors, in current and next period
- $(Ax)_i$: amount of good *i* produced in current period
- $(Bx^+)_i$: amount of good *i* consumed in next period
- ▶ $Bx^+ \leq Ax$: goods consumed next period no more than produced this period
- x_i^+/x_i : growth rate of sector *i*
- allocate activity to maximize growth rate of slowest growing sector

maximize (over x, x^+) $\min_{i=1,...,n} x_i^+/x_i$ subject to $x^+ \ge 0$, $Bx^+ \le Ax$

• a quasiconvex problem with variables x, x^+

Convex representation of sublevel sets

• if f_0 is quasiconvex, there exists a family of functions ϕ_t such that:

- $-\phi_t(x)$ is convex in x for fixed t
- *t*-sublevel set of f_0 is 0-sublevel set of ϕ_t , *i.e.*, $f_0(x) \le t \iff \phi_t(x) \le 0$

example:

- ► $f_0(x) = p(x)/q(x)$, with p convex and nonnegative, q concave and positive
- take $\phi_t(x) = p(x) tq(x)$: for $t \ge 0$,
 - $-\phi_t$ convex in x
 - $p(x)/q(x) \le t$ if and only if $\phi_t(x) \le 0$

Bisection method for quasiconvex optimization

for fixed t, consider convex feasibility problem

 $\phi_t(x) \le 0, \qquad f_i(x) \le 0, \quad i = 1, \dots, m, \qquad Ax = b$ (1)

if feasible, we can conclude that $t \ge p^*$; if infeasible, $t \le p^*$

bisection method:

```
given l \le p^*, u \ge p^*, tolerance \epsilon > 0.

repeat

1. t := (l+u)/2.

2. Solve the convex feasibility problem (1).

3. if (1) is feasible, u := t; else l := t.

until u - l \le \epsilon.
```

▶ requires exactly $\lceil \log_2((u-l)/\epsilon) \rceil$ iterations

Outline

Optimization problems

Some standard convex problems

Transforming problems

Disciplined convex programming

Geometric programming

Quasiconvex optimization

Multicriterion optimization

Multicriterion optimization

multicriterion or multi-objective problem:

minimize $f_0(x) = (F_1(x), \dots, F_q(x))$ subject to $f_i(x) \le 0$, $i = 1, \dots, m$, Ax = b

- objective is the **vector** $f_0(x) \in \mathbf{R}^q$
- ▶ q different objectives F_1, \ldots, F_q ; roughly speaking we want all F_i 's to be small
- ► feasible x^* is **optimal** if y feasible $\implies f_0(x^*) \leq f_0(y)$
- ▶ this means that x^* simultaneously minimizes each F_i ; the objectives are **noncompeting**
- not surprisingly, this doesn't happen very often

Pareto optimality

- Feasible x dominates another feasible \tilde{x} if $f_0(x) \leq f_0(\tilde{x})$ and for at least one $i, F_i(x) < F_i(\tilde{x})$
- *i.e.*, x meets \tilde{x} on all objectives, and beats it on at least one
- ▶ feasible *x*^{po} is **Pareto optimal** if it is not dominated by any feasible point
- ► can be expressed as: y feasible, $f_0(y) \leq f_0(x^{\text{po}}) \implies f_0(x^{\text{po}}) = f_0(y)$
- there are typically many Pareto optimal points
- for q = 2, set of Pareto optimal objective values is the **optimal trade-off curve**
- for q = 3, set of Pareto optimal objective values is the **optimal trade-off surface**

Optimal and Pareto optimal points

set of achievable objective values $O = \{f_0(x) \mid x \text{ feasible}\}\$

- feasible x is **optimal** if $f_0(x)$ is the minimum value of O
- feasible x is **Pareto optimal** if $f_0(x)$ is a minimal value of O

Regularized least-squares

- minimize $(||Ax b||_2^2, ||x||_2^2)$ (first objective is loss; second is regularization)
- example with $A \in \mathbf{R}^{100 \times 10}$; heavy line shows Pareto optimal points

Risk return trade-off in portfolio optimization

- ▶ variable $x \in \mathbf{R}^n$ is investment portfolio, with x_i fraction invested in asset *i*
- $\bar{p} \in \mathbf{R}^n$ is mean, Σ is covariance of asset returns
- portfolio return has mean $\bar{p}^T x$, variance $x^T \Sigma x$

• minimize
$$(-\bar{p}^T x, x^T \Sigma x)$$
, subject to $\mathbf{1}^T x = 1, x \ge 0$

Pareto optimal portfolios trace out optimal risk-return curve

Example

Scalarization

scalarization combines the multiple objectives into one (scalar) objective

- a standard method for finding Pareto optimal points
- choose $\lambda > 0$ and solve scalar problem

minimize $\lambda^T f_0(x) = \lambda_1 F_1(x) + \dots + \lambda_q F_q(x)$ subject to $f_i(x) \le 0$, $i = 1, \dots, m$, $h_i(x) = 0$, $i = 1, \dots, p$

- λ_i are relative weights on the objectives
- ▶ if x is optimal for scalar problem, then it is Pareto-optimal for multicriterion problem
- ▶ for convex problems, can find (almost) all Pareto optimal points by varying $\lambda > 0$

Example

Example: Regularized least-squares

- ▶ regularized least-squares problem: minimize $(||Ax b||_2^2, ||x||_2^2)$
- take $\lambda = (1, \gamma)$ with $\gamma > 0$, and minimize $||Ax b||_2^2 + \gamma ||x||_2^2$

Boyd and Vandenberghe

Example: Risk-return trade-off

- ► risk-return trade-off: minimize $(-\bar{p}^T x, x^T \Sigma x)$ subject to $\mathbf{1}^T x = 1, x \ge 0$
- with $\lambda = (1, \gamma)$ we obtain scalarized problem

minimize
$$-\bar{p}^T x + \gamma x^T \Sigma x$$

subject to $\mathbf{1}^T x = 1, \quad x \ge 0$

- objective is negative **risk-adjusted return**, $\bar{p}^T x \gamma x^T \Sigma x$
- γ is called the **risk-aversion parameter**

5. Duality

Outline

Lagrangian and dual function

Lagrange dual problem

KKT conditions

Sensitivity analysis

Problem reformulations

Theorems of alternatives

Lagrangian

standard form problem (not necessarily convex)

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $h_i(x) = 0$, $i = 1, ..., p$

variable $x \in \mathbf{R}^n$, domain \mathcal{D} , optimal value p^*

▶ Lagrangian: $L : \mathbf{R}^n \times \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}$, with dom $L = \mathcal{D} \times \mathbf{R}^m \times \mathbf{R}^p$,

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x)$$

- weighted sum of objective and constraint functions
- $-\lambda_i$ is **Lagrange multiplier** associated with $f_i(x) \leq 0$
- v_i is Lagrange multiplier associated with $h_i(x) = 0$

Convex Optimization

Lagrange dual function

• Lagrange dual function: $g : \mathbf{R}^m \times \mathbf{R}^p \to \mathbf{R}$,

$$g(\lambda,\nu) = \inf_{x \in \mathcal{D}} L(x,\lambda,\nu) = \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$$

• g is concave, can be $-\infty$ for some λ , ν

- ▶ lower bound property: if $\lambda \ge 0$, then $g(\lambda, \nu) \le p^*$
- proof: if \tilde{x} is feasible and $\lambda \geq 0$, then

$$f_0(\tilde{x}) \ge L(\tilde{x}, \lambda, \nu) \ge \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu)$$

minimizing over all feasible \tilde{x} gives $p^* \ge g(\lambda, \nu)$

Least-norm solution of linear equations

minimize $x^T x$ subject to Ax = b

• Lagrangian is
$$L(x, v) = x^T x + v^T (Ax - b)$$

to minimize L over x, set gradient equal to zero:

$$\nabla_x L(x, v) = 2x + A^T v = 0 \implies x = -(1/2)A^T v$$

plug x into L to obtain

$$g(v) = L((-1/2)A^T v, v) = -\frac{1}{4}v^T A A^T v - b^T v$$

▶ lower bound property: $p^{\star} \ge -(1/4)v^T A A^T v - b^T v$ for all v

Convex Optimization

Standard form LP

minimize
$$c^T x$$

subject to $Ax = b$, $x \ge 0$

Lagrangian is

$$L(x,\lambda,\nu) = c^T x + \nu^T (Ax - b) - \lambda^T x = -b^T \nu + (c + A^T \nu - \lambda)^T x$$

L is affine in x, so

$$g(\lambda, \nu) = \inf_{x} L(x, \lambda, \nu) = \begin{cases} -b^{T}\nu & A^{T}\nu - \lambda + c = 0\\ -\infty & \text{otherwise} \end{cases}$$

▶ g is linear on affine domain $\{(\lambda, \nu) | A^T \nu - \lambda + c = 0\}$, hence concave

• lower bound property: $p^* \ge -b^T v$ if $A^T v + c \ge 0$

Convex Optimization

Equality constrained norm minimization

minimize ||x||subject to Ax = b

dual function is

$$g(v) = \inf_{x} (\|x\| - v^{T}Ax + b^{T}v) = \begin{cases} b^{T}v & \|A^{T}v\|_{*} \le 1\\ -\infty & \text{otherwise} \end{cases}$$

where $\|v\|_* = \sup_{\|u\| \le 1} u^T v$ is dual norm of $\|\cdot\|$

▶ lower bound property: $p^{\star} \ge b^T v$ if $||A^T v||_* \le 1$

Two-way partitioning

minimize $x^T W x$ subject to $x_i^2 = 1$, i = 1, ..., n

- \blacktriangleright a nonconvex problem; feasible set contains 2^n discrete points
- ▶ interpretation: partition $\{1, ..., n\}$ in two sets encoded as $x_i = 1$ and $x_i = -1$
- \blacktriangleright W_{ij} is cost of assigning *i*, *j* to the same set; $-W_{ij}$ is cost of assigning to different sets
- dual function is

$$g(\nu) = \inf_{x} \left(x^T W x + \sum_{i} \nu_i (x_i^2 - 1) \right) = \inf_{x} x^T \left(W + \operatorname{diag}(\nu) \right) x - \mathbf{1}^T \nu = \begin{cases} -\mathbf{1}^T \nu & W + \operatorname{diag}(\nu) \ge 0\\ -\infty & \text{otherwise} \end{cases}$$

▶ lower bound property: $p^* \ge -\mathbf{1}^T v$ if $W + \operatorname{diag}(v) \ge 0$

Convex Optimization

Lagrange dual and conjugate function

 $\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & Ax \leq b, \quad Cx = d \end{array}$

dual function

$$g(\lambda, \nu) = \inf_{x \in \operatorname{dom} f_0} \left(f_0(x) + (A^T \lambda + C^T \nu)^T x - b^T \lambda - d^T \nu \right)$$
$$= -f_0^* (-A^T \lambda - C^T \nu) - b^T \lambda - d^T \nu$$

where $f^*(y) = \sup_{x \in \mathbf{dom}_f} (y^T x - f(x))$ is conjugate of f_0

• simplifies derivation of dual if conjugate of f_0 is known

.

example: entropy maximization

$$f_0(x) = \sum_{i=1}^n x_i \log x_i, \qquad f_0^*(y) = \sum_{i=1}^n e^{y_i - 1}$$

Convex Optimization

Outline

Lagrangian and dual function

Lagrange dual problem

KKT conditions

Sensitivity analysis

Problem reformulations

Theorems of alternatives

Convex Optimization

The Lagrange dual problem

(Lagrange) dual problem

 $\begin{array}{ll} \text{maximize} & g(\lambda, \nu) \\ \text{subject to} & \lambda \geq 0 \end{array}$

- ▶ finds best lower bound on p^{\star} , obtained from Lagrange dual function
- > a convex optimization problem, even if original primal problem is not
- dual optimal value denoted d^*
- λ , ν are dual feasible if $\lambda \geq 0$, $(\lambda, \nu) \in \operatorname{dom} g$
- ▶ often simplified by making implicit constraint $(\lambda, \nu) \in \operatorname{dom} g$ explicit

Example: standard form LP

(see slide 5.5)

primal standard form LP:

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax = b\\ & x \ge 0 \end{array}$

dual problem is

 $\begin{array}{ll} \text{maximize} & g(\lambda, \nu) \\ \text{subject to} & \lambda \geq 0 \end{array}$

with $g(\lambda, \nu) = -b^T \nu$ if $A^T \nu - \lambda + c = 0$, $-\infty$ otherwise

• make implicit constraint explicit, and eliminate λ to obtain (transformed) dual problem

maximize $-b^T v$ subject to $A^T v + c \ge 0$

Convex Optimization

Weak and strong duality

weak duality: $d^{\star} \leq p^{\star}$

- always holds (for convex and nonconvex problems)
- ▶ can be used to find nontrivial lower bounds for difficult problems, e.g., solving the SDP

```
maximize -\mathbf{1}^T \mathbf{v}
subject to W + \mathbf{diag}(\mathbf{v}) \geq 0
```

gives a lower bound for the two-way partitioning problem on page 5.7

strong duality: $d^* = p^*$

- does not hold in general
- (usually) holds for convex problems
- conditions that guarantee strong duality in convex problems are called constraint qualifications

Slater's constraint qualification

strong duality holds for a convex problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

if it is strictly feasible, *i.e.*, there is an $x \in \text{int } \mathcal{D}$ with $f_i(x) < 0$, i = 1, ..., m, Ax = b

- ▶ also guarantees that the dual optimum is attained (if $p^* > -\infty$)
- can be sharpened: e.g.,
 - can replace $\operatorname{int} \mathcal{D}$ with $\operatorname{relint} \mathcal{D}$ (interior relative to affine hull)
 - affine inequalities do not need to hold with strict inequality
- there are many other types of constraint qualifications

Inequality form LP

primal problem

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax \leq b \end{array}$

dual function

$$g(\lambda) = \inf_{x} \left((c + A^{T} \lambda)^{T} x - b^{T} \lambda \right) = \begin{cases} -b^{T} \lambda & A^{T} \lambda + c = 0\\ -\infty & \text{otherwise} \end{cases}$$

dual problem

maximize
$$-b^T \lambda$$

subject to $A^T \lambda + c = 0, \quad \lambda \ge 0$

▶ from the sharpened Slater's condition: $p^* = d^*$ if the primal problem is feasible

▶ in fact, $p^{\star} = d^{\star}$ except when primal and dual are both infeasible

Quadratic program

primal problem (assume $P \in \mathbf{S}_{++}^n$)

minimize $x^T P x$ subject to $Ax \leq b$

dual function

$$g(\lambda) = \inf_{x} \left(x^{T} P x + \lambda^{T} (A x - b) \right) = -\frac{1}{4} \lambda^{T} A P^{-1} A^{T} \lambda - b^{T} \lambda$$

dual problem

maximize
$$-(1/4)\lambda^T A P^{-1} A^T \lambda - b^T \lambda$$

subject to $\lambda \ge 0$

▶ from the sharpened Slater's condition: p* = d* if the primal problem is feasible
 ▶ in fact, p* = d* always

Convex Optimization

Geometric interpretation

- ▶ for simplicity, consider problem with one constraint $f_1(x) \le 0$
- $\mathcal{G} = \{(f_1(x), f_0(x)) \mid x \in \mathcal{D}\}$ is set of achievable (constraint, objective) values
- interpretation of dual function: $g(\lambda) = \inf_{(u,t) \in \mathcal{G}} (t + \lambda u)$

- $\lambda u + t = g(\lambda)$ is (non-vertical) supporting hyperplane to \mathcal{G}
- hyperplane intersects *t*-axis at $t = g(\lambda)$

Epigraph variation

same with \mathcal{G} replaced with $\mathcal{A} = \{(u, t) \mid f_1(x) \le u, f_0(x) \le t \text{ for some } x \in \mathcal{D}\}$

- strong duality holds if there is a non-vertical supporting hyperplane to \mathcal{A} at $(0, p^{\star})$
- ▶ for convex problem, \mathcal{A} is convex, hence has supporting hyperplane at $(0, p^{\star})$
- Slater's condition: if there exist $(\tilde{u}, \tilde{t}) \in \mathcal{A}$ with $\tilde{u} < 0$, then supporting hyperplane at $(0, p^*)$ must be non-vertical

