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Abstract
Today’s operating systems, word processors, web
browsers, and other common software take no measures
to promptly remove data from memory. Consequently,
sensitive data, such as passwords, social security num-
bers, and confidential documents, often remains in mem-
ory indefinitely, significantly increasing the risk of expo-
sure.

We present a strategy for reducing the lifetime of data
in memory called secure deallocation. With secure deal-
location we zero data either at deallocation or within a
short, predictable period afterward in general system al-
locators (e.g. user heap, user stack, kernel heap). This
substantially reduces data lifetime with minimal imple-
mentation effort, negligible overhead, and without mod-
ifying existing applications.

We demonstrate that secure deallocation generally
clears data immediately after its last use, and that with-
out such measures, data can remain in memory for days
or weeks, even persisting across reboots. We further
show that secure deallocation promptly eliminates sen-
sitive data in a variety of important real world applica-
tions.

1 Introduction

Clearing sensitive data, such as cryptographic keys,
promptly after use is a widely accepted practice for de-
veloping secure software [23, 22]. Unfortunately, this
practice is largely unknown in commodity applications
such as word processors, web browsers, and web servers
that handle most of the world’s sensitive data, e.g. pass-
words, confidential documents.

Consequently, sensitive data is often scattered widely
through user and kernel memory and left there for indef-
inite periods [5]. This makes systems needlessly fragile,
increasing the risk of exposing sensitive data when a sys-
tem is compromised, or of data being accidentally leaked

due to programmer error [1] or unexpected feature inter-
actions (e.g. core dumps [15, 16, 14, 13], logging [5]).

We advocate a solution to this based on the observation
that data’s last use is usually soon before its deallocation.
Thus, we can use deallocation as a heuristic for when to
automatically zero data.

By zeroing data either at deallocation or within a short
predictable period afterward in system allocators (heap,
stack, kernel allocators, etc.), we can provide signifi-
cantly shorter and more predictable data lifetime seman-
tics, without modifying existing applications. We refer
to this automatic approach to zeroing as secure dealloca-
tion.

We define the concept of a data life cycle to provide a
conceptual framework for understanding secure deallo-
cation. Using this framework, we characterize the effec-
tiveness of secure deallocation in a variety of workloads.

We evaluated secure deallocation by modifying all ma-
jor allocation systems of a Linux system, from compiler
stack, to malloc-controlled heap, to dynamic allocation
in the kernel, to support secure deallocation. We then
measured the effectiveness and performance overheads
of this approach through the use of whole-system sim-
ulation, application-level dynamic instrumentation, and
benchmarks.

Studying data lifetime across a range of server and in-
teractive workloads (e.g. Mozilla, Thunderbird, Apache
and sshd), we found that with careful design and imple-
mentation, secure deallocation can be accomplished with
minimal overhead (roughly 1% for most workloads).

We further show that secure deallocation typically re-
duces data lifetime to within 1.35 times the minimum
possible data lifetime (usually less than a second). In
contrast, waiting for data to be overwritten commonly
produces a data lifetime 10 to 100 times the minimum
and can even stretch to days or weeks. We also provide
an in-depth analysis demonstrating the effectiveness of
this approach for removing sensitive data across the en-
tire software stack for Apache and Emacs.



We argue that these results provide a compelling case
for secure deallocation, demonstrating that it can provide
a measurable improvement in system security with neg-
ligible overhead, without requiring program source code
to be modified or even recompiled.

Our discussion proceeds as follows. In the next sec-
tion we present the motivation for this work. In section 3
we present our data lifetime metric and empirical results
on how long data can persist. In section 4 we present the
design principles behind secure deallocation while sec-
tions 5, 6, and 7 present our analysis of effectiveness and
performance overheads of secure deallocation. In sec-
tions 8 and 9 we discuss future and related work. Sec-
tion 10 offers our conclusions.

2 Motivation

In this section we discuss how sensitive data gets ex-
posed, how today’s systems fail to take measures to re-
duce the presence of long-lived sensitive data, and why
secure deallocation provides an attractive approach to re-
ducing the amount of long-lived data in memory.

2.1 The Threat Of Data Exposure
The simplest way to gain access to sensitive data is by
directly compromising a system. A remote attacker may
scan through memory, the file system or swap parti-
tion, etc. to recover sensitive data. An attacker with
physical access may similarly exploit normal software
interfaces [7], or if sufficiently determined, may resort
to dedicated hardware devices that can recover data di-
rectly from device memory. In the case of magnetic stor-
age, data may even be recoverable long after it has been
deleted from the operating system’s perspective [9, 11].

Software bugs that directly leak the contents of mem-
ory are common. One recent study of security bugs in
Linux and OpenBSD discovered 35 bugs that can be used
by unprivileged applications to read sensitive data from
kernel memory [6]. Recent JavaScript bugs in Mozilla
and Firefox can leak an arbitrary amount of heap data to a
malicious website [21]. Many similar bugs undoubtedly
exist, but they are discovered and eradicated slowly be-
cause they are viewed as less pressing than other classes
of bugs (e.g. buffer overflows).

Data can be accidentally leaked through unintended
feature interactions. For example, core dumps can leak
sensitive data to a lower privilege level and in some
cases even to a remote attacker. In Solaris, ftpd would
dump core files to a directory accessible via anonymous
FTP, leaking passwords left in memory [15]. Simi-
lar problems have been reported in other FTP and mail
servers [16, 14, 13]. Systems such as “Dr. Watson” in
Windows may even ship sensitive application data in

core files to a remote vendor. Logs, session histories,
and suspend/resume and checkpointing mechanisms ex-
hibit similar problems [7].

Leaks can also be caused by accidental data reuse.
Uncleared pages might be reused in a different protec-
tion domain, leaking data between processes or virtual
machines [12]. At one time, multiple platforms leaked
data from uncleared buffers into network packets [1].
The Linux kernel implementation of the ext2 file system,
through versions 2.4.29 and 2.6.11.5, leaked up to ap-
proximately 4 kB of arbitrary kernel data to disk every
time a new directory was created [2].

If data leaks to disk, by paging or one of the mech-
anisms mentioned above, it can remain there for long
periods of time, greatly increasing the risk of exposure.
Even data that has been overwritten can be recovered [9].
Leaks to network attached storage run the risk of inad-
vertently transmitting sensitive data over an unencrypted
channel.

As our discussion illustrates, data can be exposed
through many avenues. Clearly, reducing these avenues
e.g. by fixing leaks and hardening systems, is an im-
portant goal. However, we must assume in practice that
systems will have leaks, and will be compromised. Thus,
it behooves us to reduce or eliminate the amount of sen-
sitive data exposure that occurs when this happens by
minimizing the amount of sensitive data in a system at
any given time.

2.2 What’s Wrong with Current Systems
Unfortunately, most applications take no steps to mini-
mize the amount of sensitive data in memory.

Common applications that handle most sensitive data
were never designed with sensitive data in mind. Ex-
amples abound, from personal data in web clients and
servers, to medical and financial data in word proces-
sors and databases. Often even programs handling data
known to be sensitive take no measures to limit the life-
time of this data, e.g. password handling in the Windows
login program [5].

Applications are not the only culprits here. Operat-
ing systems, libraries and language runtimes are equally
culpable. For example, in recent work we traced a pass-
word typed into a web form on its journey through a sys-
tem. We discovered copies in a variety of kernel, window
manager, and application buffers, and literally dozens of
copies in the user heap. Many of these copies were long
lived and erased only as memory was incidentally reused
much later [5].

