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Abstract Randomized load balancing greatly improves the sharing of re-
sources while being simple to implement. In one such model, jobs arrive ac-
cording to a rate-αN Poisson process, with α < 1, in a system of N rate-1
exponential server queues. In Vvedenskaya et al. [19], it was shown that when
each arriving job is assigned to the shortest of D, D ≥ 2, randomly chosen
queues, the equilibrium queue sizes decay doubly exponentially in the limit as
N → ∞. This is a substantial improvement over the case D = 1, where queue
sizes decay exponentially.

The reasoning in [19] does not easily generalize to jobs with nonexponential
service time distributions. A modularized program for treating randomized
load balancing problems with general service time distributions was introduced
in Bramson et al. [5]. The program relies on an ansatz that asserts that, for a
randomized load balancing scheme in equilibrium, any fixed number of queues
become independent of one another as N → ∞. This allows computation of
queue size distributions and other performance measures of interest.

In this article, we demonstrate the ansatz in several settings. We consider
the least loaded balancing problem, where an arriving job is assigned to the
queue with the smallest workload. We also consider the more difficult prob-
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lem, where an arriving job is assigned to the queue with the fewest jobs, and
demonstrate the ansatz when the service discipline is FIFO and the service
time distribution has a decreasing hazard rate. Last, we show the ansatz always
holds for a sufficiently small arrival rate, as long as the service distribution
has 2 moments.

Keywords Load balancing · join the shortest queue · join the least loaded
queue · asymptotic independence

1 Introduction

Randomized load balancing is a canonical method for efficiently sharing re-
sources among different jobs that is often simple to implement. For example, it
is commonly used in hash tables in data switches for looking up the addresses
of incoming packets at high speed; this application was first modeled and ana-
lyzed by Azar et al. [1]. In the dynamic version of randomized load balancing,
jobs arrive at a bank of N queues, with each arriving job being assigned to a
server so as to reduce the long-term backlog in the system. Dynamic random-
ized load balancing is often referred to as the supermarket model.

We are interested here in two load balancing policies for the supermarket
model. In each case, jobs arrive at the bank of N servers according to a rate-
αN Poisson process, with α < 1. The servers each employ the same service
discipline (such as FIFO) and the service times are IID with a given arbitrary
distribution F (·) having mean 1. As throughout this article, service at each
queue is assumed to be non-idling. The join the shortest queue policy SQ(D)
assigns each arrival to the shortest of D queues chosen independently and
uniformly at random, where the shortest queue means the queue with the
least number of jobs. When the arrival is instead assigned to the queue with
the smallest amount of remaining work, or workload, we refer to the policy
as join the least loaded queue and write LL(D). In both cases, the D queues
are chosen without replacement (from among the

(
N
D

)
possible sets). Ties are

assumed to be broken randomly, with the arriving job being assigned with
equal probability to each of the queues.

When the service times are exponentially distributed, it is not difficult to
show that the underlying Markov process is positive recurrent and a unique
equilibrium distribution exists. Vvedenskaya et al. [19] analyzed the equilib-
rium distribution under the SQ(D) policy, with replacement, and found that,
forD, D ≥ 2, as the number of queues N goes to infinity, the limiting probabil-

ity that the number of jobs in a given queue is at least k is α(Dk−1)/(D−1). This
is a substantial improvement over the case D = 1, where the corresponding
probability is αk.

The model with exponentially distributed service times was also studied by
Mitzenmacher [17]. Its path space evolution was studied by Graham [11] who
moreover showed that, starting from independent initial states, as N → ∞, the
queues of the limiting process evolve independently. Luczak and McDiarmid
[15] showed that the length of the longest queue scales as (log logN)/ logD+
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O(1). Certain generalizations have also been explored. Martin and Suhov [16]
studied the supermarket mall model where each node in a Jackson network
is replaced by M parallel servers, and a job joins the shortest of D randomly
chosen queues at the node to which it is directed. Luczak and McDiamid [14]
studied the maximum queue length of the original supermarket model when
the service speed scales linearly with the number of jobs in the queue.