Outline

Lagrangian and dual function

Lagrange dual problem

KKT conditions

Sensitivity analysis

Problem reformulations

Theorems of alternatives

Convex Optimization

Complementary slackness

> assume strong duality holds, x^* is primal optimal, (λ^*, ν^*) is dual optimal

$$f_0(x^{\star}) = g(\lambda^{\star}, v^{\star}) = \inf_x \left(f_0(x) + \sum_{i=1}^m \lambda_i^{\star} f_i(x) + \sum_{i=1}^p v_i^{\star} h_i(x) \right)$$
$$\leq f_0(x^{\star}) + \sum_{i=1}^m \lambda_i^{\star} f_i(x^{\star}) + \sum_{i=1}^p v_i^{\star} h_i(x^{\star})$$
$$\leq f_0(x^{\star})$$

- hence, the two inequalities hold with equality
- x^* minimizes $L(x, \lambda^*, \nu^*)$
- ► $\lambda_i^{\star} f_i(x^{\star}) = 0$ for i = 1, ..., m (known as **complementary slackness**):

$$\lambda_i^{\star} > 0 \implies f_i(x^{\star}) = 0, \qquad f_i(x^{\star}) < 0 \implies \lambda_i^{\star} = 0$$

Convex Optimization

Karush-Kuhn-Tucker (KKT) conditions

the **KKT** conditions (for a problem with differentiable f_i , h_i) are

- 1. primal constraints: $f_i(x) \le 0, i = 1, ..., m, h_i(x) = 0, i = 1, ..., p$
- 2. dual constraints: $\lambda \geq 0$
- 3. complementary slackness: $\lambda_i f_i(x) = 0, i = 1, \dots, m$
- 4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + \sum_{i=1}^p \nu_i \nabla h_i(x) = 0$$

if strong duality holds and x, λ , ν are optimal, they satisfy the KKT conditions

KKT conditions for convex problem

if \tilde{x} , $\tilde{\lambda}$, $\tilde{\nu}$ satisfy KKT for a convex problem, then they are optimal:

- from complementary slackness: $f_0(\tilde{x}) = L(\tilde{x}, \tilde{\lambda}, \tilde{v})$
- from 4th condition (and convexity): $g(\tilde{\lambda}, \tilde{\nu}) = L(\tilde{x}, \tilde{\lambda}, \tilde{\nu})$

hence, $f_0(\tilde{x}) = g(\tilde{\lambda}, \tilde{\nu})$

if Slater's condition is satisfied, then

x is optimal if and only if there exist λ , v that satisfy KKT conditions

- recall that Slater implies strong duality, and dual optimum is attained
- generalizes optimality condition $\nabla f_0(x) = 0$ for unconstrained problem

Outline

Lagrangian and dual function

Lagrange dual problem

KKT conditions

Sensitivity analysis

Problem reformulations

Theorems of alternatives

Convex Optimization

Perturbation and sensitivity analysis

(unperturbed) optimization problem and its dual

$$\begin{array}{ll} \text{minimize} & f_0(x) & \text{maximize} & g(\lambda, \nu) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m & \text{subject to} & \lambda \geq 0 \\ & h_i(x) = 0, \quad i = 1, \dots, p & \end{array}$$

perturbed problem and its dual

minimize
$$f_0(x)$$

subject to $f_i(x) \le u_i$, $i = 1, ..., m$
 $h_i(x) = v_i$, $i = 1, ..., p$

 $\begin{array}{ll} \text{maximize} & g(\lambda,\nu) - u^T \lambda - \nu^T \nu \\ \text{subject to} & \lambda \geq 0 \end{array}$

- \blacktriangleright x is primal variable; u, v are parameters
- $p^{\star}(u, v)$ is optimal value as a function of u, v
- $p^{\star}(0,0)$ is optimal value of unperturbed problem

Convex Optimization

Global sensitivity via duality

assume strong duality holds for unperturbed problem, with \u03c8^{*}, \u03c8^{*} dual optimal
 apply weak duality to perturbed problem:

$$p^{\star}(u,v) \ge g(\lambda^{\star},v^{\star}) - u^T \lambda^{\star} - v^T v^{\star} = p^{\star}(0,0) - u^T \lambda^{\star} - v^T v^{\star}$$

implications

- if λ_i^{\star} large: p^{\star} increases greatly if we tighten constraint i ($u_i < 0$)
- if λ_i^{\star} small: p^{\star} does not decrease much if we loosen constraint i ($u_i > 0$)
- if v_i^{\star} large and positive: p^{\star} increases greatly if we take $v_i < 0$
- if v_i^{\star} large and negative: p^{\star} increases greatly if we take $v_i > 0$
- if v_i^{\star} small and positive: p^{\star} does not decrease much if we take $v_i > 0$
- if v_i^{\star} small and negative: p^{\star} does not decrease much if we take $v_i < 0$

Local sensitivity via duality

if (in addition) $p^{\star}(u, v)$ is differentiable at (0,0), then

$$\lambda_i^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial u_i}, \qquad \nu_i^{\star} = -\frac{\partial p^{\star}(0,0)}{\partial \nu_i}$$

proof (for λ_i^{\star}): from global sensitivity result,

$$\frac{\partial p^{\star}(0,0)}{\partial u_{i}} = \lim_{t \searrow 0} \frac{p^{\star}(te_{i},0) - p^{\star}(0,0)}{t} \ge -\lambda_{i}^{\star} \qquad \frac{\partial p^{\star}(0,0)}{\partial u_{i}} = \lim_{t \nearrow 0} \frac{p^{\star}(te_{i},0) - p^{\star}(0,0)}{t} \le -\lambda_{i}^{\star}$$

hence, equality

 $p^{\star}(u)$ for a problem with one (inequality) constraint:

Convex Optimization

Outline

Lagrangian and dual function

Lagrange dual problem

KKT conditions

Sensitivity analysis

Problem reformulations

Theorems of alternatives

Convex Optimization

Duality and problem reformulations

- equivalent formulations of a problem can lead to very different duals
- reformulating primal problem can be useful when dual is difficult to derive, or uninteresting

common reformulations

- introduce new variables and equality constraints
- make explicit constraints implicit or vice-versa
- ► transform objective or constraint functions, *e.g.*, replace $f_0(x)$ by $\phi(f_0(x))$ with ϕ convex, increasing

Introducing new variables and equality constraints

- unconstrained problem: minimize $f_0(Ax + b)$
- dual function is constant: $g = \inf_x L(x) = \inf_x f_0(Ax + b) = p^*$
- we have strong duality, but dual is quite useless
- introduce new variable y and equality constraints y = Ax + b

minimize $f_0(y)$ subject to Ax + b - y = 0

dual of reformulated problem is

maximize $b^T v - f_0^*(v)$ subject to $A^T v = 0$

• a nontrivial, useful dual (assuming the conjugate f_0^* is easy to express)

Example: Norm approximation

▶ minimize ||Ax - b||

- ▶ reformulate as minimize ||y|| subject to y = Ax b
- recall conjugate of general norm:

$$||z||^* = \begin{cases} 0 & ||z||_* \le 1\\ \infty & \text{otherwise} \end{cases}$$

dual of (reformulated) norm approximation problem:

$$\begin{array}{ll} \mbox{maximize} & b^T \nu \\ \mbox{subject to} & A^T \nu = 0, \quad \|\nu\|_* \leq 1 \end{array}$$

Outline

Lagrangian and dual function

Lagrange dual problem

KKT conditions

Sensitivity analysis

Problem reformulations

Theorems of alternatives

Convex Optimization

Theorems of alternatives

- consider two systems of inequality and equality constraints
- called weak alternatives if no more than one system is feasible
- called strong alternatives if exactly one of them is feasible
- examples: for any $a \in \mathbf{R}$, with variable $x \in \mathbf{R}$,
 - -x > a and $x \le a 1$ are weak alternatives
 - -x > a and $x \le a$ are strong alternatives
- a theorem of alternatives states that two inequality systems are (weak or strong) alternatives
- can be considered the extension of duality to feasibility problems

Feasibility problems

consider system of (not necessarily convex) inequalities and equalities

 $f_i(x) \le 0, \quad i = 1, \dots, m, \quad h_i(x) = 0, \quad i = 1, \dots, p$

express as feasibility problem

minimize 0
subject to
$$f_i(x) \le 0$$
, $i = 1, ..., m$,
 $h_i(x) = 0$, $i = 1, ..., p$

• if system if feasible, $p^* = 0$; if not, $p^* = \infty$

Duality for feasibility problems

- dual function of feasibility problem is $g(\lambda, \nu) = \inf_x \left(\sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i h_i(x) \right)$
- for $\lambda \geq 0$, we have $g(\lambda, \nu) \leq p^{\star}$
- it follows that feasibility of the inequality system

 $\lambda \geq 0, \qquad g(\lambda, \nu) > 0$

implies the original system is infeasible

- so this is a weak alternative to original system
- \blacktriangleright it is strong if f_i convex, h_i affine, and a constraint qualification holds
- g is positive homogeneous so we can write alternative system as

$$\lambda \ge 0, \qquad g(\lambda, \nu) \ge 1$$

Example: Nonnegative solution of linear equations

consider system

$$Ax = b, \qquad x \ge 0$$
In dual function is $g(\lambda, \nu) = \begin{cases} -b^T \nu & A^T \nu = \lambda \\ -\infty & \text{otherwise} \end{cases}$

• can express strong alternative of
$$Ax = b$$
, $x \ge 0$ as

$$A^T \nu \ge 0, \qquad b^T \nu \le -1$$

(we can replace $b^T v \leq -1$ with $b^T v = -1$)

Convex Optimization

Farkas' lemma

► Farkas' lemma:

$$Ax \le 0$$
, $c^T x < 0$ and $A^T y + c = 0$, $y \ge 0$

are strong alternatives

proof: use (strong) duality for (feasible) LP

 $\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax \leq 0 \end{array}$

Investment arbitrage

- we invest x_j in each of n assets $1, \ldots, n$ with prices p_1, \ldots, p_n
- our initial cost is $p^T x$
- ▶ at the end of the investment period there are only m possible outcomes i = 1, ..., m
- V_{ij} is the **payoff** or final value of asset j in outcome i
- First investment is risk-free (cash): $p_1 = 1$ and $V_{i1} = 1$ for all i
- **arbitrage** means there is x with $p^T x < 0$, $Vx \ge 0$
- arbitrage means we receive money up front, and our investment cannot lose
- standard assumption in economics: the prices are such that there is no arbitrage

Absence of arbitrage

- ▶ by Farkas' lemma, there is no arbitrage \iff there exists $y \in \mathbf{R}^m_+$ with $V^T y = p$
- since first column of V is 1, we have $\mathbf{1}^T y = 1$
- y is interpreted as a **risk-neutral probability** on the outcomes $1, \ldots, m$
- \blacktriangleright $V^T y$ are the expected values of the payoffs under the risk-neutral probability
- interpretation of $V^T y = p$:

asset prices equal their expected payoff under the risk-neutral probability

► arbitrage theorem: there is no arbitrage ⇔ there exists a risk-neutral probability distribution under which each asset price is its expected payoff

Example

$$V = \begin{bmatrix} 1.0 & 0.5 & 0.0 \\ 1.0 & 0.8 & 0.0 \\ 1.0 & 1.0 & 1.0 \\ 1.0 & 1.3 & 4.0 \end{bmatrix}, \qquad p = \begin{bmatrix} 1.0 \\ 0.9 \\ 0.3 \end{bmatrix}, \qquad \tilde{p} = \begin{bmatrix} 1.0 \\ 0.8 \\ 0.7 \end{bmatrix}$$

with prices p, there is an arbitrage

$$x = \begin{bmatrix} 6.2 \\ -7.7 \\ 1.5 \end{bmatrix}, \qquad p^{T}x = -0.2, \qquad \mathbf{1}^{T}x = 0, \qquad Vx = \begin{bmatrix} 2.35 \\ 0.04 \\ 0.00 \\ 2.19 \end{bmatrix}$$

• with prices \tilde{p} , there is no arbitrage, with risk-neutral probability

$$y = \begin{bmatrix} 0.36\\ 0.27\\ 0.26\\ 0.11 \end{bmatrix} \qquad V^T y = \begin{bmatrix} 1.0\\ 0.8\\ 0.7 \end{bmatrix}$$

Convex Optimization

6. Approximation and fitting

Outline

Norm and penalty approximation

Regularized approximation

Robust approximation

Convex Optimization

Norm approximation

- ▶ minimize ||Ax b||, with $A \in \mathbf{R}^{m \times n}$, $m \ge n$, $|| \cdot ||$ is any norm
- approximation: Ax^* is the best approximation of b by a linear combination of columns of A
- **geometric**: Ax^* is point in $\mathcal{R}(A)$ closest to b (in norm $\|\cdot\|$)
- **estimation**: linear measurement model y = Ax + v
 - measurement y, v is measurement error, x is to be estimated
 - implausibility of v is ||v||
 - given y = b, most plausible x is x^*
- **optimal design**: *x* are design variables (input), *Ax* is result (output)
 - $-x^{\star}$ is design that best approximates desired result b (in norm $\|\cdot\|$)

Examples

- Euclidean approximation $(\|\cdot\|_2)$
 - solution $x^* = A^{\dagger}b$
- Chebyshev or minimax approximation $(\|\cdot\|_{\infty})$
 - can be solved via LP

 $\begin{array}{ll} \text{minimize} & t\\ \text{subject to} & -t\mathbf{1} \leq Ax - b \leq t\mathbf{1} \end{array}$

- sum of absolute residuals approximation $(\|\cdot\|_1)$
 - can be solved via LP

 $\begin{array}{ll} \text{minimize} & \mathbf{1}^T y\\ \text{subject to} & -y \leq Ax - b \leq y \end{array}$

Penalty function approximation

minimize $\phi(r_1) + \dots + \phi(r_m)$ subject to r = Ax - b

 $(A \in \mathbf{R}^{m \times n}, \phi : \mathbf{R} \to \mathbf{R} \text{ is a convex penalty function})$

examples

- quadratic: $\phi(u) = u^2$
- deadzone-linear with width a:

$$\phi(u) = \max\{0, |u| - a\}$$

log-barrier with limit a:

$$\phi(u) = \begin{cases} -a^2 \log(1 - (u/a)^2) & |u| < a \\ \infty & \text{otherwise} \end{cases}$$

Convex Optimization

Example: histograms of residuals

 $A \in \mathbf{R}^{100 \times 30}$; shape of penalty function affects distribution of residuals

absolute value $\phi(u) = |u|$

square $\phi(u) = u^2$

deadzone
$$\phi(u) = \max\{0, |u| - 0.5\}$$

log-barrier
$$\phi(u) = -\log(1 - u^2)$$

Convex Optimization

Huber penalty function

 \blacktriangleright linear growth for large u makes approximation less sensitive to outliers

called a robust penalty

Example

• 42 points (circles) t_i , y_i , with two outliers

• affine function $f(t) = \alpha + \beta t$ fit using quadratic (dashed) and Huber (solid) penalty

Convex Optimization

Least-norm problems

least-norm problem:

 $\begin{array}{ll} \text{minimize} & \|x\|\\ \text{subject to} & Ax = b, \end{array}$

with $A \in \mathbf{R}^{m \times n}$, $m \le n$, $\|\cdot\|$ is any norm

geometric: x^* is smallest point in solution set $\{x \mid Ax = b\}$

- estimation:
 - b = Ax are (perfect) measurements of x
 - ||x|| is implausibility of x
 - $-x^{\star}$ is most plausible estimate consistent with measurements
- **design:** *x* are design variables (inputs); *b* are required results (outputs)
 - $-x^{\star}$ is smallest ('most efficient') design that satisfies requirements

Examples

- ► least Euclidean norm $(\|\cdot\|_2)$ - solution $x = A^{\dagger}b$ (assuming $b \in \mathcal{R}(A)$)
- least sum of absolute values $(\|\cdot\|_1)$
 - can be solved via LP

 $\begin{array}{ll} \text{minimize} & \mathbf{1}^T y \\ \text{subject to} & -y \leq x \leq y, \quad Ax = b \end{array}$

- tends to yield sparse x^{\star}

Outline

Norm and penalty approximation

Regularized approximation

Robust approximation

Convex Optimization

Regularized approximation

a bi-objective problem:

minimize (w.r.t.
$$\mathbf{R}_{+}^{2}$$
) ($||Ax - b||, ||x||$)