Consequently, even when programmers make a best-
effort attempt to minimize data lifetime, their efforts are
often flawed or incomplete as the fate of memory is of-
ten out of their control. A process has no control over
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Figure 1: A time line showing the relationship of different memory events for a particular memory location. The span from first
write to last read is the ideal lifetime. The data must exist in the system at least this long. The span from first write to deallocation
is the secure deallocation lifetime. The span from first write to the first write of the next allocation is the natural lifetime. Because
programs often rely on reallocation and overwrite to eliminate sensitive data, the natural lifetime is the expected data lifetime in
systems without secure deallocation.

kernel buffers, window manager buffers, and even over
application memory in the event that a program crashes.

3 Characterizing Data Lifetime

We begin this section with a conceptual framework for
understanding secure deallocation and its role in mini-
mizing data lifetime. We then present an experimental
results quantifying how long data persists in real systems.

3.1 Data Life Cycle

The data life cycle (Figure 1) is a time line of interesting
events pertaining to a single location in memory:

Ideal Lifetime is the period of time that data is in use,
from the first write after allocation to the last read
before deallocation. Prior to the first write, the
data’s content is indeterminate, and after the last
read the data is “dead,” in the sense that subsequent
writes cannot affect program execution (at least for
normal process memory). Thus, we cannot reduce
data lifetime below the ideal lifetime without re-
structuring the code that uses it.

Natural Lifetime is the window of time where attack-
ers can retrieve useful information from an alloca-
tion, even after it has been freed (assuming no se-
cure deallocation). The natural lifetime spans from
the first write after allocation to the first write of a
later allocation, i.e. the first overwrite. This is the
baseline data lifetime seen in today’s systems.

Secure Deallocation Lifetime attempts to improve on
the natural lifetime by zeroing at time of dealloca-
tion. The secure deallocation lifetime spans from
the first write after allocation until its deallocation
(and zeroing). The secure deallocation lifetime falls
between the natural and ideal lifetimes.

time
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Figure 2: Incomplete overwrites, or holes, lead to the accumu-
lation of data from previous allocations in current ones. This
time line shows how a given block of memory gradually accu-
mulates data from three different allocations.

Defining data lifetime in this manner provides a frame-
work for reasoning about the effectiveness of zeroing
policies. The degree to which the secure deallocation
lifetime matches the ideal lifetime gives us a metric
for understanding how well secure deallocation approxi-
mates an optimal policy.

Reallocation and Holes When memory is reallocated
and used for a different purpose, it is not uncommon for
the previous contents of the memory to be incompletely
overwritten, allowing some data from the previous allo-
cation to survive. We refer to the sections of surviving
data as holes. Holes may arise from unused variables
or fields, compiler-added padding for stack frame align-
ment or in structs, or unused portions of large buffers.

For example, it is common for user-level file name
handling code to allocate PATH MAX (at least 256) byte
buffers even though they aren’t completely used in most
situations, and Linux kernel code often allocates an en-



tire 4,096-byte page for a file name. The unused portion
of the buffer is a hole. This is important for data lifetime
because any data from a previous allocation that is in the
hole is not overwritten. Figure 2 illustrates the accumu-
lation of data that can result from these holes.

It might seem that secure deallocation is a superfluous
overhead since the job of overwriting sensitive data can
simply be handled when the memory is reused. However,
in some programs, holes account for the vast majority of
all allocated data. Thus, simply waiting for reallocation
and overwrite is an unreliable and generally poor way to
ensure limited data lifetime. The next section shows an
example of this.

3.2 Long-Term Data Lifetime

On today’s systems, we cannot predict how long data will
persist. Most data is erased quickly, but our experiments
described here show that a significant amount of data
may remain in a system for weeks with common work-
loads. Thus, we cannot depend on normal system activi-
ties to place any upper bound on the lifetime of sensitive
data. Furthermore, we found that rebooting a computer,
even by powering it off and back on, does not necessarily
clear its memory.

We wrote Windows and Linux versions of software de-
signed to measure long-term data lifetime and installed
it on several systems we and our colleagues use for ev-
eryday work. At installation time, the Linux version
allocates 64 MB of memory and fills it with 20-byte
“stamps,” each of which contains a magic number, a se-
rial number, and a checksum. Then, it returns the mem-
ory to the system and terminates. A similar program un-
der Windows was ineffective because Windows zeroes
freed process pages during idle time. Instead, the Win-
dows version opens a TCP socket on the localhost inter-
face and sends a single 4 MB buffer filled with stamps
from one process to another. Windows then copies the
buffer into dynamically allocated kernel memory that is
not zeroed at a predictable time. Both versions scan all
of physical memory once a day and count the remaining
valid stamps.

Figure 3 displays results for three machines actively
used by us and our colleagues. The machines were
Linux and Windows desktops with 1 GB RAM each and
a Linux server with 256 MB RAM. Immediately after
the fill program terminated, 2 to 4 MB of stamps could
be found in physical memory. After 14 days, between
23 KB and 3 MB of the stamps could still be found. If
these stamps were instead sensitive data, this could pose
a serious information leak.

In the best case, the Linux server, only 23 KB of
stamps remained after 14 days. We expected that these
remaining stamps would disappear quickly, but in fact,
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Figure 3: Lifetime of 20-byte “stamps” written to memory by
a test program run on several machines used daily. This shows
that data can often persist in memory for days or weeks under
common workloads. Despite appearances, the Linux server did
not drop quickly to 0 KB: at 14 days, it retained about 23 KB;
at 28 days, about 7 KB.

after an additional 14 days, about 7 KB of stamps were
still left. A closer look found most data retained over the
long term to lie in holes in pages owned by the Linux
slab allocator, which divides pages into smaller blocks
of equal size for piecemeal use. Most block sizes do
not fit evenly into the page size, so leftover space (up
to hundreds of bytes worth) follows the final block in a
slab, and some blocks also contain data members that are
rarely used. This unused space retains data as long as the
slab page itself persists—at least as long as any block in
the page is in use and ordinarily longer—and slab pages
tend to be deallocated in large numbers only under mem-
ory pressure. Thus, we expect data that falls into a hole
in a slab to persist for a long time on an ordinarily loaded
system, explaining our observations.

Effect of Rebooting In the course of setting up exper-
iments, we rebooted some machines multiple times and
found, to some surprise, that some stamps put into mem-
ory before reboot remained. We investigated further and
found that a “soft” reboot, that is, a reboot that does
not turn off the machine’s power, does not clear most of
RAM on the machines we tested. The effect of a “hard”
reboot, that is, one that powers off the machine, varied.
On some machines, hard reboots cleared all stamps; on
others, such as IBM ThinkPad T30 laptops, many were
retained even after 30 seconds without power. We con-
clude that it is a bad idea to assume a reboot will clear
memory without knowledge about the specific hardware
in use.



4 Designing Secure Deallocation

In this section we describe the design principles behind
secure deallocation.

4.1 A Conservative Heuristic
Secure deallocation clears data at deallocation or within
a short, predictable time afterward. This provides a con-
servative heuristic for minimizing data lifetime.

Secure deallocation is a heuristic in that we have no
idea when a program last uses data. We just leverage the
fact that last-time-of-use and time-of-deallocation are of-
ten close together (see section 5). This is conservative
in that it should not introduce any new bugs into exist-
ing programs, and in that we treat all data as sensitive,
having no a priori knowledge about how it is used in an
application.

This approach is applicable to systems at many lev-
els from OS kernels to language runtimes, and is agnos-
tic to memory management policy, e.g. manual freeing
vs. garbage collection. However, the effectiveness of se-
cure deallocation is clearly influenced by the structure
and policy of a system in which it is included.