Little theoretical work has been done on the supermarket model with non-
exponentially distributed service times. In this setting, the positive Harris
recurrence of the Markov process underlying the supermarket model is no
longer obvious. (Since the state space will typically be uncountabile, positive
Harris recurrence rather than positive recurrence is needed.) In particular, for
the SQ(D) policy, jobs might be assigned to short queues where the remaining
work is high, which can cause service inactivity after queues with many jobs,
but low remaining work, empty. If the system can be “tricked” too often in this
manner, it is conceivable that it is unstable although α < 1 and the service
time has mean 1. Moreover, for general service distributions, the evolution of
the supermarket model with the SQ(D) policy will be influenced by the service
discipline, which complicates analysis.

Foss and Chernova [10] demonstrated positive Harris recurrence for the
supermarket model, for given N , under the FIFO service discipline and general
service times. In particular, for givenN , a unique equilibrium distribution E(N)

exists. Bramson [4] extended this to general service disciplines and showed
uniform bounds, in N , on the tails of E(N) at each queue. (Both works pertain
to a more general setting for arrivals and the rule for selecting the D queues.)
Fluid limits are employed as the main tool in [10] and an appropriate Lyapunov
function is employed in [4].

For general service times, one wishes to analyze the limiting behavior of the
equilibria E(N), at a given queue, as N → ∞. In Bramson et al. [5], a modular-
ized program is developed for this purpose and relies on an ansatz that asserts
that, in equilibrium, any fixed number of queues become independent of one
another as N → ∞. This allows computation of queue size distributions and
other quantities of interest. Employing the ansatz, it is shown in Bramson et
al. [6] that the limiting equilibrium distribution will sometimes have a doubly
exponential tail, but that other behavior is also possible, depending on the
service discipline and the tail of the service distribution F (·).

In this article, we will demonstrate this independence ansatz under several
settings. We first do so for LL(N) policies; this requires no additional assump-
tions. We next consider SQ(N) policies, which we are only able to analyze
when the service discipline is FIFO and the service time distribution has a de-
creasing hazard rate (DHR). This includes heavy-tailed service distributions
and is shown in [6] to lead to interesting phenomena. Last, we show the ansatz
holds for a sufficiently small arrival rate, with no assumptions on the policy
for selecting a queue, as long as the service distribution has 2 moments. The
demonstration of the ansatz in the general setting, without any restrictions,
appears to be a difficult problem.
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This article is organized as follows. In Section 2, we state the ansatz pre-
cisely and then state the main results corresponding to the above cases, with
independence for the LL(N) policies being demonstrated in Theorem 2.1, inde-
pendence for the FIFO SQ(N) policy being demonstrated in Theorem 2.2, and
independence for small arrival rates being demonstrated in Theorem 2.3. The
first two proofs are based on a monotonicity argument that states the process
starting from the empty state is dominated by the process starting from any
other state. This is then employed to show uniform convergence as t→ ∞, in
N , to the corresponding equilibria, when observation of the state is restricted
to a fixed number of queues. The third proof employs branching-like reasoning
to construct a supermartingale, from which this uniform convergence in N
again follows.

In Section 3, we provide basic background on the properties of the state
space and Markov process that underly the different supermarket models. Sec-
tion 4 develops the monotonicity argument mentioned above and Section 5 ap-
plies it to demonstrate uniform convergence for the LL(D) and SQ(D) models.
In Section 6, uniform convergence is also demonstrated for general policies and
small enough arrival rates. Rather than monotonicity, a martingale argument
is applied there. Section 7 shows for all three models that, for large N , near
independence persists over small times when the queues are independent in
the initial state. In Section 8, the main results of Sections 5-7 are applied to
demonstrate Theorems 2.1-2.3.

2 Main results

We state the ansatz and the main results of the article, Theorems 2.1–2.3, and
briefly discuss their proofs. For this, we need to introduce some terminology.

Each result is stated in terms of the limit, as N → ∞, of Markov processes
X(N)(t), t ≥ 0, underlying supermarket models with N queues. Such a Markov
process is defined on an appropriate state space S(N) that is a product of state
spaces S(1) corresponding to each queue. In order to avoid technical details, we
postpone until Section 3 the construction of S(N) and X(N)(·). At this point,
we require only limited specifics, namely that a state x ∈ S(N) is given by
descriptors, including the number of jobs zn at each queue n, n = 1, . . . , N ;
the residual service times vn,i, n = 1, . . . , N and i = 1, . . . , zn, for each of the
jobs currently in the system; and the amount of service already received sn,i,
n = 1, . . . , N and i = 1, . . . , zn, by the jobs.