- $A \in \mathbf{R}^{m \times n}$, norms on \mathbf{R}^m and \mathbf{R}^n can be different
- interpretation: find good approximation $Ax \approx b$ with small x
- **estimation:** linear measurement model y = Ax + v, with prior knowledge that ||x|| is small
- optimal design: small x is cheaper or more efficient, or the linear model y = Ax is only valid for small x
- ► robust approximation: good approximation Ax ≈ b with small x is less sensitive to errors in A than good approximation with large x

Scalarized problem

• minimize $||Ax - b|| + \gamma ||x||$

- ▶ solution for $\gamma > 0$ traces out optimal trade-off curve
- other common method: minimize $||Ax b||^2 + \delta ||x||^2$ with $\delta > 0$
- with $\|\cdot\|_2$, called **Tikhonov regularization** or **ridge regression**

minimize $||Ax - b||_2^2 + \delta ||x||_2^2$

can be solved as a least-squares problem

minimize
$$\left\| \begin{bmatrix} A \\ \sqrt{\delta I} \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|_{2}^{2}$$

with solution $x^{\star} = (A^T A + \delta I)^{-1} A^T b$

Optimal input design

Inear dynamical system (or **convolution system**) with impulse response *h*:

$$y(t) = \sum_{\tau=0}^{t} h(\tau)u(t-\tau), \quad t = 0, 1, \dots, N$$

input design problem: multicriterion problem with 3 objectives

- tracking error with desired output y_{des} : $J_{track} = \sum_{t=0}^{N} (y(t) y_{des}(t))^2$
- input variation: $J_{\text{der}} = \sum_{t=0}^{N-1} (u(t+1) u(t))^2$
- input magnitude: $J_{\text{mag}} = \sum_{t=0}^{N} u(t)^2$

track desired output using a small and slowly varying input signal

regularized least-squares formulation: minimize $J_{\text{track}} + \delta J_{\text{der}} + \eta J_{\text{mag}}$

- for fixed δ , η , a least-squares problem in u(0), ..., u(N)

Example

Convex Optimization

Boyd and Vandenberghe

Signal reconstruction

bi-objective problem:

minimize (w.r.t.
$$\mathbf{R}_{+}^{2}$$
) $(\|\hat{x} - x_{cor}\|_{2}, \phi(\hat{x}))$

- $-x \in \mathbf{R}^n$ is unknown signal
- $-x_{cor} = x + v$ is (known) corrupted version of x, with additive noise v
- variable \hat{x} (reconstructed signal) is estimate of x
- $-\phi: \mathbf{R}^n \to \mathbf{R}$ is regularization function or smoothing objective

examples:

- quadratic smoothing, $\phi_{\text{quad}}(\hat{x}) = \sum_{i=1}^{n-1} (\hat{x}_{i+1} \hat{x}_i)^2$
- total variation smoothing, $\phi_{\mathrm{tv}}(\hat{x}) = \sum_{i=1}^{n-1} |\hat{x}_{i+1} \hat{x}_i|$

Convex Optimization

Quadratic smoothing example

original signal x and noisy signal x_{cor}

three solutions on trade-off curve $\|\hat{x} - x_{cor}\|_2$ versus $\phi_{quad}(\hat{x})$

Reconstructing a signal with sharp transitions

original signal x and noisy signal x_{cor}

 \hat{x}_i 0 500 1000 1500 2000 \hat{x}_i 0 500 1000 1500 2000 \hat{x}_i 0 500 1000 1500 2000 ~n

three solutions on trade-off curve $\|\hat{x} - x_{cor}\|_2$ versus $\phi_{quad}(\hat{x})$

quadratic smoothing smooths out noise and sharp transitions in signal

Convex Optimization

Total variation reconstruction

original signal x and noisy signal x_{cor}

 $\|\hat{x} - x_{\rm cor}\|_2$ versus $\phi_{\rm tv}(\hat{x})$

total variation smoothing preserves sharp transitions in signal

Convex Optimization

Outline

Norm and penalty approximation

Regularized approximation

Robust approximation

Robust approximation

- minimize ||Ax b|| with uncertain A
- two approaches:
 - **stochastic**: assume A is random, minimize $\mathbf{E} ||Ax b||$
 - worst-case: set \mathcal{A} of possible values of A, minimize $\sup_{A \in \mathcal{A}} ||Ax b||$
- ▶ tractable only in special cases (certain norms $\|\cdot\|$, distributions, sets \mathcal{R})

Example

 $A(u) = A_0 + uA_1, u \in [-1, 1]$

- x_{nom} minimizes $||A_0x b||_2^2$
- ► x_{stoch} minimizes $\mathbf{E} ||A(u)x b||_2^2$ with u uniform on [-1, 1]

►
$$x_{wc}$$
 minimizes $\sup_{-1 \le u \le 1} ||A(u)x - b||_2^2$

plot shows $r(u) = ||A(u)x - b||_2$ versus u

Convex Optimization

Stochastic robust least-squares

•
$$A = \overline{A} + U$$
, U random, $\mathbf{E} U = 0$, $\mathbf{E} U^T U = P$

- **•** stochastic least-squares problem: minimize $\mathbf{E} \| (\bar{A} + U)x b \|_2^2$
- explicit expression for objective:

$$\mathbf{E} \|Ax - b\|_{2}^{2} = \mathbf{E} \|\bar{A}x - b + Ux\|_{2}^{2}$$

$$= \|\bar{A}x - b\|_{2}^{2} + \mathbf{E}x^{T}U^{T}Ux$$

$$= \|\bar{A}x - b\|_{2}^{2} + x^{T}Px$$

► hence, robust least-squares problem is equivalent to: minimize $\|\bar{A}x - b\|_2^2 + \|P^{1/2}x\|_2^2$

• for $P = \delta I$, get Tikhonov regularized problem: minimize $\|\bar{A}x - b\|_2^2 + \delta \|x\|_2^2$

Convex Optimization

Worst-case robust least-squares

$$\blacktriangleright \mathcal{A} = \{\bar{A} + u_1 A_1 + \dots + u_p A_p \mid ||u||_2 \le 1\} \text{ (an ellipsoid in } \mathbf{R}^{m \times n}\text{)}$$

worst-case robust least-squares problem is

minimize
$$\sup_{A \in \mathcal{A}} ||Ax - b||_2^2 = \sup_{||u||_2 \le 1} ||P(x)u + q(x)||_2^2$$

where $P(x) = \begin{bmatrix} A_1 x & A_2 x & \cdots & A_p x \end{bmatrix}$, $q(x) = \overline{A}x - b$

from book appendix B, strong duality holds between the following problems

$$\begin{array}{ll} \text{maximize} & \|Pu+q\|_2^2 & \text{minimize} & t+\lambda \\ \text{subject to} & \|u\|_2^2 \leq 1 & \\ & \text{subject to} & \begin{bmatrix} I & P & q \\ P^T & \lambda I & 0 \\ q^T & 0 & t \end{bmatrix} \geq 0 \end{array}$$

hence, robust least-squares problem is equivalent to SDP

minimize
$$t + \lambda$$

subject to
$$\begin{bmatrix} I & P(x) & q(x) \\ P(x)^T & \lambda I & 0 \\ q(x)^T & 0 & t \end{bmatrix} \ge 0$$

Convex Optimization

Example

► $r(u) = ||(A_0 + u_1A_1 + u_2A_2)x - b||_2$, *u* uniform on unit disk

three choices of x:

-
$$x_{ls}$$
 minimizes $||A_0x - b||_2$
- x_{tik} minimizes $||A_0x - b||_2^2 + \delta ||x||_2^2$ (Tikhonov solution)

$$-x_{\text{rls}}$$
 minimizes $\sup_{A \in \mathcal{A}} ||Ax - b||_2^2 + ||x||_2^2$

7. Statistical estimation

Outline

Maximum likelihood estimation

Hypothesis testing

Experiment design

Convex Optimization

Maximum likelihood estimation

- **parametric distribution estimation:** choose from a family of densities $p_x(y)$, indexed by a parameter x (often denoted θ)
- we take $p_x(y) = 0$ for invalid values of x
- $p_x(y)$, as a function of x, is called **likelihood function**
- ▶ $l(x) = \log p_x(y)$, as a function of x, is called **log-likelihood function**
- **•** maximum likelihood estimation (MLE): choose x to maximize $p_x(y)$ (or l(x))
- ▶ a convex optimization problem if $\log p_x(y)$ is concave in x for fixed y
- ▶ not the same as $\log p_x(y)$ concave in y for fixed x, *i.e.*, $p_x(y)$ is a family of log-concave densities

Linear measurements with IID noise

linear measurement model

$$y_i = a_i^T x + v_i, \quad i = 1, \dots, m$$

• $x \in \mathbf{R}^n$ is vector of unknown parameters

- v_i is IID measurement noise, with density p(z)
- ▶ y_i is measurement: $y \in \mathbf{R}^m$ has density $p_x(y) = \prod_{i=1}^m p(y_i a_i^T x)$

maximum likelihood estimate: any solution x of

maximize
$$l(x) = \sum_{i=1}^{m} \log p(y_i - a_i^T x)$$

(y is observed value)

Examples

• Gaussian noise
$$\mathcal{N}(0, \sigma^2)$$
: $p(z) = (2\pi\sigma^2)^{-1/2}e^{-z^2/(2\sigma^2)}$,

$$l(x) = -\frac{m}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^m (a_i^T x - y_i)^2$$

ML estimate is least-squares solution

• Laplacian noise: $p(z) = (1/(2a))e^{-|z|/a}$,

$$l(x) = -m\log(2a) - \frac{1}{a}\sum_{i=1}^{m} |a_i^T x - y_i|$$

ML estimate is ℓ_1 -norm solution

• uniform noise on [-a, a]:

$$l(x) = \begin{cases} -m \log(2a) & |a_i^T x - y_i| \le a, \quad i = 1, \dots, m \\ -\infty & \text{otherwise} \end{cases}$$

ML estimate is any x with $|a_i^T x - y_i| \le a$

Convex Optimization

Logistic regression

▶ random variable $y \in \{0, 1\}$ with distribution

$$p = \mathbf{prob}(y = 1) = \frac{\exp(a^T u + b)}{1 + \exp(a^T u + b)}$$

- ▶ a, b are parameters; $u \in \mathbf{R}^n$ are (observable) explanatory variables
- estimation problem: estimate a, b from m observations (u_i, y_i)
- ▶ log-likelihood function (for $y_1 = \cdots = y_k = 1$, $y_{k+1} = \cdots = y_m = 0$):

$$l(a,b) = \log\left(\prod_{i=1}^{k} \frac{\exp(a^{T}u_{i}+b)}{1+\exp(a^{T}u_{i}+b)} \prod_{i=k+1}^{m} \frac{1}{1+\exp(a^{T}u_{i}+b)}\right)$$
$$= \sum_{i=1}^{k} (a^{T}u_{i}+b) - \sum_{i=1}^{m} \log(1+\exp(a^{T}u_{i}+b))$$

concave in a, b

Convex Optimization

Example

▶ n = 1, m = 50 measurements; circles show points (u_i, y_i)

• solid curve is ML estimate of $p = \exp(au + b)/(1 + \exp(au + b))$

Convex Optimization

Gaussian covariance estimation

- fit Gaussian distribution $\mathcal{N}(0, \Sigma)$ to observed data y_1, \ldots, y_N
- log-likelihood is

$$l(\Sigma) = \frac{1}{2} \sum_{k=1}^{N} \left(-2\pi n - \log \det \Sigma - y^T \Sigma^{-1} y \right)$$
$$= \frac{N}{2} \left(-2\pi n - \log \det \Sigma - \mathbf{tr} \Sigma^{-1} Y \right)$$

with $Y = (1/N) \sum_{k=1}^{N} y_k y_k^T$, the empirical covariance

- ▶ *l* is **not** concave in Σ (the log det Σ term has the wrong sign)
- with no constraints or regularization, MLE is empirical covariance $\Sigma^{ml} = Y$

Change of variables

- change variables to $S = \Sigma^{-1}$
- recover original parameter via $\Sigma = S^{-1}$
- S is the natural parameter in an exponential family description of a Gaussian
- ▶ in terms of *S*, log-likelihood is

$$l(S) = \frac{N}{2} \left(-2\pi n + \log \det S - \operatorname{tr} SY \right)$$

which is concave

(a similar trick can be used to handle nonzero mean)

Fitting a sparse inverse covariance

- S is the **precision matrix** of the Gaussian
- ▶ $S_{ij} = 0$ means that y_i and y_j are independent, conditioned on y_k , $k \neq i, j$
- ▶ sparse *S* means
 - many pairs of components are conditionally independent, given the others
 - y is described by a sparse (Gaussian) Bayes network

▶ to fit data with *S* sparse, minimize convex function

$$-\log \det S + \operatorname{tr} SY + \lambda \sum_{i \neq j} |S_{ij}|$$

over $S \in \mathbf{S}^n$, with hyper-parameter $\lambda \ge 0$

Convex Optimization

Example

• example with n = 4, N = 10 samples generated from a sparse S^{true}

$$S^{\text{true}} = \begin{bmatrix} 1 & 0 & 0.5 & 0 \\ 0 & 1 & 0 & 0.1 \\ 0.5 & 0 & 1 & 0.3 \\ 0 & 0.1 & 0.3 & 1 \end{bmatrix}$$

• empirical and sparse estimate values of Σ^{-1} (with $\lambda = 0.2$)

$$Y^{-1} = \begin{bmatrix} 3 & 0.8 & 3.3 & 1.2 \\ 0.8 & 1.2 & 1.2 & 0.9 \\ 3.2 & 1.2 & 4.6 & 2.1 \\ 1.2 & 0.9 & 2.1 & 2.7 \end{bmatrix}, \qquad \hat{S} = \begin{bmatrix} 0.9 & 0 & 0.6 & 0 \\ 0 & 0.7 & 0 & 0.1 \\ 0.6 & 0 & 1.1 & 0.2 \\ 0 & 0.1 & 0.2 & 1.2 \end{bmatrix}.$$

• estimation errors: $||S^{\text{true}} - Y^{-1}||_F^2 = 49.8$, $||S^{\text{true}} - \hat{S}||_F^2 = 0.2$

Convex Optimization

Outline

Maximum likelihood estimation

Hypothesis testing

Experiment design

Convex Optimization

(Binary) hypothesis testing

detection (hypothesis testing) problem

given observation of a random variable $X \in \{1, ..., n\}$, choose between:

- hypothesis 1: X was generated by distribution $p = (p_1, \ldots, p_n)$
- ▶ hypothesis 2: X was generated by distribution $q = (q_1, ..., q_n)$

randomized detector

- ▶ a nonnegative matrix $T \in \mathbf{R}^{2 \times n}$, with $\mathbf{1}^T T = \mathbf{1}^T$
- if we observe X = k, we choose hypothesis 1 with probability t_{1k} , hypothesis 2 with probability t_{2k}
- if all elements of T are 0 or 1, it is called a **deterministic detector**

Detection probability matrix

$$D = \begin{bmatrix} Tp & Tq \end{bmatrix} = \begin{bmatrix} 1 - P_{\rm fp} & P_{\rm fn} \\ P_{\rm fp} & 1 - P_{\rm fn} \end{bmatrix}$$

- \triangleright $P_{\rm fp}$ is probability of selecting hypothesis 2 if X is generated by distribution 1 (false positive)
- P_{fn} is probability of selecting hypothesis 1 if X is generated by distribution 2 (false negative)
- multi-objective formulation of detector design

minimize (w.r.t.
$$\mathbf{R}^2_+$$
) $(P_{\text{fp}}, P_{\text{fn}}) = ((Tp)_2, (Tq)_1)$
subject to $t_{1k} + t_{2k} = 1, \quad k = 1, \dots, n$
 $t_{ik} \ge 0, \quad i = 1, 2, \quad k = 1, \dots, n$

variable $T \in \mathbf{R}^{2 \times n}$

Convex Optimization

Scalarization

• scalarize with weight $\lambda > 0$ to obtain

minimize $(Tp)_2 + \lambda (Tq)_1$ subject to $t_{1k} + t_{2k} = 1$, $t_{ik} \ge 0$, i = 1, 2, $k = 1, \dots, n$

an LP with a simple analytical solution

$$(t_{1k}, t_{2k}) = \begin{cases} (1,0) & p_k \ge \lambda q_k \\ (0,1) & p_k < \lambda q_k \end{cases}$$