4.2 Layered Clearing
We advocate clearing at every layer of a system where
data is deallocated including user applications, the com-
piler, user libraries, and the OS kernel. Each layer offers
its own costs and benefits that must be taken account.

• Applications generally have the best knowledge of
what data are sensitive and when the best time to
clear them is. For example, an application that pops
elements off a circular queue knows immediately
that the space used to store those elements can and
should be cleared. Because such operations are usu-
ally implemented in terms of simple pointer incre-
ments and decrements, the heap storage layer sim-
ply has no way of knowing this data could have been
cleared.

Unfortunately, it can be complex and labor intensive
to identify all the places where sensitive data resides
and clear it appropriately. We explore an example of
modifying a piece of complex, data-handling soft-
ware (the Linux kernel) to reduce the time that data
is held in section 6.

• Compilers handle all the implicit allocations per-
formed by programs (e.g. local variables allocated
on the stack), therefore they can handle clearing
data that programs do not explicitly control. Clear-
ing data at this level can be expensive, and we ex-
plore the trade-offs in performance in section 4.4.

• Libraries handle most of the dynamic memory re-
quests made by programs (e.g. malloc/free) and
are the best place to do clearing of these requests.
Clearing at this level has the caveat that we must de-
pend on programs to deallocate data explicitly, and
to do so as promptly as possible. We explore the
efficacy of this approach in section 5.

• Operating system kernels are responsible for man-
aging all of an application’s resources. This in-
cludes process pages used in satisfying memory re-
quests, as well as pages used to buffer data going to
or coming from I/O devices.

The OS is the final safety net for clearing all of
the data possibly missed by, or inaccessible to, user
programs. The OS kernel’s responsibilities include
clearing program pages after a process has died, and
clearing buffers used in I/O requests.

Why Layered Clearing? Before choosing a layered
design, we should demonstrate that it is better than a
single-layer design, such as a design that clears only
within the user stack and heap management layer.

Clearing only in a lower layer (e.g. in the kernel in-
stead of the user stack/heap) is suboptimal. For exam-
ple, if we do zeroing only when a process dies, data can
live for long periods before being cleared in long run-
ning processes. This relates back to the intuition behind
the heuristic aspect of secure deallocation.

Clearing only in a higher layer (e.g. user stack/heap
instead of kernel) is a more common practice. This is in-
complete because it does not deal with state that resides
in kernel buffers (see section 6 for detailed examples).
Further, it does not provide defense in depth, e.g. if a pro-
gram crashes at any point while sensitive data is alive, or
if the programmer overlooks certain data, responsibility
for that data’s lifetime passes to the operating system.

This basic rationale applies to other layered software
architectures including language runtimes and virtual
machine monitors.

The chief reason against a layered design is perfor-
mance. But as we show in section 7, the cost of zeroing
actually turns out to be trivial, contrary to popular belief.

4.3 Caveats to Secure Deallocation

Secure deallocation is subject to a variety of caveats:

• No Deallocation. Some applications deallocate lit-
tle of their memory. In experiments we perform in
section 5, for example, we see workloads where less
than 10% of memory allocated was freed. In short-
lived applications, this can be handled by the OS



kernel (see section A.1). In longer-lived applica-
tions little can be done without modifying the pro-
gram itself. Static data has the same issue because
it also survives until the process terminates.

• Memory Leaks. Failing to free memory poses a data
lifetime problem, although we’ll see in section 5
that programs usually free data that they allocate.
Fortunately, leaks are recognized as bugs by appli-
cation programmers, so they are actively sought out
and fixed.

Long-lived servers like sshd and Apache are gen-
erally written to conscientiously manage their mem-
ory, commonly allowing them to run for months
on end. When memory leaks do occur in these
programs, installations generally have facilities for
handling them, such as a cron job that restarts the
process periodically.

• Custom Allocators. Custom allocators are com-
monly used to improve application performance or
to help manage memory, e.g. by preventing memory
leaks. Doing so, however, hides the application’s
use of memory from the C library, reducing the ef-
fectiveness of secure deallocation in the C library.

Region-based allocators [8], for example, serve
allocation requests from a large system-allocated
pool. Objects from this pool are freed en masse
when the whole pool is returned to the system. This
extends secure deallocation lifetimes, because the
object’s use is decoupled from its deallocation.

Circular queues are another common example. A
process that buffers input events often does not
clear them after processing them from the queue.
Queue entries are “naturally” overwritten only
when enough additional events have arrived to make
the queue head travel a full cycle through the queue.
If the queue is large relative to the rate at which
events arrive, this can take a long time.

These caveats apply only to long-lived processes like
Apache or sshd, since short-lived processes will have
their pages quickly cleaned by the OS. Furthermore,
long-lived processes tend to free memory meticulously,
for reasons described above, so the impact of these
caveats is generally small in practice.

These challenges also provide unique opportunities.
For example, custom allocators designed with secure
deallocation can potentially better hide the latency of ze-
roing, since zeroing can be deferred and batched when
large pools are deallocated. Of course, a healthy balance
must be met—the longer zeroing is deferred, the less use-
ful it is to do the zeroing at all.

Figure 4: Crests and troughs of stack usage over time for a
web browsing session under Firefox 1.0 (stack grows down-
ward). Firefox typifies stack usage for a GUI application: the
main window event loop sits high atop the stack and occasion-
ally makes excursions downwards to do processing, in this case
web page rendering, only to return back to the event loop. In-
tervals between excursions are on a human scale (seconds or
minutes).

4.4 Implementing Clearing

In this section we provide some practical examples of
design trade-offs we made in our secure deallocation im-
plementation.

Compilers and Libraries Secure deallocation in com-
pilers and libraries is relatively simple, and consists of
clearing the heap and the stack.

All heap allocated data is zeroed immediately during
the call to free. Data is cleared immediately because
the latency imposed appears to be negligible in most
cases, given the speed of zeroing.

For the stack, we explored two strategies: zeroing ac-
tivation frames immediately as their function returns and
periodically zeroing all data below the stack pointer (all
old, currently unused space). The latter strategy amor-
tizes the performance overhead of stack over many calls
and returns, although it has the disadvantage of missing
“holes” in the stack (see section 3.1).

The intuition for periodically zeroing the stack is il-
lustrated by Figure 4, obtained by instrumenting Firefox
1.0. Although applications do make excursions down-
wards to do initialization or complex processing, many,
particularly long-lived ones like network server daemons
or GUI programs, spend most of their time high atop
the stack, waiting in an event loop for a network/user
request.



Clearing in the Kernel In the kernel we leveraged
our greater knowledge of the semantics of different data
structures to selectively clear only memory that may con-
tain sensitive data. We chose this approach because the
kernel is performance sensitive, despite the greater effort
and implementation complexity required.

Ideally, this approach would provide the same reduc-
tion of sensitive data lifetime as we would obtain by
clearing everything in the main kernel allocators, perhaps
better, as specific data structures such as circular queues
are cleared as well. However, as this is not conservative,
there is a greater risk that we may have overlooked some
potentially sensitive data.

The kernel has two primary responsibilities for zero-
ing. First, it must clear user space memory which has
been deallocated, e.g. by process death or unmapping a
private file mapping. Next, it must clear potentially sen-
sitive state residing in I/O buffers e.g. network buffers
(e.g. sk buffs in Linux), tty buffers, IPC buffers.

Due to the range and complexity of zeroing done in
the kernel we have deferred most of our discussion to
section 6 and further in appendix A.