We denote by E(N,N ′) the projection of the equilibrium measure E(N) onto
the first N ′ queues. (SinceX(N)(t) is exchangeable whenX(N)(0) is, the choice
of queues will not matter.) We say that a service discipline for the supermarket
model is local if the amount of service, at a given queue n, that is assigned to
each of the jobs currently there, is a function only of the state of the process at
n (e.g., involving terms such as zn, vn,i, i = 1, . . . , zn, and sn,i, i = 1, . . . , zn).
This assumption on X(N)(·) will be needed to ensure the independence of
individual queues as N → ∞ in the ansatz.
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We need to describe the evolution of individual queues for the limiting
process, as N → ∞. For this, we construct a process XH(t), t ≥ 0, on S(1), as
follows. Let H denote a probability measure on S(1), which we refer to as the
environment of the process XH(·); we refer to XH(·) as the cavity process. We
define XH(·) so that potential arrivals arrive according to a rate–Dα Poisson
process. When such a potential arrival to the queue occurs at time t, XH(t−)
is compared with the states of D − 1 independent random variables with law
H; we refer to these D − 1 states at a potential arrival as the comparison
states. Choosing from among these D states, the job is assigned by following
the same policy as for the corresponding supermarket model. (For instance, if
the SQ(D) policy is employed, then the job is assigned to the state with the
fewest number of jobs.) If the job has chosen the state XH(t−) at the queue,
it then immediately joins the queue; otherwise, the job immediately leaves the
system. In either case, the independent D−1 states employed for this purpose
are immediately discarded. Jobs have the same service distribution and are
served according to the same local service discipline as for the corresponding
supermarket model. We note that when XH(t) has measure H (i.e., the same
measure as the comparison states), a potential arrival will choose the queue
with probability 1/D, and so arrivals to the queue occur at rate α. When the
environment is a function of t, in which case we write H(t), we refer to it as
the environment process; XH(·)(·) is then defined as above.

When a process XH(·), with environment H, is stationary with the equilib-
rium measure H (i.e., XH(t) has the distribution H for all t), we say that H is
an equilibrium environment. One can think of an equilibrium environment as
being the restriction of an equilibrium measure for the corresponding super-
market model, viewed at a single queue, when “the total number of queues N
is infinite”. When a process XH(·)(·), with environment process H(·), at every
time t has distribution H(t), we say that H(·) is an equilibrium environment
process.

We now state the ansatz. Here,
v→ on S(N ′) denotes convergence in total

variation with respect to an appropriate metric dN
′
(·, ·) on S(N ′). (The metrics

will be specified in Section 3.)

Ansatz Consider the supermarket model, with N queues, operating under the
SQ(D) or LL(D) policy for fixed D, and possessing a local service discipline
that is the same at all queues. Jobs are assumed to have an arbitrary service
time distribution F (·), with mean 1, and arrivals to the system are Poisson
and occur at rate α < 1. Then, (a) for each N ′,

E(N,N ′) v→ E(∞,N ′) as N → ∞, (2.1)

where E(∞,N ′) is the N ′-fold product of E(∞,1). Moreover, (b) E(∞,1) is the
unique equilibrium environment for this supermarket model.

We state the versions of the ansatz that we are able to demonstrate. The-
orem 2.1 states that the ansatz always holds for the least loaded policy. Since
the choice of service discipline has no effect on which queue an arriving job is
directed to, the robustness of this result is not surprising.
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Theorem 2.1 Suppose the assumptions of the ansatz are satisfied for the su-
permarket model operating under the LL(D) policy. Then the conclusions (a)
and (b) in the ansatz hold.