- > a deterministic detector, given by a likelihood ratio test
- ▶ if $p_k = \lambda q_k$ for some k, any value $0 \le t_{1k} \le 1$, $t_{1k} = 1 t_{2k}$ is optimal (*i.e.*, Pareto-optimal detectors include non-deterministic detectors)

Minimax detector

minimize maximum of false positive and false negative probabilities

minimize $\max\{P_{\text{fp}}, P_{\text{fn}}\} = \max\{(Tp)_2, (Tq)_1\}$ subject to $t_{1k} + t_{2k} = 1, \quad t_{ik} \ge 0, \quad i = 1, 2, \quad k = 1, \dots, n$

an LP; solution is usually not deterministic

Example

solutions 1, 2, 3 (and endpoints) are deterministic; 4 is minimax detector

Convex Optimization

Outline

Maximum likelihood estimation

Hypothesis testing

Experiment design

Convex Optimization

Experiment design

- ▶ *m* linear measurements $y_i = a_i^T x + w_i$, i = 1, ..., m of unknown $x \in \mathbf{R}^n$
- measurement errors w_i are IID $\mathcal{N}(0, 1)$
- ML (least-squares) estimate is

$$\hat{x} = \left(\sum_{i=1}^{m} a_i a_i^T\right)^{-1} \sum_{i=1}^{m} y_i a_i$$

• error $e = \hat{x} - x$ has zero mean and covariance

$$E = \mathbf{E} \, e e^T = \left(\sum_{i=1}^m a_i a_i^T\right)^{-1}$$

• confidence ellipsoids are given by $\{x \mid (x - \hat{x})^T E^{-1} (x - \hat{x}) \le \beta\}$

• experiment design: choose $a_i \in \{v_1, \ldots, v_p\}$ (set of possible test vectors) to make *E* 'small'

Convex Optimization

Vector optimization formulation

formulate as vector optimization problem

minimize (w.r.t.
$$\mathbf{S}_{+}^{n}$$
) $E = \left(\sum_{k=1}^{p} m_{k} v_{k} v_{k}^{T}\right)^{-1}$
subject to $m_{k} \ge 0, \quad m_{1} + \dots + m_{p} = m$
 $m_{k} \in \mathbf{Z}$

- variables are m_k , the number of vectors a_i equal to v_k
- difficult in general, due to integer constraint
- ► common scalarizations: minimize log det *E*, tr *E*, $\lambda_{max}(E)$, ...

Relaxed experiment design

▶ assume $m \gg p$, use $\lambda_k = m_k/m$ as (continuous) real variable

minimize (w.r.t.
$$\mathbf{S}_{+}^{n}$$
) $E = (1/m) \left(\sum_{k=1}^{p} \lambda_{k} v_{k} v_{k}^{T} \right)^{-1}$
subject to $\lambda \ge 0, \quad \mathbf{1}^{T} \lambda = 1$

- ▶ a convex relaxation, since we ignore constraint that $m\lambda_k \in \mathbf{Z}$
- > optimal value is lower bound on optimal value of (integer) experiment design problem
- ▶ simple rounding of $\lambda_k m$ gives heuristic for experiment design problem

D-optimal design

scalarize via log determinant

minimize
$$\log \det \left(\sum_{k=1}^{p} \lambda_k v_k v_k^T \right)^{-1}$$

subject to $\lambda \ge 0$, $\mathbf{1}^T \lambda = 1$

interpretation: minimizes volume of confidence ellipsoids

Dual of D-optimal experiment design problem

dual problem

```
maximize \log \det W + n \log n
subject to v_k^T W v_k \le 1, \quad k = 1, \dots, p
```

interpretation: { $x \mid x^T W x \le 1$ } is minimum volume ellipsoid centered at origin, that includes all test vectors v_k

complementary slackness: for λ , W primal and dual optimal

$$\lambda_k(1-v_k^T W v_k) = 0, \quad k = 1, \dots, p$$

optimal experiment uses vectors v_k on boundary of ellipsoid defined by W

Convex Optimization

Example

(p = 20)

design uses two vectors, on boundary of ellipse defined by optimal W

Derivation of dual

first reformulate primal problem with new variable *X*:

minimize
$$\log \det X^{-1}$$

subject to $X = \sum_{k=1}^{p} \lambda_k v_k v_k^T$, $\lambda \ge 0$, $\mathbf{1}^T \lambda = 1$

$$L(X,\lambda,Z,z,\nu) = \log \det X^{-1} + \operatorname{tr} \left(Z \left(X - \sum_{k=1}^{\nu} \lambda_k \nu_k \nu_k^T \right) \right) - z^T \lambda + \nu (\mathbf{1}^T \lambda - 1)$$

minimize over X by setting gradient to zero: -X⁻¹ + Z = 0
 minimum over λ_k is -∞ unless -v_k^TZv_k - z_k + v = 0
 dual problem

maximize
$$n + \log \det Z - v$$

subject to $v_k^T Z v_k \le v, \quad k = 1, \dots, p$

change variable $W = Z/\nu$, and optimize over ν to get dual of slide 7.21

Convex Optimization

8. Geometric problems

Outline

Extremal volume ellipsoids

Centering

Classification

Placement and facility location

Convex Optimization

Minimum volume ellipsoid around a set

- **Löwner-John ellipsoid** of a set C: minimum volume ellipsoid \mathcal{E} with $C \subseteq \mathcal{E}$
- ▶ parametrize \mathcal{E} as $\mathcal{E} = \{v \mid ||Av + b||_2 \le 1\}$; can assume $A \in \mathbf{S}_{++}^n$
- ▶ **vol** \mathcal{E} is proportional to det A^{-1} ; to find Löwner-John ellipsoid, solve problem

minimize (over A, b) $\log \det A^{-1}$ subject to $\sup_{v \in C} ||Av + b||_2 \le 1$

convex, but evaluating the constraint can be hard (for general C)

• finite set
$$C = \{x_1, ..., x_m\}$$
:

minimize (over A, b) $\log \det A^{-1}$ subject to $||Ax_i + b||_2 \le 1, \quad i = 1, ..., m$

also gives Löwner-John ellipsoid for polyhedron $conv{x_1, ..., x_m}$

Convex Optimization

Maximum volume inscribed ellipsoid

- maximum volume ellipsoid \mathcal{E} with $\mathcal{E} \subseteq C$, $C \subseteq \mathbf{R}^n$ convex
- ▶ parametrize \mathcal{E} as $\mathcal{E} = \{Bu + d \mid ||u||_2 \le 1\}$; can assume $B \in \mathbf{S}_{++}^n$
- ▶ vol \mathcal{E} is proportional to det B; can find \mathcal{E} by solving

 $\begin{array}{ll} \text{maximize} & \log \det B \\ \text{subject to} & \sup_{\|u\|_2 \le 1} I_C(Bu+d) \le 0 \end{array}$

(where $I_C(x) = 0$ for $x \in C$ and $I_C(x) = \infty$ for $x \notin C$) convex, but evaluating the constraint can be hard (for general C)

• polyhedron
$$\{x \mid a_i^T x \le b_i, i = 1, \dots, m\}$$
:

maximize $\log \det B$ subject to $||Ba_i||_2 + a_i^T d \le b_i, \quad i = 1, ..., m$

(constraint follows from $\sup_{\|u\|_2 \le 1} a_i^T (Bu + d) = \|Ba_i\|_2 + a_i^T d$)

Convex Optimization

Efficiency of ellipsoidal approximations

- $C \subseteq \mathbf{R}^n$ convex, bounded, with nonempty interior
- Löwner-John ellipsoid, shrunk by a factor n (around its center), lies inside C
- \blacktriangleright maximum volume inscribed ellipsoid, expanded by a factor *n* (around its center) covers *C*
- **example** (for polyhedra in **R**²)

• factor *n* can be improved to \sqrt{n} if *C* is symmetric

Convex Optimization

Outline

Extremal volume ellipsoids

Centering

Classification

Placement and facility location

Convex Optimization

Centering

- \blacktriangleright many possible definitions of 'center' of a convex set C
- Chebyshev center: center of largest inscribed ball
 - for polyhedron, can be found via linear programming
- center of maximum volume inscribed ellipsoid
 - invariant under affine coordinate transformations

Convex Optimization

Boyd and Vandenberghe

Analytic center of a set of inequalities

the analytic center of set of convex inequalities and linear equations

$$f_i(x) \le 0, \quad i = 1, \dots, m, \qquad Fx = g$$

is defined as solution of

minimize
$$-\sum_{i=1}^{m} \log(-f_i(x))$$

subject to $Fx = g$

- objective is called the log-barrier for the inequalities
- (we'll see later) analytic center more easily computed than MVE or Chebyshev center
- ▶ two sets of inequalities can describe the same set, but have different analytic centers

Analytic center of linear inequalities

$$\bullet \ a_i^T x \le b_i, \ i = 1, \dots, m$$

- x_{ac} minimizes $\phi(x) = -\sum_{i=1}^{m} \log(b_i a_i^T x)$
- dashed lines are level curves of ϕ

Inner and outer ellipsoids from analytic center

we have

$$\mathcal{E}_{\text{inner}} \subseteq \{x \mid a_i^T x \le b_i, i = 1, \dots, m\} \subseteq \mathcal{E}_{\text{outer}}$$

where

$$\begin{aligned} \mathcal{E}_{\text{inner}} &= \{ x \mid (x - x_{\text{ac}})^T \nabla^2 \phi(x_{\text{ac}})(x - x_{\text{ac}}) \le 1 \} \\ \mathcal{E}_{\text{outer}} &= \{ x \mid (x - x_{\text{ac}})^T \nabla^2 \phi(x_{\text{ac}})(x - x_{\text{ac}}) \le m(m-1) \} \end{aligned}$$

ellipsoid expansion/shrinkage factor is $\sqrt{m(m-1)}$ (cf. *n* for Löwner-John or max volume inscribed ellpsoids)

Outline

Extremal volume ellipsoids

Centering

Classification

Placement and facility location

Convex Optimization

Linear discrimination

- separate two sets of points $\{x_1, \ldots, x_N\}$, $\{y_1, \ldots, y_M\}$ by a hyperplane
- *i.e.*, find $a \in \mathbf{R}^n$, $b \in \mathbf{R}$ with

$$a^T x_i + b > 0, \quad i = 1, \dots, N, \qquad a^T y_i + b < 0, \quad i = 1, \dots, M$$

homogeneous in a, b, hence equivalent to

$$a^{T}x_{i} + b \ge 1, \quad i = 1, \dots, N, \qquad a^{T}y_{i} + b \le -1, \quad i = 1, \dots, M$$

a set of linear inequalities in a, b, i.e., an LP feasibility problem

Convex Optimization

Robust linear discrimination

(Euclidean) distance between hyperplanes

$$\mathcal{H}_1 = \{z \mid a^T z + b = 1\}$$

$$\mathcal{H}_2 = \{z \mid a^T z + b = -1\}$$

is $\operatorname{dist}(\mathcal{H}_1, \mathcal{H}_2) = 2/||a||_2$

to separate two sets of points by maximum margin,

minimize
$$(1/2) ||a||_2^2$$

subject to $a^T x_i + b \ge 1, \quad i = 1, ..., N$
 $a^T y_i + b \le -1, \quad i = 1, ..., M$ (2)

a QP in a, b

Convex Optimization

Approximate linear separation of non-separable sets

minimize $\mathbf{1}^T u + \mathbf{1}^T v$ subject to $a^T x_i + b \ge 1 - u_i$, $i = 1, \dots, N$, $a^T y_i + b \le -1 + v_i$, $i = 1, \dots, M$ $u \ge 0$, $v \ge 0$

> an LP in a, b, u, v

- ▶ at optimum, $u_i = \max\{0, 1 a^T x_i b\}$, $v_i = \max\{0, 1 + a^T y_i + b\}$
- equivalent to minimizing the sum of violations of the original inequalities

Support vector classifier

minimize
$$||a||_2 + \gamma (\mathbf{1}^T u + \mathbf{1}^T v)$$

subject to $a^T x_i + b \ge 1 - u_i, \quad i = 1, \dots, N$
 $a^T y_i + b \le -1 + v_i, \quad i = 1, \dots, M$
 $u \ge 0, \quad v \ge 0$

produces point on trade-off curve between inverse of margin $2/||a||_2$ and classification error, measured by total slack $\mathbf{1}^T u + \mathbf{1}^T v$

example on previous slide, with $\gamma = 0.1$:

Convex Optimization

Nonlinear discrimination

▶ separate two sets of points by a nonlinear function f: find f : $\mathbf{R}^n \to \mathbf{R}$ with

$$f(x_i) > 0, \quad i = 1, \dots, N, \qquad f(y_i) < 0, \quad i = 1, \dots, M$$

► choose a linearly parametrized family of functions $f(z) = \theta^T F(z)$ - $\theta \in \mathbf{R}^k$ is parameter - $F = (F_1, ..., F_k) : \mathbf{R}^n \to \mathbf{R}^k$ are basis functions

• solve a set of linear inequalities in θ :

$$\theta^T F(x_i) \ge 1, \quad i = 1, \dots, N, \qquad \theta^T F(y_i) \le -1, \quad i = 1, \dots, M$$

Convex Optimization

Examples

- quadratic discrimination: $f(z) = z^T P z + q^T z + r$, $\theta = (P, q, r)$
- ▶ solve LP feasibility problem with variables $P \in \mathbf{S}^n$, $q \in \mathbf{R}^n$, $r \in \mathbf{R}$

$$x_i^T P x_i + q^T x_i + r \ge 1,$$
 $y_i^T P y_i + q^T y_i + r \le -1$

- ▶ can add additional constraints (e.g., $P \leq -I$ to separate by an ellipsoid)
- polynomial discrimination: F(z) are all monomials up to a given degree d
 e.g., for n = 2, d = 3

$$F(z) = (1, z_1, z_2, z_1^2, z_1z_2, z_2^2, z_1^3, z_1^2z_2, z_1z_2^2, z_2^3)$$

Example

separation by 4th degree polynomial

Outline

Extremal volume ellipsoids

Centering

Classification

Placement and facility location

Convex Optimization

Placement and facility location

- ▶ *N* points with coordinates $x_i \in \mathbf{R}^2$ (or \mathbf{R}^3)
- **>** some positions x_i are given; the other x_i 's are variables
- for each pair of points, a cost function $f_{ij}(x_i, x_j)$
- **•** placement problem: minimize $\sum_{i \neq j} f_{ij}(x_i, x_j)$

interpretations

- points are locations of plants or warehouses; f_{ij} is transportation cost between facilities i and j
- points are locations of cells in an integrated circuit; f_{ij} represents wirelength

Example

Convex Optimization

Boyd and Vandenberghe

1.5

B. Numerical linear algebra background

Outline

Flop counts and BLAS

Solving systems of linear equations

Block elimination

Convex Optimization

Flop count

- flop (floating-point operation): one addition, subtraction, multiplication, or division of two floating-point numbers
- to estimate complexity of an algorithm
 - express number of flops as a (polynomial) function of the problem dimensions
 - simplify by keeping only the leading terms
- not an accurate predictor of computation time on modern computers, but useful as a rough estimate of complexity

Basic linear algebra subroutines (BLAS)

vector-vector operations $(x, y \in \mathbf{R}^n)$ (BLAS level 1)

- ▶ inner product $x^T y$: 2n 1 flops ($\approx 2n$, O(n))
- sum x + y, scalar multiplication αx : n flops

matrix-vector product y = Ax with $A \in \mathbb{R}^{m \times n}$ (BLAS level 2)

- m(2n-1) flops ($\approx 2mn$)
- 2N if A is sparse with N nonzero elements
- ▶ 2p(n+m) if A is given as $A = UV^T$, $U \in \mathbf{R}^{m \times p}$, $V \in \mathbf{R}^{n \times p}$

matrix-matrix product C = AB with $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$ (BLAS level 3)

- mp(2n-1) flops ($\approx 2mnp$)
- less if A and/or B are sparse
- $(1/2)m(m+1)(2n-1) \approx m^2n$ if m = p and C symmetric