Zeroing Large Pools of Memory An unusual aspect
of kernel zeroing is the need to clear large areas such as
the pages in a terminated process. This requires signif-
icant care in order to balance the demand for short and
predictable data lifetime against the need for acceptable
latency.

To provide predictable data lifetime, we would like to
have some sort of deadline scheduling in place, e.g. a
guarantee that sensitive pages are zeroed within n sec-
onds of deallocation. We would like n to be as small
as possible without imposing unacceptable immediate la-
tency penalties on processes. On the other hand, if n is
too large many dirty pages could accumulate, especially
under heavy load. This could lead to long and unpre-
dictable pauses while the system stops to zero pages. In-
tuitively, this is very similar to garbage collection paus-
ing a program to free up memory.

Sometimes proactively zeroing memory can actually
improve system responsiveness. Even an unmodified
kernel must zero memory before allocating it to a user
process, to prevent sensitive data from one protection do-
main from leaking into another. Often this is done on
demand, immediately before pages are needed. Doing
this before pages are needed can improve performance
for process startup. Zeroing memory can also increase
page sharing under some virtual machine monitors [24].

Another important consideration is ensuring that zero-
ing large pools of memory does not blow out caches. We
discuss this issue in section 7.1.

A more complete treatment of zeroing performed by
the kernel is provided later in section 6 and appendix A.

Side Effects of Secure Deallocation Secure deallo-
cation only modifies data with indeterminate content,
e.g. freed data on the heap. This should not introduce
bugs in correct programs. Some buggy software, how-
ever, depends on the value of indeterminate data.

Use of indeterminate data takes two forms. Software
may use data before it has been initialized, expecting it
to have a constant value. Alternately, software may use
data after it has been freed, expecting it to have the same
value it had prior to deallocation.

By making the value of indeterminate data consistent,
some buggy code will now always break. However, this
also changes some non-deterministic “Heisenbugs” into
deterministic “Bohr bugs,” e.g. returning a pointer to a
local, stack-allocated variable will always break, instead
of just when a signal intervenes between function return
and pointer dereference. This can be beneficial as it may
bring otherwise hard to find bugs to the surface. Con-
versely, secure deallocation may eliminate some bugs
permanently (e.g. data is always initialized to zero as a
programmer assumed).

Implementers of secure deallocation should consider
this issue when deciding what value they wish to use for
clearing memory. For example, matching the value the
existing OS uses for clearing process pages (e.g. zero on
Linux x86, 0xDEADBEEF on AIX RS/6000), is a good
heuristic for avoiding the introduction of new use-before-
initialization bugs.

5 Data Lifetime Reduction

Evaluating the effectiveness of secure deallocation re-
quires us to answer a variety of questions, including:
How often do applications deallocate their own mem-
ory? Can we rely on incidental reuse and overwriting
to destroy sensitive data—do we even need secure deal-
location? What kind of delay can we expect between last
use of data and its deallocation?

Using the conceptual framework introduced in sec-
tion 3, we try to answer these questions using our ex-
ample implementation of heap clearing and a variety of
common workloads.

5.1 Measurement Tool
We created a tool for measuring data lifetime related
events in standard user applications. It works by dy-
namically instrumenting programs to record all accesses
to memory: all reads, writes, allocations, and dealloca-
tions. Using this information, we can generate precise
numbers for ideal, natural, and secure deallocation life-
times as well as other data properties like holes.

We based our tool on Valgrind [18], an open source de-
bugging and profiling tool for user-level x86-Linux pro-



grams. It is particularly well-known as a memory debug-
ger. It also supports a general-purpose binary instrumen-
tation framework that allows it to be customized. With
this framework, we can record timestamps for the events
illustrated in Figure 1. We can compute various lifetime
spans directly from these timestamps.

5.2 Application Workloads
We performed our experiments on a Linux x86 worksta-
tion, selecting applications where data lifetime concerns
are especially important, or which lend insight into inter-
esting dynamic allocation behavior:

• Mozilla, a popular graphical web client. We auto-
mated Mozilla v1.4.3 to browse through 10 differ-
ent websites chosen for their mix of images, text
layouts, CSS, and scripting.

• Thunderbird, a graphical mail client included as
part of the Mozilla application suite. We set up
Thunderbird 1.0 to automatically iterate through
over 100 email messages that include text and im-
ages.

• ssh, a secure remote shell. Using OpenSSH 3.9p1,
we scripted our sshworkload using expect to log
into a ssh server, read mail in pine, edit some text
with emacs, and walk through various directories.

• sshd, the secure shell daemon from OpenSSH
v3.9p1. This is the server side of the ssh client
test.

• Python, an interpreted, object-oriented language
with garbage collection. Python and similar man-
aged language runtimes are increasingly impor-
tant for running applications, and they have data-
lifetime properties characteristically different from
applications that manually manage data. We used
Python 2.4 to run a program that computes large
primes.

• Apache, a web server. Our Apache workload serves
a small corpus of static HTML and images using
Apache 2.0.52. We automated a client to spend
about an hour hitting these objects in sequence.

• xterm, a terminal emulator for X11. Inside
XFree86’s xterm 4.3.99.5(179), we ran a small
client process that produces profuse output for
about 45 minutes.

• ls, the canonical directory lister. Although ls
does not obviously handle much sensitive data, its
data lifetime characteristics give us some insight
into how more non-GUI-centric applications might

be expected to behave. This workload performs a
recursive, long-formatted directory listing starting
from the root of a large file system using GNU ls
5.0.

We omit detailed performance testing for these appli-
cations, due to the difficulty of meaningfully character-
izing changes to interactive performance. Any perfor-
mance penalties incurred were imperceptible. Perfor-
mance of heap zeroing is analyzed in section 7.

5.3 Results
Table 1 summarizes the results of our experiments. We
ran each application through our modified Valgrind,
recorded timings for various memory events, and com-
puted the resultant data lifetimes.

The table contains several statistics for each experi-
ment. Run Time is the time for a single run and Allo-
cated is the total amount of heap memory allocated dur-
ing the run. Written is the amount of allocated memory
that was written, and Ideal Lifetime is the ideal lifetime
of the written bytes, calculated from first write to last
read for every byte written. Written & Freed is the allo-
cated memory that was first written and later deallocated,
and Secure Deallocation Lifetime is the data lifetime ob-
tained by an allocator that zeros data at time of free, as
the time from first write to deallocation. Finally, Writ-
ten, Freed, & Overwritten is the allocated bytes that were
written and deallocated and later overwritten, with Nat-
ural Lifetime the data lifetime obtained with no special
effort, as the time from first write to overwrite.

The GUI workloads Mozilla and Thunderbird are vi-
sually separated in the table because their data lifetime
characteristics differ markedly from the other workloads,
as we will discuss further in section 5.5 below.

One thing to note about the binary instrumentation
framework Valgrind provides is that it does tend to slow
down CPU-bound programs, dilating the absolute num-
bers for the lifetime of data. However, the relative dura-
tions of the ideal, secure deallocation, and natural life-
times are still valid; and in our workloads, only the
Python experiment was CPU-bound.

5.4 Natural Lifetime is Inadequate
Our results indicate that simply waiting for applications
to overwrite data in the course of their normal execution
(i.e. natural lifetime) produces extremely long and un-
predictable lifetimes.