The ansatz is considerably more difficult to demonstrate for the supermar-
ket model satisfying the shortest queue policy, and most cases remain open.
The next result, Theorem 2.2, demonstrates the ansatz under the FIFO ser-
vice discipline, for a service distribution F (·) having decreasing hazard rate
h(·) (i.e., h(s) = F ′(s)/F̄ (s) is nonincreasing in s, where F̄ (s) = 1− F (s)).

Theorem 2.2 Suppose the assumptions of the ansatz are satisfied for the su-
permarket model operating under the SQ(D) policy. Suppose moreover that the
service discipline is FIFO and that F (·) has decreasing hazard rate. Then the
conclusions (a) and (b) in the ansatz hold.

The proofs of Theorems 2.1 and 2.2 employ similar arguments, which we
summarize briefly here. Each case utilizes a preordering among the states at
a given queue. Under such a preordering, if the states at all of the queues
for one initial state dominate those at another initial state, the processes can
be coupled so that this condition persists at all times. Since the empty state
is dominated by all other states, this implies the distribution of the process
starting from the empty state is increasing over time, and therefore converges
to an equilibrium distribution. By employing a suitable metric and the uniform
bounds from [4] on the equilibrium measures over all N , it will follow that this
convergence is uniform in N .

On the other hand, for large enough N , the process started from the empty
state will have nearly independent queues over a fixed time interval. By the
above uniform convergence of the process, for large enough N and appropriate
t, this process will be, at time t, both close to its equilibrium measure and have
nearly independent queues. Letting both N and t go to infinity, it will follow
that the sequence of equilibrium measures indexed byN converges to a product
measure that is the unique equilibrium environment specified in Part (b) of
the ansatz.

Theorem 2.3 implies that, for a sufficiently small arrival rate, the conclu-
sions of the ansatz hold irrespective of the service discipline as long as the
service distribution has 2 moments. Its proof does not require the SQ(D) or
LL(D) policy but only that, after the set of D queues is selected, an arriving
job be assigned to one of them according to a fixed rule involving only the
states at these D queues, and not depending on N , with the assignment being
made in an exchangeable manner (i.e., with the labelling of the queues playing
no role). We refer to a model with such a policy as a generalized supermarket
model.

Theorem 2.3 Suppose the assumptions of the ansatz are satisfied for the gen-
eralized supermarket model and that its service distribution F (·) has 2nd mo-
ment θ < ∞. For α ≤ 1/(2

√
D(D ∨ θ)), the conclusions (a) and (b) in the

ansatz hold.
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The proof of Theorem 2.3 compares the process corresponding to this model
to that for an M/G/1 queue, with Poisson arrival rate Dα, and with the same
service distribution. The latter process is used, together with a martingale
argument, to provide a lower bound on the rate at which the original process
converges to its equilibrium measure, which does not depend on N . Theorem
2.3 will follow from this uniform convergence and reasoning similar to that
employed for Theorems 2.1 and 2.2.

The method of proof that was employed in Theorems 2.1 and 2.2 unfortu-
nately does not apply to many important service disciplines, such as processor
sharing and preemptive LIFO. A major part of the difficulty is the absence of
a natural preordering between states that is preserved over time, in contrast
to the above cases.

3 Markov process background

In this section, we provide a more detailed description of the construction of
the Markov processes X(N)(·) that underly the different versions of the super-
market models we consider. Related material for queueing networks is given in
Bramson [3] and, for a general family of join the shortest queue networks, in
Bramson [4]. Because of the similarity of these settings, we present a summary
here and refer the reader to [4] for more detail.

The state space S(N) will be defined somewhat differently for the three
models, depending on how much information we wish to record. In the LL(D)
and generalized supermarket model settings, we define S(N) to be the set(

Z2 × R3
)∞

(3.1)