BLAS on modern computers

- ▶ there are good implementations of BLAS and variants (*e.g.*, for sparse matrices)
- > CPU single thread speeds typically 1–10 Gflops/s (10^9 flops/sec)
- CPU multi threaded speeds typically 10–100 Gflops/s
- ► GPU speeds typically 100 Gflops/s-1 Tflops/s (10¹² flops/sec)

Outline

Flop counts and BLAS

Solving systems of linear equations

Block elimination

Convex Optimization

Complexity of solving linear equations

- $A \in \mathbf{R}^{n \times n}$ is invertible, $b \in \mathbf{R}^n$
- solution of Ax = b is $x = A^{-1}b$
- solving Ax = b, *i.e.*, computing $x = A^{-1}b$
 - almost never done by computing A^{-1} , then multiplying by b
 - for general methods, $O(n^3)$
 - (much) less if A is structured (banded, sparse, Toeplitz, ...)
 - e.g., for A with half-bandwidth k ($A_{ij} = 0$ for |i j| > k, $O(k^2 n)$
- it's super useful to recognize matrix structure that can be exploited in solving Ax = b

Linear equations that are easy to solve

• diagonal matrices: *n* flops; $x = A^{-1}b = (b_1/a_{11}, \dots, b_n/a_{nn})$

• lower triangular: n^2 flops via forward substitution

$$x_{1} := b_{1}/a_{11}$$

$$x_{2} := (b_{2} - a_{21}x_{1})/a_{22}$$

$$x_{3} := (b_{3} - a_{31}x_{1} - a_{32}x_{2})/a_{33}$$

$$\vdots$$

$$x_{n} := (b_{n} - a_{n1}x_{1} - a_{n2}x_{2} - \dots - a_{n,n-1}x_{n-1})/a_{nn}$$

• upper triangular: n^2 flops via **backward substitution**

Linear equations that are easy to solve

- orthogonal matrices $(A^{-1} = A^T)$:
 - $2n^2$ flops to compute $x = A^T b$ for general A
 - less with structure, e.g., if $A = I 2uu^T$ with $||u||_2 = 1$, we can compute $x = A^T b = b 2(u^T b)u$ in 4n flops
- ▶ permutation matrices: for $\pi = (\pi_1, \pi_2, ..., \pi_n)$ a permutation of (1, 2, ..., n)

$$a_{ij} = \begin{cases} 1 & j = \pi_i \\ 0 & \text{otherwise} \end{cases}$$

- interpretation: $Ax = (x_{\pi_1}, \ldots, x_{\pi_n})$
- satisfies $A^{-1} = A^T$, hence cost of solving Ax = b is 0 flops
- example:

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \qquad A^{-1} = A^{T} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Convex Optimization

Factor-solve method for solving Ax = b

▶ factor *A* as a product of simple matrices (usually 2–5):

$$A = A_1 A_2 \cdots A_k$$

 \blacktriangleright e.g., A_i diagonal, upper or lower triangular, orthogonal, permutation, ...

• compute $x = A^{-1}b = A_k^{-1} \cdots A_2^{-1}A_1^{-1}b$ by solving k 'easy' systems of equations

 $A_1x_1 = b,$ $A_2x_2 = x_1,$... $A_kx = x_{k-1}$

cost of factorization step usually dominates cost of solve step

Solving equations with multiple righthand sides

we wish to solve

 $Ax_1 = b_1, \qquad Ax_2 = b_2, \qquad \dots \qquad Ax_m = b_m$

cost: one factorization plus m solves

called factorization caching

when factorization cost dominates solve cost, we can solve a modest number of equations at the same cost as one (!!)

LU factorization

- every nonsingular matrix A can be factored as A = PLU with P a permutation, L lower triangular, U upper triangular
- factorization cost: $(2/3)n^3$ flops

Solving linear equations by LU factorization.

given a set of linear equations Ax = b, with A nonsingular.

- 1. LU factorization. Factor A as A = PLU ((2/3) n^3 flops).
- 2. *Permutation*. Solve $Pz_1 = b$ (0 flops).
- 3. Forward substitution. Solve $Lz_2 = z_1$ (n^2 flops).
- 4. Backward substitution. Solve $Ux = z_2$ (n^2 flops).

► total cost:
$$(2/3)n^3 + 2n^2 \approx (2/3)n^3$$
 for large n

Sparse LU factorization

- for A sparse and invertible, factor as $A = P_1 L U P_2$
- adding permutation matrix P_2 offers possibility of sparser L, U
- hence, less storage and cheaper factor and solve steps
- \triangleright P_1 and P_2 chosen (heuristically) to yield sparse L, U
- choice of P_1 and P_2 depends on sparsity pattern and values of A
- cost is usually much less than (2/3)n³; exact value depends in a complicated way on n, number of zeros in A, sparsity pattern
- often practical to solve very large sparse systems of equations

Cholesky factorization

- every positive definite A can be factored as $A = LL^T$
- L is lower triangular with positive diagonal entries
- Cholesjy factorization cost: $(1/3)n^3$ flops

Solving linear equations by Cholesky factorization.

given a set of linear equations Ax = b, with $A \in \mathbf{S}_{++}^n$.

- 1. Cholesky factorization. Factor A as $A = LL^T$ ((1/3) n^3 flops).
- 2. Forward substitution. Solve $Lz_1 = b$ (n^2 flops).
- 3. Backward substitution. Solve $L^T x = z_1$ (n^2 flops).

► total cost: $(1/3)n^3 + 2n^2 \approx (1/3)n^3$ for large n

Sparse Cholesky factorization

- for sparse positive define A, factor as $A = PLL^T P^T$
- adding permutation matrix P offers possibility of sparser L
- same as
 - permuting rows and columns of A to get $\tilde{A} = P^T A P$
 - then finding Cholesky factorization of \tilde{A}
- P chosen (heuristically) to yield sparse L
- choice of P only depends on sparsity pattern of A (unlike sparse LU)
- cost is usually much less than $(1/3)n^3$; exact value depends in a complicated way on n, number of zeros in A, sparsity pattern

Example

sparse A with upper arrow sparsity pattern

L is full, with ${\cal O}(n^2)$ nonzeros; solve cost is ${\cal O}(n^2)$

▶ reverse order of entries (*i.e.*, permute) to get lower arrow sparsity pattern

L is sparse with O(n) nonzeros; cost of solve is O(n)

Convex Optimization

$\mathsf{L}\mathsf{D}\mathsf{L}^\mathsf{T}$ factorization

every nonsingular symmetric matrix A can be factored as

 $A = PLDL^T P^T$

with P a permutation matrix, L lower triangular, D block diagonal with 1×1 or 2×2 diagonal blocks

- factorization cost: $(1/3)n^3$
- ► cost of solving linear equations with symmetric A by LDL^T factorization: $(1/3)n^3 + 2n^2 \approx (1/3)n^3$ for large n
- ▶ for sparse A, can choose P to yield sparse L; cost $\ll (1/3)n^3$

Outline

Flop counts and BLAS

Solving systems of linear equations

Block elimination

Equations with structured sub-blocks

• express Ax = b in blocks as

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

with $x_1 \in \mathbf{R}^{n_1}$, $x_2 \in \mathbf{R}^{n_2}$; blocks $A_{ij} \in \mathbf{R}^{n_i \times n_j}$

• assuming A_{11} is nonsingular, can eliminate x_1 as

 $x_1 = A_{11}^{-1}(b_1 - A_{12}x_2)$

 \blacktriangleright to compute x_2 , solve

$$(A_{22} - A_{21}A_{11}^{-1}A_{12})x_2 = b_2 - A_{21}A_{11}^{-1}b_1$$

• $S = A_{22} - A_{21}A_{11}^{-1}A_{12}$ is the **Schur complement**

Convex Optimization

Block elimination method

Solving linear equations by block elimination.

given a nonsingular set of linear equations with A_{11} nonsingular.

1. Form
$$A_{11}^{-1}A_{12}$$
 and $A_{11}^{-1}b_1$.
2. Form $S = A_{22} - A_{21}A_{11}^{-1}A_{12}$ and $\tilde{b} = b_2 - A_{21}A_{11}^{-1}b_1$.
3. Determine x_2 by solving $Sx_2 = \tilde{b}$.
4. Determine x_1 by solving $A_{11}x_1 = b_1 - A_{12}x_2$.

dominant terms in flop count

- ▶ step 1: $f + n_2 s$ (f is cost of factoring A_{11} ; s is cost of solve step)
- ▶ step 2: $2n_2^2n_1$ (cost dominated by product of A_{21} and $A_{11}^{-1}A_{12}$)
- step 3: $(2/3)n_2^3$

total: $f + n_2 s + 2n_2^2 n_1 + (2/3)n_2^3$

Examples

• for general
$$A_{11}$$
, $f = (2/3)n_1^3$, $s = 2n_1^2$

$$\# flops = (2/3)n_1^3 + 2n_1^2n_2 + 2n_2^2n_1 + (2/3)n_2^3 = (2/3)(n_1 + n_2)^3$$

so, no gain over standard method

▶ block elimination is useful for structured A_{11} ($f \ll n_1^3$)

• for example,
$$A_{11}$$
 diagonal ($f = 0$, $s = n_1$): $\#$ flops $\approx 2n_2^2n_1 + (2/3)n_2^3$

Structured plus low rank matrices

- we wish to solve (A + BC)x = b, $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times p}$, $C \in \mathbb{R}^{p \times n}$
- assume A has structure (*i.e.*, Ax = b easy to solve)
- first uneliminate to write as block equations with new variable y

$$\begin{bmatrix} A & B \\ C & -I \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} b \\ 0 \end{bmatrix}$$

now apply block elimination: solve

$$(I + CA^{-1}B)y = CA^{-1}b,$$

then solve Ax = b - By

▶ this proves the matrix inversion lemma: if A and A + BC are nonsingular,

$$(A + BC)^{-1} = A^{-1} - A^{-1}B(I + CA^{-1}B)^{-1}CA^{-1}$$

Convex Optimization

Example: Solving diagonal plus low rank equations

- with A diagonal, $p \ll n$, A + BC is called **diagonal plus low rank**
- for covariance matrices, called a factor model

• method 1: form
$$D = A + BC$$
, then solve $Dx = b$

- storage n^2
- solve cost $(2/3)n^3 + 2pn^2$ (cubic in *n*)
- method 2: solve $(I + CA^{-1}B)v = CA^{-1}b$, then compute $x = A^{-1}b A^{-1}Bv$

 - storage O(np)- solve cost $2p^2n + (2/3)p^3$ (linear in n)

9. Unconstrained minimization

Outline

Terminology and assumptions

Gradient descent method

Steepest descent method

Newton's method

Self-concordant functions

Implementation

Unconstrained minimization

unconstrained minimization problem

minimize f(x)

- we assume
 - -f convex, twice continuously differentiable (hence **dom** f open)
 - optimal value $p^* = \inf_x f(x)$ is attained at x^* (not necessarily unique)
- optimality condition is $\nabla f(x) = 0$
- minimizing f is the same as solving $\nabla f(x) = 0$
- a set of n equations with n unknowns

Quadratic functions

- convex quadratic: $f(x) = (1/2)x^T P x + q^T x + r, P \ge 0$
- we can solve exactly via linear equations

$$\nabla f(x) = Px + q = 0$$

much more on this special case later

Iterative methods

for most non-quadratic functions, we use iterative methods

- ▶ these produce a sequence of points $x^{(k)} \in \mathbf{dom} f$, k = 0, 1, ...
- $x^{(0)}$ is the **initial point** or **starting point**
- $x^{(k)}$ is the *k*th **iterate**
- we hope that the method converges, i.e.,

$$f(x^{(k)}) \to p^{\star}, \qquad \nabla f(x^{(k)}) \to 0$$

Initial point and sublevel set

- algorithms in this chapter require a starting point $x^{(0)}$ such that
 - $-x^{(0)} \in \mathbf{dom} f$
 - sublevel set $S = \{x \mid f(x) \le f(x^{(0)})\}$ is closed
- > 2nd condition is hard to verify, except when all sublevel sets are closed
 - equivalent to condition that $\mathbf{epi}f$ is closed
 - true if $\mathbf{dom} f = \mathbf{R}^n$
 - true if $f(x) \to \infty$ as $x \to \mathbf{bd} \operatorname{\mathbf{dom}} f$

examples of differentiable functions with closed sublevel sets:

$$f(x) = \log\left(\sum_{i=1}^{m} \exp(a_i^T x + b_i)\right), \qquad f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$$

Convex Optimization

Strong convexity and implications

• f is strongly convex on S if there exists an m > 0 such that

 $\nabla^2 f(x) \ge mI$ for all $x \in S$

- same as $f(x) (m/2) ||x||_2^2$ is convex
- if f is strongly convex, for $x, y \in S$,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} ||x - y||_2^2$$

- hence, S is bounded
- we conclude $p^* > -\infty$, and for $x \in S$,

$$f(x) - p^{\star} \le \frac{1}{2m} \|\nabla f(x)\|_2^2$$

useful as stopping criterion (if you know m, which usually you do not)

Convex Optimization

Outline

Terminology and assumptions

Gradient descent method

Steepest descent method

Newton's method

Self-concordant functions

Implementation

Descent methods

descent methods generate iterates as

$$x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}$$

with $f(x^{(k+1)}) < f(x^{(k)})$ (hence the name)

- other notations: $x^+ = x + t\Delta x$, $x := x + t\Delta x$
- $\Delta x^{(k)}$ is the **step**, or **search direction**
- $t^{(k)} > 0$ is the **step size**, or **step length**
- For convexity, $f(x^+) < f(x)$ implies $\nabla f(x)^T \Delta x < 0$
- this means Δx is a **descent direction**

Generic descent method

General descent method.

given a starting point $x \in \mathbf{dom} f$. repeat

- 1. Determine a descent direction Δx .
- 2. Line search. Choose a step size t > 0.
- 3. **Update.** $x := x + t\Delta x$.

until stopping criterion is satisfied.

Line search types

• exact line search: $t = \operatorname{argmin}_{t>0} f(x + t\Delta x)$

▶ backtracking line search (with parameters $\alpha \in (0, 1/2)$, $\beta \in (0, 1)$)

- starting at t = 1, repeat $t := \beta t$ until $f(x + t\Delta x) < f(x) + \alpha t \nabla f(x)^T \Delta x$

▶ graphical interpretation: reduce t (*i.e.*, backtrack) until $t \le t_0$

Gradient descent method

• general descent method with $\Delta x = -\nabla f(x)$

```
given a starting point x \in \text{dom } f.

repeat

1. \Delta x := -\nabla f(x).

2. Line search. Choose step size t via exact or backtracking line search.

3. Update. x := x + t\Delta x.

until stopping criterion is satisfied.
```

▶ stopping criterion usually of the form $\|\nabla f(x)\|_2 \le \epsilon$

convergence result: for strongly convex f,

$$f(x^{(k)}) - p^* \le c^k (f(x^{(0)}) - p^*)$$

 $c \in (0, 1)$ depends on *m*, $x^{(0)}$, line search type

very simple, but can be very slow

Convex Optimization

Example: Quadratic function on \mathbf{R}^2

• take
$$f(x) = (1/2)(x_1^2 + \gamma x_2^2)$$
, with $\gamma > 0$

• with exact line search, starting at $x^{(0)} = (\gamma, 1)$:

$$x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1}\right)^k, \qquad x_2^{(k)} = \left(-\frac{\gamma - 1}{\gamma + 1}\right)^k$$

- very slow if $\gamma \gg 1$ or $\gamma \ll 1$
- example for $\gamma = 10$ at right
- called zig-zagging

Convex Optimization

Example: Nonquadratic function on \mathbf{R}^2

•
$$f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$$

backtracking line search

exact line search

Example: A problem in \mathbf{R}^{100}

•
$$f(x) = c^T x - \sum_{i=1}^{500} \log(b_i - a_i^T x)$$

▶ linear convergence, *i.e.*, a straight line on a semilog plot

Outline

Terminology and assumptions

Gradient descent method

Steepest descent method

Newton's method

Self-concordant functions

Implementation

Convex Optimization

Steepest descent method

• normalized steepest descent direction (at x, for norm $\|\cdot\|$):

 $\Delta x_{\text{nsd}} = \operatorname{argmin}\{\nabla f(x)^T v \mid ||v|| = 1\}$