To begin, many of our test applications free most of
the memory that they allocate, yet never overwrite much
of the memory that they free. For example, the Mozilla
workload allocates 135 MB of heap, writes 96 MB of it,



Ideal Secure Deallocation Written, Natural
Lifetime Written & Lifetime Freed, & Lifetime

Application Run Time Allocated Written mean stddev Freed mean stddev Overwritten mean stddev
Mozilla 23:04 135 MB 96 MB 11 s 68 s 94 MB 21 s 83 s 80 MB 40 s 105 s

Thunderbird 44:20 232 MB 155 MB 5 s 86 s 153 MB 10 s 120 s 143 MB 34 s 162 s
ssh 30:55 6 MB 6 MB 0 s 0 s 6 MB 0 s 0 s 6 MB 7 s 73 s

sshd 46:19 6 MB 6 MB 0 s 0 s 6 MB 0 s 0 s 6 MB 5 s 120 s
Python 46:14 352 MB 232 MB 24 s 53 s 232 MB 23 s 53 s 214 MB 59 s 131 s
Apache 1:01:21 57 MB 5 MB 0 s 0 s 5 MB 0 s 0 s 5 MB 0 s 0 s

xterm 46:13 8 MB 8 MB 1 s 2 s 0 MB 1 s 2 s 0 MB 3 s 53 s
ls 46:02 86 MB 23 MB 1 s 13 s 22 MB 2 s 15 s 20 MB 65 s 326 s

Table 1: Data lifetime statistics for heap allocated memory. Allocated is the total amount of heap memory allocated during each run. Written is the
amount of allocated memory that was actually written, and Ideal Lifetime is the lifetime this written data would have if it were zeroed immediately
after the last time it was read. Written & Freed is allocated bytes that were written and later freed, with Secure Deallocation Lifetime the lifetime
of this data when it is zeroed at deallocation time. Finally, Written & Freed & Overwritten is allocated bytes that were written and freed, then later
reallocated and overwritten by the new owner, with Natural Lifetime the lifetime of this data.

frees about 94 MB of the data it wrote, yet 14 MB of that
freed data is never overwritten.

There are several explanations for this phenomenon.
For one, programs occasionally free data at or near the
end of their execution. Second, sometimes one phase of
execution in a program needs more memory than later
phases, so that, once freed, there is no need to reuse
memory during the run. Third, allocator fragmentation
can artificially prevent memory reuse (see 3.2 for an ex-
ample).

Our data shows that holes, that is, data that is reallo-
cated but never overwritten, are also important. Many
programs allocate much more memory than they use,
as shown most extremely in our workloads by Python,
which allocated 120 MB more memory than it used, and
Apache, which allocated over 11 times the memory it
used. This behavior can often result in the lifetime of a
block of memory extending long past its time of reallo-
cation.

The natural lifetime of data also varies greatly. In ev-
ery one of our test cases, the natural lifetime has a higher
standard deviation than either the ideal or secure deallo-
cation lifetime. In the xterm experiment, for example,
the standard deviation of the natural lifetime was over
20 times that of the secure deallocation lifetime.

Our experiments show that an appreciable percentage
of freed heap data persists for the entire lifetime of a
program. In our Mozilla experiment, up to 15% of all
freed (and written to) data was never overwritten dur-
ing the course of its execution. Even in programs where
this was not an appreciable percentage, non-overwritten
data still amounted to several hundred kilobytes or even
megabytes of data.

5.5 Secure Deallocation Approaches Ideal
We have noted that relying on overwrite (natural life-
time) to limit the life of heap data is a poor choice, often

leaving data in memory long after its last use and provid-
ing widely varying lifetimes. In contrast, secure deallo-
cation very consistently clears data almost immediately
after its last use, i.e. it very closely approximates ideal
lifetime.

Comparing the Written and Written & Freed columns
in Table 1, we can see that most programs free most of
the data that they use. Comparing Ideal Lifetime to Se-
cure Deallocation Lifetime, we can also see that most
do so promptly, within about a second of the end of the
ideal lifetime. In the same cases, the variability of the
ideal and secure deallocation lifetimes are similar.

Perhaps surprisingly, sluggish performance is not a
common issue in secure heap deallocation. Our Python
experiment allocated the most heap memory of any of the
experiments, 352 MB. If all this memory is freed and ze-
roed at 600 MB/s, the slowest zeroing rate we observed
(see section 7.1), it would take just over half a second, an
insignificant penalty for a 46-minute experiment.

GUI Programs Table 1 reveals that GUI programs of-
ten delay deallocation longer than other programs, result-
ing in a much greater secure deallocation lifetime than
others.

One reason for this is that GUI programs generally use
data for a short period of time while rendering a page of
output, and then wait while the user digests the informa-
tion. During this period of digestion, the GUI program
must retain the data it used to render the page in case the
window manager decides the application should refresh
its contents, or if the user scrolls the page.

Consequently, the in-use period for data is generally
quite small, only as much to render the page, but the deal-
location period is quite large because data is only deal-
located when, e.g., the user moves on to another web-
page. Even afterward, the data may be retained because,
for user-friendliness, GUI programs often allow users to
backtrack, e.g. via a “back” button.



6 Kernel Clearing: A Case Study

The previous section examined data lifetime reduction
for a single allocator, the heap, and showed it provided
a significant quantitative reduction in lifetime for data in
general. In contrast, this section takes a more qualitative
approach, asking whether our implementation promptly
removes particular sensitive data from our entire system.
In answer, we provide an in-depth case study of data life-
time reduction in several real applications’ treatment of
passwords, as they pass through our kernel.

6.1 Identifying Sensitive Data
We used TaintBochs, our tool for measuring data life-
time, to evaluate the effectiveness of our kernel clear-
ing. TaintBochs is a whole-system simulator based on
the open source x86 simulator Bochs, version 2.0.2. We
configured Bochs to simulate a PC with an 80386 CPU,
8 GB IDE hard disk, 32 MB RAM, NE2000-compatible
Ethernet card, and VGA video.

TaintBochs provides an environment for tagging sen-
sitive data with “taint” information at the hardware level
and propagating these taints alongside data as it moves
through the system, allowing us to identify where sen-
sitive data has gone. For example, we can taint all in-
coming keystrokes used to type a password as tainted,
and then follow these taints’ propagation through kernel
tty buffers, X server event queue, and application string
buffers.

TaintBochs and its analysis framework is fully de-
scribed in our previous work [5].

6.2 Augmenting Kernel Allocators
To augment kernel allocators to provide secure deallo-
cation, we began with large, page-granular allocations,
handled by the Linux page allocator. We added a bit
to the page structure to allow pages to be individually
marked polluted, that is, containing (possibly) sensitive
data. This bit has an effect only when a page is freed, not
while it is still in use.

Whereas an unmodified Linux 2.4 kernel maintains
only one set of free pages, our modified kernel divides
free pages into three pools. The not-zeroed pool holds
pages whose contents are not sensitive but not (known to
be) zeroed. The zeroed pool holds pages that have been
cleared to zeros. The polluted pool holds free pages with
sensitive contents. The code for multiple pools was in-
spired by Christopher Lameter’s prezeroing patches for
Linux 2.6 [17].

Data lifetime is limited by introducing the zeroing
daemon, a kernel thread that wakes up periodically to
zero pages that have been in the polluted pool longer than

a configurable amount of time (by default 5 seconds).
Thus, our clearing policy is a “deadline” policy, ensuring
that polluted pages are cleared within approximately the
configured time. This policy is easy to understand: after
a polluted page is freed, we know that it will be cleaned
within a specified amount of time. It is also simple to
implement, by maintaining a linked list of freed polluted
pages ordered by time of deallocation.

Appendix A describes in detail how allocation re-
quests are satisfied from these page pools. It also de-
scribes our changes to clear kernel I/O buffers as soon as
they are no longer needed.