subject to the following constraints. Only a finite number of the 5-tuples of
coordinates are nonzero, with each 5-tuple corresponding to a particular job
in the system. The first coordinate n, n = 1, . . . , N , corresponds to the queue
of the job; the next coordinate i, i = 1, . . . , zn, where zn is the number of
jobs at the queue, gives its rank at the queue based on the time of arrival
there, with “older” jobs receiving a lower rank. The third coordinate ℓ, ℓ ≥ 0,
is the age of the job (and is used to determine the second coordinate); the
fourth coordinate v, v > 0, is the residual service time; and the last coordinate
r, r ∈ [0, 1], is the current rate of service for the job. Since the discipline is
assumed to be non-idling, the sum of the last coordinates for all jobs at a
given nonempty queue must equal 1. The 5–tuples are ordered in increasing
order in terms of first the first coordinate, and then the second coordinate (so
that distinct points in S(N) correspond to distinct states). The coordinates ℓ,
v and r can be labelled in terms of the first two coordinates (e.g., ℓn,i denotes
the age of the (n, i)th job). Depending on the service discipline, it may not
be necessary to record as much information regarding the state, in which case
various coordinates of S may be omitted; alternatively, coordinates can also
be added when relevant.
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For the SQ(D) model, less information is required because of the FIFO
service discipline. In this setting, we define S(N) to be the set

(
Z× R2

)N
. (3.2)

Here, the first coordinate zn, n = 1, . . . , N , corresponds to the number of
jobs at the nth queue; the second coordinate sn, sn ≥ 0, is the amount of time
the oldest job there has already been served; and the last coordinate v, v > 0,
is the residual service time. (When zn = 0, set the other two coordinates equal
to 0.) One typically omits the second coordinate; in our setting, it will be used
in conjunction with the decreasing hazard rate of the service distribution.

In the proof of Theorem 2.2 for the SQ(D) model, we will employ the

spaces S
(N)
r obtained by omitting some of the information from S(N). The

space given in (3.2) is replaced by S
(N)
r = (Z × R)N , where the coordinate

v corresponding to the residual service time is suppressed. In addition, the
coordinate s corresponding to the amount of time the oldest job has been
served is truncated at s∞, with jobs receiving more service being assigned
this value, where s∞ is the first value of s at which infs≥0 h(s) is attained.
(Recall that the hazard rate h(·) is decreasing.) Note that when the service
distribution is exponential, s∞ = 0.

These new spaces are needed, for the SQ(D) model, in order to use the
monotonicity relations between pairs of states that were mentioned in the
second section. After showing uniform convergence in N to the equilibria of

X(N)(·) on S(N)
r , it will not be difficult to show the desired uniform convergence

for the processes on S(N).

For given N ′ ≤ N , S(N ′) is the projection of S(N) obtained by restricting
nonzero 5-tuples and 3-tuples to the first N ′ queues. For x ∈ S(N) as in
(3.1), the projection x′ ∈ S(N ′) of x is the element obtained by omitting 5-
tuples with n > N ′; for x ∈ S(N) as in (3.2), x′ is obtained by omitting the
coordinates with n > N ′. One can also define projections of S(N) onto spaces
S(N ′) corresponding to other subsets of {1, . . . , N} analogously; we will not
use these in the article.

We construct metrics d(N)(·, ·), with d(N)(·, ·) = (1/N)
∑N

n=1 d
(N),n(·, ·),

and d
(N)
r (·, ·), with d

(N)
r (·, ·) = (1/N)

∑N
n=1 d

(N),n
r (·, ·), for the above spaces.

For the metric on S(N) specified by (3.1), and for given x1, x2 ∈ S(N), with
the coordinates labelled correspondingly, set

d(N),n(x1, x2) =|zn1 − zn2 |

+
∞∑
i=1

(
|ℓn,i1 − ℓn,i2 |+ |vn,i1 − vn,i2 |+ |rn,i1 − rn,i2 |

)
.

(3.3)

For the metric on S(N) specified by (3.2), set

d(N),n(x1, x2) = |zn1 − zn2 |+ |sn1 − sn2 |+ |vn1 − vn2 |. (3.4)
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For the metric on S
(N)
r obtained from S(N) in (3.2), set

d(N),n
r (x1, x2) = |(zn1 − 1)+ − (zn2 − 1)+|+ |rn1 − rn2 |, (3.5)

where

r = r(s) =

∫ ∞

0

(F̄ (s+ t)/F̄ (s)) dt (3.6)

is the expected residual service time of a job, given that it has received s units
of service, and (y)+ = y ∨ 0. (Note that r(s) is increasing in s when F (·) has
decreasing hazard rate.)