- interpretation: for small v, $f(x + v) \approx f(x) + \nabla f(x)^T v$;
- direction Δx_{nsd} is unit-norm step with most negative directional derivative
- (unnormalized) steepest descent direction: $\Delta x_{sd} = \|\nabla f(x)\|_* \Delta x_{nsd}$
- satisfies $\nabla f(x)^T \Delta x_{sd} = \|\nabla f(x)\|_*^2$
- steepest descent method
 - general descent method with $\Delta x = \Delta x_{sd}$
 - convergence properties similar to gradient descent

Examples

- Euclidean norm: $\Delta x_{sd} = -\nabla f(x)$
- quadratic norm $||x||_P = (x^T P x)^{1/2} (P \in \mathbf{S}_{++}^n)$: $\Delta x_{sd} = -P^{-1} \nabla f(x)$
- ► ℓ_1 -norm: $\Delta x_{sd} = -(\partial f(x)/\partial x_i)e_i$, where $|\partial f(x)/\partial x_i| = ||\nabla f(x)||_{\infty}$
- unit balls, normalized steepest descent directions for quadratic norm and ℓ_1 -norm:

Choice of norm for steepest descent

- steepest descent with backtracking line search for two quadratic norms
- ellipses show $\{x \mid ||x x^{(k)}||_P = 1\}$
- ► interpretation of steepest descent with quadratic norm $\|\cdot\|_P$: gradient descent after change of variables $\bar{x} = P^{1/2}x$
- shows choice of P has strong effect on speed of convergence

Outline

Terminology and assumptions

Gradient descent method

Steepest descent method

Newton's method

Self-concordant functions

Implementation

Newton step

• Newton step is
$$\Delta x_{nt} = -\nabla^2 f(x)^{-1} \nabla f(x)$$

interpretation: $x + \Delta x_{nt}$ minimizes second order approximation

Convex Optimization

Another intrepretation

• $x + \Delta x_{nt}$ solves linearized optimality condition

$$\nabla f(x+v) \approx \nabla \widehat{f}(x+v) = \nabla f(x) + \nabla^2 f(x)v = 0$$

$$f'$$

$$(x + \Delta x_{\text{nt}}, f'(x + \Delta x_{\text{nt}}))$$

And one more interpretation

• Δx_{nt} is steepest descent direction at x in local Hessian norm $||u||_{\nabla^2 f(x)} = (u^T \nabla^2 f(x) u)^{1/2}$

dashed lines are contour lines of *f*; ellipse is {x + v | v^T∇²f(x)v = 1}
 arrow shows -∇f(x)

Convex Optimization

Newton decrement

- Newton decrement is $\lambda(x) = \left(\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x)\right)^{1/2}$
- a measure of the proximity of x to x*
- gives an estimate of $f(x) p^*$, using quadratic approximation \widehat{f} :

$$f(x) - \inf_{y} \widehat{f}(y) = \frac{1}{2}\lambda(x)^{2}$$

equal to the norm of the Newton step in the quadratic Hessian norm

$$\lambda(x) = \left(\Delta x_{\rm nt}^T \nabla^2 f(x) \Delta x_{\rm nt}\right)^{1/2}$$

- directional derivative in the Newton direction: $\nabla f(x)^T \Delta x_{nt} = -\lambda(x)^2$
- affine invariant (unlike $\|\nabla f(x)\|_2$)

Newton's method

given a starting point $x \in \mathbf{dom} f$, tolerance $\epsilon > 0$. repeat

1. Compute the Newton step and decrement.

 $\Delta x_{\rm nt} := -\nabla^2 f(x)^{-1} \nabla f(x); \qquad \lambda^2 := \nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x).$

- 2. Stopping criterion. quit if $\lambda^2/2 \leq \epsilon$.
- 3. Line search. Choose step size t by backtracking line search.
- 4. **Update.** $x := x + t\Delta x_{nt}$.

- affine invariant, i.e., independent of linear changes of coordinates
- Newton iterates for $\tilde{f}(y) = f(Ty)$ with starting point $y^{(0)} = T^{-1}x^{(0)}$ are $y^{(k)} = T^{-1}x^{(k)}$

Classical convergence analysis

assumptions

- f strongly convex on S with constant m
- ▶ $\nabla^2 f$ is Lipschitz continuous on *S*, with constant *L* > 0:

$$\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \le L \|x - y\|_2$$

(L measures how well f can be approximated by a quadratic function)

outline: there exist constants $\eta \in (0, m^2/L)$, $\gamma > 0$ such that

- if $\|\nabla f(x)\|_2 \ge \eta$, then $f(x^{(k+1)}) f(x^{(k)}) \le -\gamma$
- if $\|\nabla f(x)\|_2 < \eta$, then

$$\frac{L}{2m^2} \|\nabla f(x^{(k+1)})\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2\right)^2$$

Convex Optimization

Classical convergence analysis

damped Newton phase $(||\nabla f(x)||_2 \ge \eta)$

- most iterations require backtracking steps
- function value decreases by at least γ
- if $p^{\star} > -\infty$, this phase ends after at most $(f(x^{(0)}) p^{\star})/\gamma$ iterations

quadratically convergent phase $(\|\nabla f(x)\|_2 < \eta)$

- all iterations use step size t = 1
- ► $\|\nabla f(x)\|_2$ converges to zero quadratically: if $\|\nabla f(x^{(k)})\|_2 < \eta$, then

$$\frac{L}{2m^2} \|\nabla f(x^l)\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^k)\|_2\right)^{2^{l-k}} \le \left(\frac{1}{2}\right)^{2^{l-k}}, \qquad l \ge k$$

Convex Optimization

Classical convergence analysis

conclusion: number of iterations until $f(x) - p^* \le \epsilon$ is bounded above by

$$\frac{f(x^{(0)}) - p^{\star}}{\gamma} + \log_2 \log_2(\epsilon_0/\epsilon)$$

- γ , ϵ_0 are constants that depend on *m*, *L*, $x^{(0)}$
- second term is small (of the order of 6) and almost constant for practical purposes
- ▶ in practice, constants m, L (hence γ , ϵ_0) are usually unknown
- ▶ provides qualitative insight in convergence properties (*i.e.*, explains two algorithm phases)

Example: \mathbf{R}^2

(same problem as slide 9.13)

- backtracking parameters $\alpha = 0.1$, $\beta = 0.7$
- converges in only 5 steps
- quadratic local convergence

Convex Optimization

Example in \mathbf{R}^{100}

(same problem as slide 9.14)

• backtracking parameters $\alpha = 0.01$, $\beta = 0.5$

- backtracking line search almost as fast as exact l.s. (and much simpler)
- clearly shows two phases in algorithm

Convex Optimization

Example in ${\bf R}^{10000}$

(with sparse a_i)

- backtracking parameters $\alpha = 0.01$, $\beta = 0.5$.
- performance similar as for small examples

Convex Optimization

Outline

Terminology and assumptions

Gradient descent method

Steepest descent method

Newton's method

Self-concordant functions

Implementation

Convex Optimization

Self-concordance

shortcomings of classical convergence analysis

- depends on unknown constants (m, L, ...)
- bound is not affinely invariant, although Newton's method is

convergence analysis via self-concordance (Nesterov and Nemirovski)

- does not depend on any unknown constants
- gives affine-invariant bound
- applies to special class of convex self-concordant functions
- developed to analyze polynomial-time interior-point methods for convex optimization

Convergence analysis for self-concordant functions

definition

- convex $f : \mathbf{R} \to \mathbf{R}$ is self-concordant if $|f'''(x)| \le 2f''(x)^{3/2}$ for all $x \in \mathbf{dom} f$
- ► $f : \mathbf{R}^n \to \mathbf{R}$ is self-concordant if g(t) = f(x + tv) is self-concordant for all $x \in \mathbf{dom} f$, $v \in \mathbf{R}^n$

examples on R

- linear and quadratic functions
- negative logarithm $f(x) = -\log x$
- ▶ negative entropy plus negative logarithm: $f(x) = x \log x \log x$

affine invariance: if $f : \mathbf{R} \to \mathbf{R}$ is s.c., then $\tilde{f}(y) = f(ay + b)$ is s.c.:

$$\tilde{f}^{\prime\prime\prime}(y)=a^3f^{\prime\prime\prime}(ay+b),\qquad \tilde{f}^{\prime\prime}(y)=a^2f^{\prime\prime}(ay+b)$$

Convex Optimization

Self-concordant calculus

properties

- ▶ preserved under positive scaling $\alpha \ge 1$, and sum
- preserved under composition with affine function
- ▶ if g is convex with dom $g = \mathbf{R}_{++}$ and $|g'''(x)| \leq 3g''(x)/x$ then

$$f(x) = \log(-g(x)) - \log x$$

is self-concordant

examples: properties can be used to show that the following are s.c.

•
$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)$$
 on $\{x \mid a_i^T x < b_i, i = 1, ..., m\}$
• $f(X) = -\log \det X$ on \mathbf{S}_{++}^n
• $f(x) = -\log(y^2 - x^T x)$ on $\{(x, y) \mid ||x||_2 < y\}$

Convex Optimization

Convergence analysis for self-concordant functions

summary: there exist constants $\eta \in (0, 1/4]$, $\gamma > 0$ such that

- if $\lambda(x) > \eta$, then $f(x^{(k+1)}) f(x^{(k)}) \le -\gamma$
- if $\lambda(x) \leq \eta$, then $2\lambda(x^{(k+1)}) \leq (2\lambda(x^{(k)}))^2$

(η and γ only depend on backtracking parameters α , β)

complexity bound: number of Newton iterations bounded by

$$\frac{f(x^{(0)}) - p^{\star}}{\gamma} + \log_2 \log_2(1/\epsilon)$$

for $\alpha=0.1,\,\beta=0.8,\,\epsilon=10^{-10},$ bound evaluates to $375(f(x^{(0)})-p^{\star})+6$

Convex Optimization

Numerical example

▶ 150 randomly generated instances of $f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), x \in \mathbf{R}^n$

• 0: m = 100, n = 50; \Box : m = 1000, n = 500; \diamond : m = 1000, n = 50

• number of iterations much smaller than $375(f(x^{(0)}) - p^*) + 6$

▶ bound of the form $c(f(x^{(0)}) - p^*) + 6$ with smaller c (empirically) valid

Convex Optimization

Outline

Terminology and assumptions

Gradient descent method

Steepest descent method

Newton's method

Self-concordant functions

Implementation

Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

 $H\Delta x = -g$

where $H = \nabla^2 f(x)$, $g = \nabla f(x)$

via Cholesky factorization

$$H = LL^{T}$$
, $\Delta x_{\rm nt} = -L^{-T}L^{-1}g$, $\lambda(x) = ||L^{-1}g||_{2}$

• cost
$$(1/3)n^3$$
 flops for unstructured system

• cost $\ll (1/3)n^3$ if H is sparse, banded, or has other structure

Example

- $f(x) = \sum_{i=1}^{n} \psi_i(x_i) + \psi_0(Ax + b)$, with $A \in \mathbf{R}^{p \times n}$ dense, $p \ll n$
- Hessian has low rank plus diagonal structure $H = D + A^T H_0 A$
- ▶ *D* diagonal with diagonal elements $\psi_i''(x_i)$; $H_0 = \nabla^2 \psi_0(Ax + b)$

method 1: form *H*, solve via dense Cholesky factorization: $(\cot (1/3)n^3)$ **method 2** (block elimination): factor $H_0 = L_0 L_0^T$; write Newton system as

$$D\Delta x + A^T L_0 w = -g, \qquad L_0^T A\Delta x - w = 0$$

eliminate Δx from first equation; compute w and Δx from

$$(I + L_0^T A D^{-1} A^T L_0) w = -L_0^T A D^{-1} g, \qquad D \Delta x = -g - A^T L_0 w$$

cost: $2p^2n$ (dominated by computation of $L_0^T A D^{-1} A^T L_0$)

Convex Optimization

10. Equality constrained minimization

Outline

Equality constrained minimization

Newton's method with equality constraints

Infeasible start Newton method

Implementation

Equality constrained minimization

equality constrained smooth minimization problem:

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & Ax = b \end{array}$

we assume

- -f convex, twice continuously differentiable
- $-A \in \mathbf{R}^{p \times n}$ with $\mathbf{rank} A = p$
- p^{\star} is finite and attained

• optimality conditions: x^* is optimal if and only if there exists a v^* such that

$$\nabla f(x^{\star}) + A^T v^{\star} = 0, \qquad Ax^{\star} = b$$

Equality constrained quadratic minimization

•
$$f(x) = (1/2)x^T P x + q^T x + r, P \in \mathbf{S}_+^n$$

$$\blacktriangleright \nabla f(x) = Px + q$$

optimality conditions are a system of linear equations

$$\begin{bmatrix} P & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} x^* \\ v^* \end{bmatrix} = \begin{bmatrix} -q \\ b \end{bmatrix}$$

- coefficient matrix is called KKT matrix
- KKT matrix is nonsingular if and only if

$$Ax = 0, \quad x \neq 0 \qquad \Longrightarrow \qquad x^T P x > 0$$

• equivalent condition for nonsingularity: $P + A^T A > 0$

Eliminating equality constraints

- ▶ represent feasible set $\{x \mid Ax = b\}$ as $\{Fz + \hat{x} \mid z \in \mathbf{R}^{n-p}\}$
 - \hat{x} is (any) particular solution of Ax = b
 - range of $F \in \mathbf{R}^{n \times (n-p)}$ is nullspace of A (rank F = n p and AF = 0)
- **reduced or eliminated problem**: minimize $f(Fz + \hat{x})$
- ▶ an unconstrained problem with variable $z \in \mathbf{R}^{n-p}$
- from solution z^* , obtain x^* and v^* as

$$x^{\star} = Fz^{\star} + \hat{x}, \qquad v^{\star} = -(AA^T)^{-1}A\nabla f(x^{\star})$$

Example: Optimal resource allocation

- ▶ allocate resource amount $x_i \in \mathbf{R}$ to agent *i*
- agent *i* cost if $f_i(x_i)$
- resource budget is b, so $x_1 + \cdots + x_n = b$
- resource allocation problem is

minimize $f_1(x_1) + f_2(x_2) + \dots + f_n(x_n)$ subject to $x_1 + x_2 + \dots + x_n = b$

liminate $x_n = b - x_1 - \cdots - x_{n-1}$, *i.e.*, choose

$$\hat{x} = be_n, \qquad F = \begin{bmatrix} I \\ -\mathbf{1}^T \end{bmatrix} \in \mathbf{R}^{n \times (n-1)}$$

▶ reduced problem: minimize $f_1(x_1) + \cdots + f_{n-1}(x_{n-1}) + f_n(b - x_1 - \cdots - x_{n-1})$

Convex Optimization

Outline

Equality constrained minimization

Newton's method with equality constraints

Infeasible start Newton method

Implementation

Newton step

• Newton step Δx_{nt} of f at feasible x is given by solution v of

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = \begin{bmatrix} -\nabla f(x) \\ 0 \end{bmatrix}$$

• Δx_{nt} solves second order approximation (with variable v)

minimize
$$\widehat{f}(x+v) = f(x) + \nabla f(x)^T v + (1/2)v^T \nabla^2 f(x)v$$

subject to $A(x+v) = b$

• Δx_{nt} equations follow from linearizing optimality conditions

$$\nabla f(x+v) + A^T w \approx \nabla f(x) + \nabla^2 f(x)v + A^T w = 0, \qquad A(x+v) = b$$

Convex Optimization

Newton decrement

Newton decrement for equality constrained minimization is

$$\lambda(x) = \left(\Delta x_{\rm nt}^T \nabla^2 f(x) \Delta x_{\rm nt}\right)^{1/2} = \left(-\nabla f(x)^T \Delta x_{\rm nt}\right)^{1/2}$$

• gives an estimate of $f(x) - p^*$ using quadratic approximation \hat{f} :

$$f(x) - \inf_{Ay=b} \widehat{f}(y) = \lambda(x)^2/2$$

directional derivative in Newton direction:

$$\left. \frac{d}{dt} f(x + t\Delta x_{\rm nt}) \right|_{t=0} = -\lambda(x)^2$$

• in general,
$$\lambda(x) \neq \left(\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x)\right)^{1/2}$$

Convex Optimization

Newton's method with equality constraints

given starting point $x \in \mathbf{dom} f$ with Ax = b, tolerance $\epsilon > 0$.

repeat

- 1. Compute the Newton step and decrement Δx_{nt} , $\lambda(x)$.
- 2. Stopping criterion. quit if $\lambda^2/2 \leq \epsilon$.
- 3. Line search. Choose step size t by backtracking line search.
- 4. Update. $x := x + t\Delta x_{nt}$.