6.3 Application Workloads

6.3.1 Apache and Perl

We tracked the lifetime of the password through the
Apache web server to a Perl subprocess. Our CGI script
uses Perl’s CGI module to prompt for and accept a pass-
word submitted by the user. The script hashes the pass-
word and compares it to a stored hash, then returns a page
that indicates whether the login was successful.

With an unmodified kernel, we found many tainted
regions in kernel and user space following the experi-
ments. The kernel contained tainted packet buffers al-
located by the NE2000 network driver and a pipe buffer
used for communication between Apache and the CGI
script. Apache had three tainted buffers: a dynamically
allocated buffer used for network input, a stack-allocated
copy of the input buffer used by Perl’s CGI module, and a
dynamically allocated output buffer used to pass it along
to the CGI subprocess. Finally, Perl has a tainted file in-
put buffer and many tainted string buffers. All of these
buffers contained the full password in cleartext (except
that some of the tainted Perl string buffers contained only
hashed copies).

Our modified kernel cleared all of the Perl taints fol-
lowing Perl’s termination. When the Apache process ter-
minated, those taints also disappeared. (Apache can be
set up to start a separate process for each connection, so
kernel-only support for limiting data lifetime may even,
in some cases, be a reasonable way to limit web server
data lifetime in the real world.)

A few tainted variables did remain even in our modi-
fied kernel, such as:

• The response from the CGI process depends on the
correctness of the password, so the response itself is
tainted. Perl allocates a buffer whose size is based
on the length of the response, and the size of the
buffer factors into the amount of memory requested
from the system with the sbrk system call. There-
fore, the kernel’s accounting of the number of com-



mitted VM pages (vm committed space) be-
comes tainted as well.

• The Linux TCP stack, as required by TCP/IP RFCs,
tracks connections in the TIME WAIT state. The
tracking info includes final sequence numbers. Be-
cause the sending-side sequence number is influ-
enced by the length of the tainted response, it is it-
self tainted.

• Apache’s log entries are tainted because they in-
clude the length of the tainted response. Thus, one
page in Linux’s page cache was tainted.

Assuming that the length of the response is not sensi-
tive, these tainted variables cannot be used to determine
sensitive information, so we disregarded them.

6.3.2 Emacs

Our second effectiveness experiment follows the lifetime
of a password entered in Emacs’s shell mode. In shell
mode, an Emacs buffer becomes an interface to a Unix
shell, such as bash, running as an Emacs subprocess.
Shell mode recognizes password prompts and reads their
responses without echoing. We investigated the data life-
time of passwords entered into su in shell mode. We
typed the password, then closed the root shell that it
opened and the outer shell, then exited from Emacs and
logged off.

With an unmodified kernel, several regions in kernel
and user space were tainted. The kernel pseudo-random
number generator contained the entire user name and
password, used for mixing into the PRNG’s entropy pool
but never erased. Kernel tty buffers did also, in both the
interrupt-level “flip” buffer and the main tty buffer, plus
a second tty buffer used by Emacs to pass keyboard input
to its shell subprocess.

In the Emacs process, tainted areas included: a global
circular queue of Emacs input events, the entire password
as a Lisp string, a set of individual Lisp character strings
containing one password character each, one copy on the
Emacs stack, and a global variable that tracks the user’s
last 100 keystrokes. (Much of Emacs is implemented in
Lisp.) No copies were found in the su process, which
seems to do a good job of cleaning up after itself.

Our modified kernel cleared all of these taints when
Emacs was terminated. (The PRNG’s entropy pool was
still tainted, but it is designed to resist attempts to recover
input data.)

7 Performance Overhead

Programmers and system designers seem to scoff at the
idea of adding secure deallocation to their systems, sup-
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Figure 5: Comparison of speed for different zeroing tech-
niques on a 2.40 GHz Pentium 4. This chart shows the speed in
GB/s of zeroing a single block of n bytes repeatedly until 4 GB
of zeros have been written. Block sizes are powers of two and
blocks are aligned on block boundaries. Refer to the text for a
description of each zeroing method.

posing the overheads to be unacceptable. However, these
fears are largely unfounded.

Data that are in cache and properly aligned can be ze-
roed rapidly, as we will show. In fact, applications sel-
dom allocate and free enough data to make any apprecia-
ble change to their running time.

In this section we show that with careful implementa-
tion, zeroing can generally be done with nominal over-
head. We show experimentally that user level clearing
can be achieved with minimal impact on a wide range of
applications. And similarly, that kernel clearing can be
performed without significantly impacting either CPU or
I/O intensive application performance.

All experiments were run on an x86 Linux platform
with 1 GB of memory and a 2.40 GHz Pentium 4.

7.1 Implementing Zeroing
All the allocators on our system dole out blocks of data
aligned to at least 4-byte boundaries. malloc by de-
fault aligns blocks to 8-byte boundaries. Also by default,
GCC aligns stack frames on 16-byte boundaries. Given
common application allocation patterns, most heap and
stack data freed and reallocated are recently used, and
thus also likely in cache.

These alignment and cache properties allow even
modest machines to zero data at blindingly fast speeds.
Figure 5 illustrates this fact for five different methods of
zeroing memory:

bzero, an out-of-line call to glibc’s bzero function.

rep stosl, inline assembly using an x86 32-bit string
store instruction.



Running Max In-Flight Total Total Total Bytes Free Rate
Time mallocs mallocs frees freed (bytes/sec)

164.gzip 3m:16s 299 436,222 436,187 110,886,084 565,745
175.vpr 5m:12s 68,036 107,659 103,425 5,355,300 17,164
176.gcc 2m:27s 25,196 110,315 93,823 545,877,388 3,713,451

197.parser 4m:42s 7 153 147 1,111,236 3,940
252.eon 11m:25s 2,397 5,283 4,125 380,996 556

253.perlbmk 3m:26s 2,397,499 31,361,153 30,847,487 6,368,737,804 30,916,202
255.vortex 3m:37s 472,711 4,622,368 4,400,552 1,934,800,720 8,916,132
300.twolf 9m:15s 105,210 574,572 492,729 16,759,620 30,197

firefox 6s 90,327 218,501 219,936 74,545,704 12,081,962

Table 2: Non-trivial allocations by programs in our zero-on-free heap experiment. Max In-Flight mallocs gives the maximum
number of memory allocations alive at the same time. All other numbers are aggregates over the entire run. Runs with under 100 K
of freed data are not shown.

manual loop, inline assembly that stores 32 bits at a
time in a loop.

SSE optimized, a out-of-line call to our optimized ze-
roing function that uses a loop for small objects and
SSE 128-bit stores for large objects.

non-temporal, a similar function that substitutes non-
temporal writes for ordinary 128-bit SSE stores.
(Non-temporal writes bypass the cache, going di-
rectly to main memory.)

For small block sizes, fixed overheads dominate. The
manual loop is both inlined and very short, and thus
fastest. For block sizes larger than the CPU’s L2 cache
(512 kB on our P4), the approximately 2 GB/s memory
bus bandwidth limits speed. At intermediate block sizes,
128-bit SSE stores obtain the fastest results.

Zeroing unused data can potentially pollute the CPU’s
cache with unwanted cache lines, which is especially a
concern for periodic zeroing policies where data is more
likely to have disappeared from cache. The non-temporal
curve shows that, with non-temporal stores, zeroing per-
formance stays constant at memory bus bandwidth, with-
out degradation as blocks grow larger than the L2 cache
size. Moreover, the speed of non-temporal zeroing is
high, because cleared but uncached data doesn’t have to
be brought in from main memory.

When we combine these results with our observations
about common application memory behavior, we see that
zeroing speeds far outpace the rate at which memory is
allocated and freed. Even the worst memory hogs we
saw in Table 1 only freed on the order of hundreds of
MB of data throughout their entire lifetime, which incurs
only a fraction of a second of penalty at the slowest, bus-
bandwidth zeroing rate (2 GB/s).

7.2 Measuring Overhead
To evaluate the overheads of secure deallocation, we
ran test workloads from the SPEC CPU2000 benchmark

suite, a standardized CPU benchmarking suite that con-
tains a variety of user programs. By default, the tests
contained in the SPEC benchmarks run for a few minutes
(on our hardware); it lacks examples of long-lived GUI
processes or server processes, which have especially in-
teresting data lifetime issues.

However, we believe that because the SPEC bench-
mark contains many programs with interesting memory
allocation behavior (including Perl, GCC, and an object-
oriented database), that the performance characteristics
we observe for SPEC apply to these other programs as
well. In addition to this, we ran an experiment with the
Firefox 1.0 browser. We measured the total time required
to startup a browser, load and render a webpage, and then
shut-down.

7.2.1 Heap Clearing Overhead

We implemented a zero-on-free heap clearing policy by
creating a modified libc that performs zeroing when heap
data is deallocated. Because we replaced the entire libc,
modifying its internal memory allocator to do the ze-
roing, we are able to interpose on deallocations per-
formed within the C library itself, in addition to any
done by the application. To test heap clearing, we simply
point our dynamic linker to this new C library (e.g. via
LD LIBRARY PATH), and then run our test program.

For each program, we performed one run with an un-
modified C library, and another with the zero-on-free li-
brary. Figure 6 gives the results of this experiment, show-
ing the relative performance of the zero-on-free heap
allocator versus an unmodified allocator. Surprisingly,
zero-on-free overheads are less than 7% for all tested ap-
plications, despite the fact that these applications allocate
hundreds or thousands of megabytes of data during their
lifetime (as shown in Table 2).

An interesting side-effect of our heap clearing experi-
ment is that we were able to catch a use-after-free bug in
one of the SPEC benchmarks, 255.vortex. This pro-
gram attempted to write a log message to a stdio FILE
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Figure 6: Heap clearing has little performance impact. This
chart shows the relative performance of an unmodified glibc
2.3 heap allocator versus the same allocator modified to zero at
free time in a set of user programs. The unmodified runs are
normalized to 1.0. Zero-on-free overheads are less than 7% for
all tested applications.

after it had closed the file. Removing the fclose call
fixed the bug, but we had to touch the sources to do this.
We don’t believe this impacted our performance results.

7.2.2 Stack Clearing Overhead

We implemented stack clearing for applications by mod-
ifying our OS to periodically zero the free stack space in
user processes that have run since the last time we cleared
stacks. We do so by writing zero bytes from the user’s
stack pointer down to the bottom of the lowest page allo-
cated for the stack.

Figure 7 gives the results of running our workload with
periodic stack clearing (configured with a period of 5
seconds) plus our other kernel clearing changes. Just like
heap clearing, periodic stack clearing had little impact
on application performance, with less than a 2% perfor-
mance increase for all our tests.

Immediate Stack Clearing For those applications
with serious data lifetime concerns, the delay inherent
to a periodic approach may not be acceptable. In these
cases, we can perform an analog of our heap clearing
methodology by clearing stack frames immediately when
they are deallocated.

We implemented immediate stack clearing by modify-
ing GCC 3.3.4 to emit a stack frame zeroing loop in every
function epilogue. To evaluate the performance impact
of this change, we compared the performance of a test
suite compiled with an unmodified GCC 3.3.4 against the
same test suite compiled with our modified compiler.

Figure 7 gives the results of this experiment. We see
that overheads are much higher, generally between 10%
and 40%, than for periodic scheduled clearing. Clearly,
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Figure 7: Comparing stack clearing overheads. This chart
shows the relative performance of our workload with three
strategies: an unmodified run with no stack clearing used as a
baseline, a periodic run with OS scheduled stack zeroing (con-
figured to 5 second intervals) as well as our other kernel zeroing
features, and a immediate run with immediate stack zeroing on
every function return. Periodic zeroing has little performance
overhead. Immediate zeroing has more of a penalty, which may
be acceptable to security-conscience applications.

such overheads are significant, though they may be ac-
ceptable for applications where data lifetime is an utmost
concern.

7.3 Kernel Clearing Overhead

Batch Workload We used Linux kernel builds to stress
our page zeroing changes. A kernel build starts many
processes, each of which modifies many heap, stack, and
static data pages not backed by files. The kernel con-
siders all of these polluted and zeros them within five
seconds of deallocation.

With the ordinary kernel running, three kernel builds
took 184, 182, and 183 seconds, for an average of 183
seconds. With the zeroing kernel, the runs took 188, 184,
and 184 seconds, for an average of 185 seconds, approx-
imately a 1% penalty.

The kernel build zeroed over 1.2 million pages (about
4.8 GB) per run. The actual number of polluted pages
generated was much larger than that, but many of those
pages did not need to be zeroed because they could be
entirely overwritten by pages brought into the page cache
from disk or by copies of pages created when triggering
copy-on-write operations. (As described in section A.2,
we prefer to overwrite polluted data whenever possible.)

Network Workload We evaluated the overhead of ze-
roing by benchmarking performance on 1 Gbps Ethernet,
achieving up to 500 Mbps utilization for large blocks.
We found latency, bandwidth, and CPU usage to be in-



distinguishable between our zeroing kernel and unmodi-
fied kernels.

We evaluated the overhead of zeroing network packets
using NetPIPE [20], which bounces messages of increas-
ing sizes between processes running on two machines.
We configured it to send blocks of data over TCP, in both
directions, between a machine running our zeroing ker-
nel and a machine running an unmodified Linux kernel.
We then compared its performance against the same test
run when both machines were configured with unmodi-
fied Linux kernels.

Considering the performance of zeroing depicted in
Figure 5, our results are not too surprising. Assuming we
zero a buffer sized at the maximum length of an Ethernet
frame (1500 bytes), our performance numbers suggest
we should be able to zero one second’s worth of Gigabit
Ethernet traffic in between about 7 ms and 32 ms, de-
pending on the technique used. Such low overheads are
well below the normal variance we saw across measure-
ments.

8 Future Work

We are currently looking at the performance trade-offs
involved with kernel zeroing, specifically how to param-
eterize and tune the scheduling of kernel zeroing to pro-
vide predictable latency and throughput overheads under
diverse workloads.

Examining the impact of parallelism is an interesting
direction for inquiry. The move to multi-core processors
will provide a great deal of additional available paral-
lelism to further diminish the impact of zeroing.

Providing explicit OS support for reducing data life-
time, for example “ephemeral memory” that automati-
cally zeroes its contents after a certain time period and
thus is secure in the face of bugs, memory leaks, etc., is
another area for future investigation.

A wide range of more specialized systems could ben-
efit from secure deallocation. For example, virtual ma-
chine monitors and programming language runtimes.

So far we have primarily considered language envi-
ronments that use explicit deallocation, such as C, but
garbage-collected languages pose different problems that
may be worthy of additional attention. Mark-and-sweep
garbage collectors, for example, prolong data lifetime
at least until the next GC, whereas reference-counting
garbage collectors may be able to reduce data lifetime
below that of secure deallocation.

9 Related Work

Our previous work explored the problem of data life-
time using whole system simulation with TaintBochs [5].