- ▶ a feasible descent method: $x^{(k)}$ feasible and $f(x^{(k+1)}) < f(x^{(k)})$
- affine invariant

Newton's method and elimination

- reduced problem: minimize $\tilde{f}(z) = f(Fz + \hat{x})$
 - variables $z \in \mathbf{R}^{n-p}$
 - \hat{x} satisfies $A\hat{x} = b$; **rank** F = n p and AF = 0
- (unconstrained) Newton's method for \tilde{f} , started at $z^{(0)}$, generates iterates $z^{(k)}$
- ▶ iterates of Newton's method with equality constraints, started at $x^{(0)} = Fz^{(0)} + \hat{x}$, are

$$x^{(k)} = Fz^{(k)} + \hat{x}$$

hence, don't need separate convergence analysis

Outline

Equality constrained minimization

Newton's method with equality constraints

Infeasible start Newton method

Implementation

Newton step at infeasible points

• with y = (x, v), write optimality condition as r(y) = 0, where

$$r(y) = (\nabla f(x) + A^T v, Ax - b)$$

is primal-dual residual

• consider
$$x \in \mathbf{dom} f$$
, $Ax \neq b$, *i.e.*, x is infeasible

► linearizing
$$r(y) = 0$$
 gives $r(y + \Delta y) \approx r(y) + Dr(y)\Delta y = 0$:

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{\text{nt}} \\ \Delta v_{\text{nt}} \end{bmatrix} = -\begin{bmatrix} \nabla f(x) + A^T v \\ Ax - b \end{bmatrix}$$

• $(\Delta x_{nt}, \Delta v_{nt})$ is called **infeasible** or **primal-dual** Newton step at x

Infeasible start Newton method

given starting point $x \in \text{dom} f$, ν , tolerance $\epsilon > 0$, $\alpha \in (0, 1/2)$, $\beta \in (0, 1)$.

repeat

- 1. Compute primal and dual Newton steps Δx_{nt} , Δv_{nt} .
- 2. Backtracking line search on $||r||_2$.

```
t := 1.

while ||r(x + t\Delta x_{nt}, v + t\Delta v_{nt})||_2 > (1 - \alpha t)||r(x, v)||_2, \quad t := \beta t.

3. Update. x := x + t\Delta x_{nt}, v := v + t\Delta v_{nt}.

until Ax = b and ||r(x, v)||_2 \le \epsilon.
```

- ▶ not a descent method: $f(x^{(k+1)}) > f(x^{(k)})$ is possible
- directional derivative of $||r(y)||_2$ in direction $\Delta y = (\Delta x_{nt}, \Delta v_{nt})$ is

$$\frac{d}{dt} \|r(y + t\Delta y)\|_2 \Big|_{t=0} = -\|r(y)\|_2$$

Outline

Equality constrained minimization

Newton's method with equality constraints

Infeasible start Newton method

Implementation

Solving KKT systems

feasible and infeasible Newton methods require solving KKT system

$$\begin{bmatrix} H & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = -\begin{bmatrix} g \\ h \end{bmatrix}$$

• or elimination (if *H* nonsingular and easily inverted):

- solve
$$AH^{-1}A^Tw = h - AH^{-1}g$$
 for w
- $v = -H^{-1}(g + A^Tw)$

Example: Equality constrained analytic centering

- **•** primal problem: minimize $-\sum_{i=1}^{n} \log x_i$ subject to Ax = b
- **dual problem:** maximize $-b^T v + \sum_{i=1}^n \log(A^T v)_i + n$
 - recover x^{\star} as $x_i^{\star} = 1/(A^T v)_i$
- three methods to solve:
 - Newton method with equality constraints
 - Newton method applied to dual problem
 - infeasible start Newton method

these have different requirements for initialization

▶ we'll look at an example with $A \in \mathbf{R}^{100 \times 500}$, different starting points

Newton's method with equality constraints

• requires
$$x^{(0)} > 0$$
, $Ax^{(0)} = b$

Convex Optimization

Newton method applied to dual problem

• requires $A^T v^{(0)} > 0$

Convex Optimization

Infeasible start Newton method

• requires $x^{(0)} > 0$

Convex Optimization

Complexity per iteration of three methods is identical

▶ for feasible Newton method, use block elimination to solve KKT system

$$\begin{array}{ccc} \operatorname{diag}(x)^{-2} & A^{T} \\ A & 0 \end{array} \right] \left[\begin{array}{c} \Delta x \\ w \end{array} \right] = \left[\begin{array}{c} \operatorname{diag}(x)^{-1} \mathbf{1} \\ 0 \end{array} \right]$$

reduces to solving $A \operatorname{diag}(x)^2 A^T w = b$

- ► for Newton system applied to dual, solve $A \operatorname{diag}(A^T \nu)^{-2} A^T \Delta \nu = -b + A \operatorname{diag}(A^T \nu)^{-1} \mathbf{1}$
- ▶ for infeasible start Newton method, use block elimination to solve KKT system

$$\begin{bmatrix} \mathbf{diag}(x)^{-2} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta \nu \end{bmatrix} = \begin{bmatrix} \mathbf{diag}(x)^{-1}\mathbf{1} - A^T \nu \\ b - Ax \end{bmatrix}$$

reduces to solving $A \operatorname{diag}(x)^2 A^T w = 2Ax - b$

• conclusion: in each case, solve $ADA^Tw = h$ with D positive diagonal

Example: Network flow optimization

- directed graph with n arcs, p + 1 nodes
- ▶ x_i : flow through arc *i*; ϕ_i : strictly convex flow cost function for arc *i*
- ▶ incidence matrix $\tilde{A} \in \mathbf{R}^{(p+1) \times n}$ defined as

$$\tilde{A}_{ij} = \begin{cases} 1 & \text{arc } j \text{ leaves node } i \\ -1 & \text{arc } j \text{ enters node } i \\ 0 & \text{otherwise} \end{cases}$$

- ▶ reduced incidence matrix $A \in \mathbf{R}^{p \times n}$ is \tilde{A} with last row removed
- rank A = p if graph is connected
- ▶ flow conservation is Ax = b, $b \in \mathbf{R}^p$ is (reduced) source vector

• **network flow optimization problem**: minimize $\sum_{i=1}^{n} \phi_i(x_i)$ subject to Ax = b

KKT system

KKT system is

$$\begin{bmatrix} H & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = -\begin{bmatrix} g \\ h \end{bmatrix}$$

• $H = \operatorname{diag}(\phi_1^{\prime\prime}(x_1), \ldots, \phi_n^{\prime\prime}(x_n))$, positive diagonal

solve via elimination:

$$AH^{-1}A^Tw = h - AH^{-1}g, \qquad v = -H^{-1}(g + A^Tw)$$

▶ sparsity pattern of $AH^{-1}A^T$ is given by graph connectivity

$$\begin{split} (AH^{-1}A^T)_{ij} \neq 0 & \Longleftrightarrow \quad (AA^T)_{ij} \neq 0 \\ & \longleftrightarrow \quad \text{nodes } i \text{ and } j \text{ are connected by an arc} \end{split}$$

Analytic center of linear matrix inequality

- minimize $-\log \det X$ subject to $\mathbf{tr}(A_i X) = b_i$, $i = 1, \dots, p$
- optimality conditions

$$X^{\star} > 0, \qquad -(X^{\star})^{-1} + \sum_{j=1}^{p} \nu_j^{\star} A_i = 0, \qquad \mathbf{tr}(A_i X^{\star}) = b_i, \quad i = 1, \dots, p$$

• Newton step ΔX at feasible X is defined by

$$X^{-1}(\Delta X)X^{-1} + \sum_{j=1}^{p} w_j A_i = X^{-1}, \quad \mathbf{tr}(A_i \Delta X) = 0, \quad i = 1, \dots, p$$

► follows from linear approximation $(X + \Delta X)^{-1} \approx X^{-1} - X^{-1} (\Delta X) X^{-1}$

• n(n+1)/2 + p variables ΔX , w

Solution by block elimination

• eliminate ΔX from first equation to get $\Delta X = X - \sum_{j=1}^{p} w_j X A_j X$

• substitute ΔX in second equation to get

$$\sum_{j=1}^{p} \operatorname{tr}(A_i X A_j X) w_j = b_i, \quad i = 1, \dots, p$$

- ▶ a dense positive definite set of linear equations with variable $w \in \mathbf{R}^p$
- form and solve this set of equations to get w, then get ΔX from equation above

Flop count

- find Cholesky factor L of X $(1/3)n^3$
- form p products $L^T A_j L = (3/2) p n^3$
- ▶ form p(p+1)/2 inner products $\mathbf{tr}((L^T A_i L)(L^T A_j L))$ to get coefficient matrix $(1/2)p^2n^2$
- ▶ solve $p \times p$ system of equations via Cholesky factorization $(1/3)p^3$
- flop count dominated by $pn^3 + p^2n^2$
- cf. naïve method, $(n^2 + p)^3$

11. Interior-point methods

Outline

Inequality constrained minimization

Logarithmic barrier and central path

Barrier method

Phase I methods

Complexity analysis

Generalized inequalities

Inequality constrained minimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

we assume

- f_i convex, twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{rank} A = p$
- \blacktriangleright p^{\star} is finite and attained
- **>** problem is strictly feasible: there exists \tilde{x} with

 $\tilde{x} \in \mathbf{dom} f_0, \qquad f_i(\tilde{x}) < 0, \quad i = 1, \dots, m, \qquad A\tilde{x} = b$

hence, strong duality holds and dual optimum is attained

Examples

LP, QP, QCQP, GP

entropy maximization with linear inequality constraints

minimize $\sum_{i=1}^{n} x_i \log x_i$ subject to $Fx \leq g$, Ax = b

with **dom** $f_0 = \mathbf{R}_{++}^n$

- ▶ differentiability may require reformulating the problem, *e.g.*, piecewise-linear minimization or ℓ_∞-norm approximation via LP
- SDPs and SOCPs are better handled as problems with generalized inequalities (see later)

Outline

Inequality constrained minimization

Logarithmic barrier and central path

Barrier method

Phase I methods

Complexity analysis

Generalized inequalities

Logarithmic barrier

reformulation via indicator function:

minimize $f_0(x) + \sum_{i=1}^m I_-(f_i(x))$ subject to Ax = b

where $I_{-}(u) = 0$ if $u \le 0$, $I_{-}(u) = \infty$ otherwise

approximation via logarithmic barrier:

minimize
$$f_0(x) - (1/t) \sum_{i=1}^m \log(-f_i(x))$$

subject to $Ax = b$

an equality constrained problem

- for t > 0, $-(1/t) \log(-u)$ is a smooth approximation of I_{-}
- approximation improves as $t \to \infty$

• $-(1/t) \log u$ for three values of t, and $I_{-}(u)$

Logarithmic barrier function

▶ log barrier function for constraints $f_1(x) \le 0, \ldots, f_m(x) \le 0$

$$\phi(x) = -\sum_{i=1}^{m} \log(-f_i(x)), \quad \mathbf{dom} \ \phi = \{x \mid f_1(x) < 0, \dots, f_m(x) < 0\}$$

- convex (from composition rules)
- twice continuously differentiable, with derivatives

$$\begin{aligned} \nabla \phi(x) &= \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla f_i(x) \\ \nabla^2 \phi(x) &= \sum_{i=1}^{m} \frac{1}{f_i(x)^2} \nabla f_i(x) \nabla f_i(x)^T + \sum_{i=1}^{m} \frac{1}{-f_i(x)} \nabla^2 f_i(x) \end{aligned}$$

Convex Optimization

Central path

• for t > 0, define $x^{\star}(t)$ as the solution of

minimize $tf_0(x) + \phi(x)$ subject to Ax = b

(for now, assume $x^{\star}(t)$ exists and is unique for each t > 0)

• central path is $\{x^{\star}(t) \mid t > 0\}$

example: central path for an LP

minimize $c^T x$ subject to $a_i^T x \le b_i$, $i = 1, \dots, 6$

hyperplane $c^T x = c^T x^{\star}(t)$ is tangent to level curve of ϕ through $x^{\star}(t)$

Convex Optimization

Dual points on central path

• $x = x^{\star}(t)$ if there exists a *w* such that

$$t \nabla f_0(x) + \sum_{i=1}^m \frac{1}{-f_i(x)} \nabla f_i(x) + A^T w = 0, \qquad Ax = b$$

• therefore, $x^{\star}(t)$ minimizes the Lagrangian

$$L(x, \lambda^{\star}(t), \nu^{\star}(t)) = f_0(x) + \sum_{i=1}^m \lambda_i^{\star}(t) f_i(x) + \nu^{\star}(t)^T (Ax - b)$$

where we define $\lambda_i^{\star}(t) = 1/(-tf_i(x^{\star}(t)))$ and $v^{\star}(t) = w/t$

▶ this confirms the intuitive idea that $f_0(x^{\star}(t)) \rightarrow p^{\star}$ if $t \rightarrow \infty$:

$$p^{\star} \ge g(\lambda^{\star}(t), \nu^{\star}(t)) = L(x^{\star}(t), \lambda^{\star}(t), \nu^{\star}(t)) = f_0(x^{\star}(t)) - m/t$$

Convex Optimization

Interpretation via KKT conditions

 $x = x^{\star}(t), \ \lambda = \lambda^{\star}(t), \ \nu = \nu^{\star}(t)$ satisfy

- 1. primal constraints: $f_i(x) \le 0$, $i = 1, \ldots, m$, Ax = b
- 2. dual constraints: $\lambda \geq 0$
- 3. approximate complementary slackness: $-\lambda_i f_i(x) = 1/t$, i = 1, ..., m
- 4. gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(x) + \sum_{i=1}^m \lambda_i \nabla f_i(x) + A^T \nu = 0$$

difference with KKT is that condition 3 replaces $\lambda_i f_i(x) = 0$

Force field interpretation

centering problem (for problem with no equality constraints)

minimize $tf_0(x) - \sum_{i=1}^m \log(-f_i(x))$

force field interpretation

- $tf_0(x)$ is potential of force field $F_0(x) = -t\nabla f_0(x)$

 $- -\log(-f_i(x))$ is potential of force field $F_i(x) = (1/f_i(x))\nabla f_i(x)$

• forces balance at $x^{\star}(t)$:

$$F_0(x^{\star}(t)) + \sum_{i=1}^m F_i(x^{\star}(t)) = 0$$

Example: LP

- minimize $c^T x$ subject to $a_i^T x \le b_i$, i = 1, ..., m, with $x \in \mathbf{R}^n$
- objective force field is constant: $F_0(x) = -tc$
- constraint force field decays as inverse distance to constraint hyperplane:

$$F_i(x) = \frac{-a_i}{b_i - a_i^T x}, \qquad \|F_i(x)\|_2 = \frac{1}{\mathbf{dist}(x, \mathcal{H}_i)}$$

where
$$\mathcal{H}_i = \{x \mid a_i^T x = b_i\}$$

t = 1

t = 3

Convex Optimization

Outline

Inequality constrained minimization

Logarithmic barrier and central path

Barrier method

Phase I methods

Complexity analysis

Generalized inequalities

Barrier method

given strictly feasible x, $t := t^{(0)} > 0$, $\mu > 1$, tolerance $\epsilon > 0$.

repeat

- 1. Centering step. Compute $x^{\star}(t)$ by minimizing $tf_0 + \phi$, subject to Ax = b.
- 2. Update. $x := x^{\star}(t)$.
- 3. Stopping criterion. quit if $m/t < \epsilon$.
- 4. Increase t. $t := \mu t$.
- ▶ terminates with $f_0(x) p^* \le \epsilon$ (stopping criterion follows from $f_0(x^*(t)) p^* \le m/t$)
- centering usually done using Newton's method, starting at current x
- choice of μ involves a trade-off: large μ means fewer outer iterations, more inner (Newton) iterations; typical values: μ = 10 or 20
- several heuristics for choice of $t^{(0)}$

Example: Inequality form LP

(m = 100 inequalities, n = 50 variables)

starts with x on central path ($t^{(0)} = 1$, duality gap 100)