We focused on mechanisms for analyzing the problem,
demonstrated its frequency in real world applications,
and showed how programmers could take steps to reduce
data lifetime. Whereas this earlier work looked at how
sensitive data propagates through memory over relatively
short intervals (on the order of seconds), the current pa-
per is concerned with how long data survives before it is
overwritten, and with developing a general-purpose ap-
proach to minimizing data lifetime.

We explored data lifetime related threats and the im-
portance of proactively addressing data lifetime at every
layer of the software stack in a short position paper [7].

The impetus for this and previous work stemmed from
several sources.

Our first interest was in understanding the security of
our own system as well as addressing vulnerabilities ob-
served in other systems due to accidental information
leaks, e.g. via core dumps [15, 16, 14, 13] and program-
mer error [1].

A variety of previous work has addressed specific
symptoms of the data lifetime problem (e.g. leaks) but
to the best of our knowledge none has offered a gen-
eral approach to reducing the presence of sensitive data
in memory. Scrash [4] deals specifically with the core
dump problem. It infers which data in a system is sensi-
tive based on programmer annotations to allow for crash
dumps that can be shipped to the application developer
without revealing users’ sensitive data.

Previous concern about sensitive data has addressed
keeping it off of persistent storage, e.g. Provos’s work
on encrypted swap [19] and work by Blaze on encrypted
file systems [3]. Steps such as these can greatly reduce
the impact of sensitive data that has leaked to persistent
storage.

The importance of keeping sensitive data off of stor-
age has been emphasized in work by Gutmann [9], who
showed the difficulty of removing all remnants of sensi-
tive data once written to disk.

Developers of cryptographic software have long been
aware of the need for measures to reduce the lifetime of
cryptographic keys and passwords in memory. Good dis-
cussions are given by Gutmann [10] and Viega [22].

10 Conclusion

The operating systems and applications responsible for
handling the vast majority of today’s sensitive data, such
as passwords, social security numbers, credit card num-
bers, and confidential documents, take little care to en-
sure this data is promptly removed from memory. The
result is increased vulnerability to disclosure during at-
tacks or due to accidents.

To address this issue, we argue that the strategy of se-
cure deallocation, zeroing data at deallocation or within



a short, predictable period afterward, should become a
standard part of most systems.

We demonstrated the speed and effectiveness of secure
deallocation in real systems by modifying all major allo-
cation systems of a Linux system, from compiler stack,
to malloc-controlled heap, to dynamic allocation in the
kernel, to support secure deallocation.

We described the data life cycle, a conceptual frame-
work for understanding data lifetime, and applied it to
analyzing the effectiveness of secure deallocation.

We further described techniques for measuring effec-
tiveness and performance overheads of this approach us-
ing whole-system simulation, application-level dynamic
instrumentation, and system and network benchmarks.

We showed that secure deallocation reduces typical
data lifetime to 1.35 times the minimum possible data
lifetime. In contrast, we showed that waiting for data
to be overwritten often produces data lifetime 10 to 100
times longer than the minimum, and that on normal desk-
top systems it is not unusual to find data from dead pro-
cesses that is days or weeks old.

We argue that these results provide a compelling case
for secure deallocation, demonstrating that it can provide
a measurable improvement in system security with neg-
ligible overhead, while requiring no programmer inter-
vention and supporting legacy applications.
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A Kernel Support for Secure Deallocation

This section describes strategies that we found useful
for reducing data lifetime in the Linux kernel. Some
improve the performance of secure allocation in cases
where we have additional semantic knowledge; the rest
work to reduce the lifetime of data that is long-lived from
the point of view of the kernel allocators, such as data
stored in circular queues. We believe that these strate-
gies will prove useful in other long-lived programs.



A.1 What Data is Sensitive?
Section 6.2 described kernel mechanisms for labeling
sensitive data. Once these mechanisms are available,
we need a policy to distinguish sensitive data from other
data. The policy for our prototype implementation was
based on a few rules of thumb. First, we considered all
user input, such as keyboard and mouse data, all network
traffic, and all user process data, to be sensitive.

However, we consider data or metadata read from or
written to a file system not sensitive, because its data life-
time is already extended indefinitely simply because it
has been written to disk [9]. (For simplicity of proto-
typing, we ignore the possibility of encrypted, network,
in-memory, or removable media file systems, as well as
temporary files.) Thus, because pages in shared file map-
pings (e.g. code, read-only data) are read from disk, they
are not considered sensitive even though they belong to
user processes. On the other hand, anonymous pages
(e.g. stack, heap) are not file system data and therefore
deemed sensitive.

We decided that the location of sensitive data is not
itself sensitive. Therefore, pointers in kernel data struc-
tures are never considered sensitive. Neither are page
tables, scheduling data, process ids, etc.

A.2 Allocator Optimizations
Section 6.2 described the division of kernel allocators
into pools and the use of a zeroing daemon to delay ze-
roing. However, the kernel can sometimes avoid doing
extra work, or clear polluted pages more quickly, by us-
ing advice about the intended use of the page provided
by the allocator’s caller:

• The caller may request a zeroed page. The allocator
returns a zeroed page, if one is available. Other-
wise, it zeroes and returns a polluted page, if avail-
able, rather than a not-zeroed page. This preference
reduces polluted pages at no extra cost (because a
page must be zeroed in any case).

• The caller may indicate that it will be clearing the
entire page itself, e.g. that the page will be used for
buffering disk data or receiving a copy of a copy-
on-write page. In this case the allocator returns a
polluted page if available, again reducing polluted
pages without extra cost. In this case the caller is
responsible for clearing the page; the allocator does
not zero it.

• If the caller has no special requirements, the allo-
cator prefers not-zeroed pages, then zeroed pages,
then polluted pages. If a polluted page is returned,
then it must be zeroed beforehand because the caller

may not overwrite the entire page in an punctual
fashion.

We applied changes similar to those made to the page
allocator to the slab allocator as well. Slabs do not have
a convenient place to store a per-block “polluted” bit, so
the slab allocator instead requires the caller to specify at
time of free whether the object is polluted.

A.3 Oversized Allocations Optimizations
Without secure deallocation, allocating or freeing a
buffer costs about the same amount of time regardless
of the buffer’s size. This encourages the common prac-
tice of allocating a large, fixed-size buffer for temporary
use, even if only a little space is usually needed. With se-
cure deallocation, on the other hand, the cost of freeing
a buffer increases linearly with the buffer’s size. There-
fore, a useful optimization is to clear only that part of a
buffer that was actually used.

We implemented such an optimization in the Linux
network stack. The stack uses the slab allocator to al-
locate packet data, so we could use the slab allocator’s
pollution mechanism to clear network packets. However,
the blocks allocated for packets are often much larger
than the actual packet content, e.g. packets are often less
than 100 bytes long, but many network drivers put each
packet into 2 KB buffer. We improved performance by
zeroing only packet data, not other unused bytes.

Filename buffers are another place that this class of
optimization would be useful. Kernel code often allo-
cates an entire 4 KB page to hold a filename, but usually
only a few bytes are used. We have not implemented this
optimization.

A.4 Lifetime Reduction in Circular
Queues

As already discussed in section 4.3, circular queues can
extend data lifetime of their events, if new events are not
added rapidly enough to replace those that have been re-
moved in a reasonable amount of time. We identified
several examples of such queues in the kernel, including
“flip buffers” and tty buffers used for keyboard and se-
rial port input, pseudoterminal buffers used by terminal
emulators, and the entropy batch processing queue used
by the Linux pseudo-random number generator. In each
case, we fixed the problem by clearing events held in the
queue at their time of removal.