- terminates when $t = 10^8$ (gap 10^{-6})
- ▶ total number of Newton iterations not very sensitive for $\mu \ge 10$

Convex Optimization

Example: Geometric program in convex form

(m = 100 inequalities and n = 50 variables)

minimize
$$\log \left(\sum_{k=1}^{5} \exp(a_{0k}^T x + b_{0k}) \right)$$

subject to $\log \left(\sum_{k=1}^{5} \exp(a_{ik}^T x + b_{ik}) \right) \le 0, \quad i = 1, \dots, m$

Family of standard LPs

 $(A \in \mathbf{R}^{m \times 2m})$

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax = b, \quad x \ge 0 \end{array}$$

 $m = 10, \ldots, 1000$; for each m, solve 100 randomly generated instances

number of iterations grows very slowly as *m* ranges over a 100 : 1 ratio Convex Optimization Boyd and Vandenberghe

Outline

Inequality constrained minimization

Logarithmic barrier and central path

Barrier method

Phase I methods

Complexity analysis

Generalized inequalities

Phase I methods

barrier method needs strictly feasible starting point, i.e., x with

```
f_i(x) < 0, \quad i = 1, \dots, m, \qquad Ax = b
```

- (like the infeasible start Newton method, more sophisticated interior-point methods do not require a feasible starting point)
- phase I method forms an optimization problem that
 - is itself strictly feasible
 - finds a strictly feasible point for original problem, if one exists
 - certifies original problem as infeasible otherwise
- > phase II uses barrier method starting from strictly feasible point found in phase I

Basic phase I method

introduce slack variable s in phase I problem

minimize (over x, s) s
subject to
$$f_i(x) \le s$$
, $i = 1, ..., m$
 $Ax = b$

with optimal value \bar{p}^{\star}

- if $\bar{p}^{\star} < 0$, original inequalities are strictly feasible
- if $\bar{p}^{\star} > 0$, original inequalities are infeasible
- $\bar{p}^{\star} = 0$ is an ambiguous case
- start phase I problem with
 - any \tilde{x} in problem domain with $A\tilde{x} = b$
 - $-s = 1 + \max_i f_i(\tilde{x})$

Sum of infeasibilities phase I method

minimize sum of slacks, not max:

minimize
$$\mathbf{1}^T s$$

subject to $s \ge 0$, $f_i(x) \le s_i$, $i = 1, \dots, m$
 $Ax = b$

will find a strictly feasible point if one exists

- ▶ for infeasible problems, produces a solution that satisfies many (but not all) inequalities
- can weight slacks to set priorities (in satifying constraints)

Example

- infeasible set of 100 linear inequalities in 50 variables
- left: basic phase I solution; satisfies 39 inequalities
- right: sum of infeasibilities phase I solution; satisfies 79 inequalities

Example: Family of linear inequalities

- $Ax \leq b + \gamma \Delta b$; strictly feasible for $\gamma > 0$, infeasible for $\gamma < 0$
- use basic phase I, terminate when s < 0 or dual objective is positive
- number of iterations roughly proportional to $log(1/|\gamma|)$

Convex Optimization

Outline

Inequality constrained minimization

Logarithmic barrier and central path

Barrier method

Phase I methods

Complexity analysis

Generalized inequalities

Number of outer iterations

 \blacktriangleright in each iteration duality gap is reduced by exactly the factor μ

number of outer (centering) iterations is exactly

 $\left\lceil \frac{\log(m/(\epsilon t^{(0)}))}{\log \mu} \right\rceil$

plus the initial centering step (to compute $x^{\star}(t^{(0)})$)

we will bound number of Newton steps per centering iteration using self-concordance analysis

Complexity analysis via self-concordance

same assumptions as on slide 11.2, plus:

- sublevel sets (of f_0 , on the feasible set) are bounded
- $tf_0 + \phi$ is self-concordant with closed sublevel sets

second condition

- holds for LP, QP, QCQP
- may require reformulating the problem, e.g.,

minimize	$\sum_{i=1}^{n} x_i \log x_i$	\longrightarrow	minimize	$\sum_{i=1}^{n} x_i \log x_i$
subject to	$Fx \leq g$		subject to	$Fx \leq g, x \geq 0$

needed for complexity analysis; barrier method works even when self-concordance assumption does not apply

Newton iterations per centering step

- we compute $x^+ = x^*(\mu t)$, by minimizing $\mu t f_0(x) + \phi(x)$ starting from $x = x^*(t)$
- from self-concordance theory,

#Newton iterations
$$\leq \frac{\mu t f_0(x) + \phi(x) - \mu t f_0(x^+) - \phi(x^+)}{\gamma} + c$$

 \triangleright γ , *c* are constants (that depend only on Newton algorithm parameters)

- ▶ we will bound numerator $\mu t f_0(x) + \phi(x) \mu t f_0(x^+) \phi(x^+)$
- with $\lambda_i = \lambda_i^{\star}(t) = -1/(tf_i(x))$, we have $-f_i(x) = 1/(t\lambda_i)$, so

$$\phi(x) = \sum_{i=1}^{m} -\log(-f_i(x)) = \sum_{i=1}^{m}\log(t\lambda_i)$$

so

$$\phi(x) - \phi(x^{+}) = \sum_{i=1}^{m} \left(\log(t\lambda_{i}) + \log(-f_{i}(x^{+})) \right) = \sum_{i=1}^{m} \log(-\mu t\lambda_{i}f_{i}(x^{+})) - m\log\mu$$

Convex Optimization

using $\log u \le u - 1$ we have $\phi(x) - \phi(x^+) \le -\mu t \sum_{i=1}^m \lambda_i f_i(x^+) - m - m \log \mu$, so

$$\begin{aligned} \mu tf_0(x) + \phi(x) - \mu tf_0(x^+) - \phi(x^+) \\ &\leq \quad \mu tf_0(x) - \mu tf_0(x^+) - \mu t \sum_{i=1}^m \lambda_i f_i(x^+) - m - m \log \mu \\ &= \quad \mu tf_0(x) - \mu t \left(f_0(x^+) + \sum_{i=1}^m \lambda_i f_i(x^+) + \nu^T (Ax^+ - b) \right) - m - m \log \mu \\ &= \quad \mu tf_0(x) - \mu t L(x^+, \lambda, \nu) - m - m \log \mu \\ &\leq \quad \mu tf_0(x) - \mu tg(\lambda, \nu) - m - m \log \mu \\ &= \quad m(\mu - 1 - \log \mu) \end{aligned}$$

using $L(x^+, \lambda, nu) \ge g(\lambda, \nu)$ in second last line and $f_0(x) - g(\lambda, \nu) = m/t$ in last line

Convex Optimization

Total number of Newton iterations

- confirms trade-off in choice of μ
- ▶ in practice, #iterations is in the tens; not very sensitive for $\mu \ge 10$

Polynomial-time complexity of barrier method

• for $\mu = 1 + 1/\sqrt{m}$:

$$N = O\left(\sqrt{m}\log\left(\frac{m/t^{(0)}}{\epsilon}\right)\right)$$

- number of Newton iterations for fixed gap reduction is $O(\sqrt{m})$
- multiply with cost of one Newton iteration (a polynomial function of problem dimensions), to get bound on number of flops
- this choice of μ optimizes worst-case complexity; in practice we choose μ fixed and larger

Outline

Inequality constrained minimization

Logarithmic barrier and central path

Barrier method

Phase I methods

Complexity analysis

Generalized inequalities

Generalized inequalities

minimize
$$f_0(x)$$

subject to $f_i(x) \leq_{K_i} 0$, $i = 1, ..., m$
 $Ax = b$

▶ f_0 convex, $f_i : \mathbf{R}^n \to \mathbf{R}^{k_i}$, i = 1, ..., m, convex with respect to proper cones $K_i \in \mathbf{R}^{k_i}$

we assume

- $-f_i$ twice continuously differentiable
- $-A \in \mathbf{R}^{p \times n}$ with $\mathbf{rank} A = p$
- $-p^{\star}$ is finite and attained
- problem is strictly feasible; hence strong duality holds and dual optimum is attained
- examples of greatest interest: SOCP, SDP

Generalized logarithm for proper cone

 $\psi : \mathbf{R}^q \to \mathbf{R}$ is generalized logarithm for proper cone $K \subseteq \mathbf{R}^q$ if:

• **dom**
$$\psi$$
 = **int** K and $\nabla^2 \psi(y) < 0$ for $y >_K 0$

►
$$\psi(sy) = \psi(y) + \theta \log s$$
 for $y >_K 0$, $s > 0$ (θ is the degree of ψ)

examples

- nonnegative orthant $K = \mathbf{R}^n_+$: $\psi(y) = \sum_{i=1}^n \log y_i$, with degree $\theta = n$
- ▶ positive semidefinite cone $K = \mathbf{S}_{+}^{n}$: $\psi(Y) = \log \det Y$, with degree $\theta = n$
- ► second-order cone $K = \{y \in \mathbf{R}^{n+1} \mid (y_1^2 + \dots + y_n^2)^{1/2} \le y_{n+1}\}$:

$$\psi(y) = \log(y_{n+1}^2 - y_1^2 - \dots - y_n^2)$$
 with degree $(\theta = 2)$

Properties

• (without proof): for
$$y >_K 0$$
,

$$\nabla \psi(y) \geq_{K^*} 0, \qquad y^T \nabla \psi(y) = \theta$$

• nonnegative orthant \mathbf{R}_{+}^{n} : $\psi(y) = \sum_{i=1}^{n} \log y_{i}$

$$\nabla \psi(y) = (1/y_1, \dots, 1/y_n), \qquad y^T \nabla \psi(y) = n$$

• positive semidefinite cone \mathbf{S}_{+}^{n} : $\psi(Y) = \log \det Y$

$$\nabla \psi(Y) = Y^{-1}, \qquad \operatorname{tr}(Y \nabla \psi(Y)) = n$$

► second-order cone $K = \{y \in \mathbf{R}^{n+1} \mid (y_1^2 + \dots + y_n^2)^{1/2} \le y_{n+1}\}$:

$$\nabla \psi(y) = \frac{2}{y_{n+1}^2 - y_1^2 - \dots - y_n^2} \begin{bmatrix} -y_1 \\ \vdots \\ -y_n \\ y_{n+1} \end{bmatrix}, \qquad y^T \nabla \psi(y) = 2$$

Convex Optimization

Logarithmic barrier and central path

logarithmic barrier for $f_1(x) \leq_{K_1} 0, ..., f_m(x) \leq_{K_m} 0$:

$$\phi(x) = -\sum_{i=1}^{m} \psi_i(-f_i(x)), \quad \text{dom } \phi = \{x \mid f_i(x) \prec_{K_i} 0, i = 1, \dots, m\}$$

• ψ_i is generalized logarithm for K_i , with degree θ_i

• ϕ is convex, twice continuously differentiable

central path: { $x^{\star}(t) | t > 0$ } where $x^{\star}(t)$ is solution of

minimize $tf_0(x) + \phi(x)$ subject to Ax = b

Dual points on central path

 $x = x^{\star}(t)$ if there exists $w \in \mathbf{R}^p$,

$$t\nabla f_0(x) + \sum_{i=1}^m Df_i(x)^T \nabla \psi_i(-f_i(x)) + A^T w = 0$$

 $(Df_i(x) \in \mathbf{R}^{k_i \times n} \text{ is derivative matrix of } f_i)$

▶ therefore, $x^{\star}(t)$ minimizes Lagrangian $L(x, \lambda^{\star}(t), \nu^{\star}(t))$, where

$$\lambda_i^{\star}(t) = \frac{1}{t} \nabla \psi_i(-f_i(x^{\star}(t))), \qquad \nu^{\star}(t) = \frac{w}{t}$$

▶ from properties of ψ_i : $\lambda_i^{\star}(t) >_{K_i^*} 0$, with duality gap

$$f_0(x^{\star}(t)) - g(\lambda^{\star}(t), \nu^{\star}(t)) = (1/t) \sum_{i=1}^m \theta_i$$

Convex Optimization

Example: Semidefinite programming

(with $F_i \in \mathbf{S}^p$) minimize $c^T x$ subject to $F(x) = \sum_{i=1}^n x_i F_i + G \le 0$

• logarithmic barrier: $\phi(x) = \log \det(-F(x)^{-1})$

► central path: $x^{\star}(t)$ minimizes $tc^T x - \log \det(-F(x))$; hence

 $tc_i - \mathbf{tr}(F_iF(x^{\star}(t))^{-1}) = 0, \quad i = 1, \dots, n$

▶ dual point on central path: $Z^{\star}(t) = -(1/t)F(x^{\star}(t))^{-1}$ is feasible for

maximize $\mathbf{tr}(GZ)$ subject to $\mathbf{tr}(F_iZ) + c_i = 0, \quad i = 1, \dots, n$ $Z \ge 0$

• duality gap on central path: $c^T x^{\star}(t) - \mathbf{tr}(GZ^{\star}(t)) = p/t$

Convex Optimization

Barrier method

given strictly feasible x, $t := t^{(0)} > 0$, $\mu > 1$, tolerance $\epsilon > 0$.

repeat

- 1. *Centering step.* Compute $x^{\star}(t)$ by minimizing $tf_0 + \phi$, subject to Ax = b.
- 2. *Update*. $x := x^{\star}(t)$.
- 3. Stopping criterion. quit if $(\sum_i \theta_i)/t < \epsilon$.
- 4. Increase t. $t := \mu t$.
- ▶ only difference is duality gap m/t on central path is replaced by $\sum_i \theta_i/t$
- number of outer iterations:

$$\frac{\log((\sum_i \theta_i)/(\epsilon t^{(0)}))}{\log \mu} \bigg|$$

complexity analysis via self-concordance applies to SDP, SOCP

Example: SOCP

(50 variables, 50 SOC constraints in \mathbf{R}^6)

Example: SDP

(100 variables, LMI constraint in S^{100})

Convex Optimization

Boyd and Vandenberghe

Primal-dual interior-point methods

more efficient than barrier method when high accuracy is needed

- update primal and dual variables, and κ , at each iteration; no distinction between inner and outer iterations
- often exhibit superlinear asymptotic convergence
- search directions can be interpreted as Newton directions for modified KKT conditions
- can start at infeasible points
- cost per iteration same as barrier method

12. Conclusions

Modeling

mathematical optimization

- problems in engineering design, data analysis and statistics, economics, management, ..., can often be expressed as mathematical optimization problems
- techniques exist to take into account multiple objectives or uncertainty in the data

tractability

- roughly speaking, tractability in optimization requires convexity
- algorithms for nonconvex optimization find local (suboptimal) solutions, or are very expensive
- surprisingly many applications can be formulated as convex problems

Theoretical consequences of convexity

- local optima are global
- extensive duality theory
 - systematic way of deriving lower bounds on optimal value
 - necessary and sufficient optimality conditions
 - certificates of infeasibility
 - sensitivity analysis
- solution methods with polynomial worst-case complexity theory (with self-concordance)

Practical consequences of convexity

(most) convex problems can be solved globally and efficiently

- ▶ interior-point methods require 20 80 steps in practice
- basic algorithms (*e.g.*, Newton, barrier method, ...) are easy to implement and work well for small and medium size problems (larger problems if structure is exploited)
- high-quality solvers (some open-source) are available
- ▶ high level modeling tools like CVXPY ease modeling and problem specification

How to use convex optimization

to use convex optimization in some applied context

- use rapid prototyping, approximate modeling
 - start with simple models, small problem instances, inefficient solution methods
 - if you don't like the results, no need to expend further effort on more accurate models or efficient algorithms
- work out, simplify, and interpret optimality conditions and dual
- even if the problem is quite nonconvex, you can use convex optimization
 - in subproblems, e.g., to find search direction
 - by repeatedly forming and solving a convex approximation at the current point

Further topics

some topics we didn't cover:

- methods for very large scale problems
- subgradient calculus, convex analysis
- Iocalization, subgradient, proximal and related methods
- distributed convex optimization
- applications that build on or use convex optimization

these are all covered in EE364b.

Related classes

- EE364b convex optimization II (Pilanci)
- EE364m mathematics of convexity (Duchi)
- CS261, CME334, MSE213 theory and algorithm analysis (Sidford)
- AA222 algorithms for nonconvex optimization (Kochenderfer)
- CME307 linear and conic optimization (Ye)