There is some flexibility in the choice of the metrics here; the above versions
will be convenient for our computations. We will employ r rather than s in
(3.5) using the monotonicity inherited from the DHR property of the service
distribution F (·), which is assumed in Theorem 2.2. One can check that

F̄ (t) = e−
∫ t
0
h(s) ds (3.7)

and hence

r(s) =

∫ ∞

0

(
e−

∫ s′
0

hs(s
′′) ds′′

)
ds′, (3.8)

where hs(s
′′)

def
= h(s′′ + s). Setting r∞ = sups r(s) and employing the mono-

tonicity of h(·), it is therefore not difficult to check that there is a 1 to 1 cor-
respondence between s ∈ [0, s∞] and r ∈ [1, r∞] for s∞ < ∞, and s ∈ [0,∞)
and r ∈ [1, r∞) for s∞ = ∞.

We also define a pseudometric on S(N), in (3.1), by setting

d(N),n
r (x1, x2) = |wn

1 − wn
2 |, (3.9)

where wn
i is the workload at queue n for the state xi.

One can check that the metrics d(N)(·, ·) and d(N)
r (·, ·), given in (3.3), (3.4)

and (3.5), are separable and locally compact; more detail is given on page 82

of [3]. We equip S(N) and S
(N)
r with the standard Borel σ-algebra inherited

from d(N)(·, ·) and d(N)
r (·, ·), which we denote by S (N) and S

(N)
r .

The Markov process X(N)(t), t ≥ 0, underlying a given model is defined
to be the right continuous process with left limits, taking values x in S(N) or

S
(N)
r , whose evolution is determined by the model together with the assigned

service discipline. We denote the random values of the coordinates ℓn,i, rn,i,
etc., taken by X(N)(t), by Ln,i(t), Rn,i(t), etc. For the models on S(N) as in
(3.1), jobs are allocated service according to rates Rn,i(t) that are assumed
to be constant in between arrivals and departures of jobs at the queues. Over
such an interval, Ln,i(t) increases at rate 1 and V n,i(t) decreases at rate 1.
Upon an arrival or departure, rates are re-assigned according to the disci-
pline. The standard service disciplines satisfy this property. (The restriction
that service rates remain constant between arrivals and departures of jobs is
for convenience, and allows one to inductively construct X(N)(·) over increas-
ing times in a simple way.) The evolutions of the Markov processes X(N)(·)
corresponding to S(N) as in (3.2) and to S

(N)
r are specified similarly.
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For each of the above processes X(N)(·), when an arrival in the system
occurs at time t, the set of D queues that is chosen will be referred to as the
selection set of the arrival. We will also say that a potential arrival occurs
then at each of these queues.

Along the lines of page 85 of [3], a filtration (F (N)
t ), t ∈ [0,∞], can be as-

signed to X(N)(·) so that X(N)(·) is a piecewise-deterministic Markov process,
and hence is Borel right. This implies that X(N)(·) is strong Markov. (We do
not otherwise use Borel right.) The reader is referred to Davis [8] for more
detail.

We note that, for the SQ(D) model, there is a natural map φ between

the sample paths X(N)(t), t ∈ [0,∞), for the state spaces S(N) and S
(N)
r ,

where φ(x(·)), for a sample path x(·) on S(N), is defined by omitting the v
coordinate for the residual service time. The map is bijective since the residual
service time, at a given queue and time, is the remaining time until the next
departure there, which is contained in the corresponding sample path x(·)
taking values in S

(N)
r (although the residual service time depends on the values

of the path at later times). The standard coupling on S
(N)
r , which we construct

in the next section, is Markov. Its analog for the SQ(D) model on S(N) is not
Markov, however. (This requires some thought.) On the other hand, for the
LL(D) model on S(N), the standard coupling there is Markov; moreover, the

corresponding map φ of sample paths from S(N) to S
(N)
r , obtained by retaining

only the workload at each queue, is not bijective. For these reasons, our main

computations for the SQ(D) model will be performed on S
(N)
r , but our main

estimates for the LL(D) model will be performed on S(N).
One can show that the SQ(D) supermarket model is Feller, although the

LL(D) and generalized supermarket models are not. (We will not need these
results.) Convergence in total variation rather than weak convergence is there-
fore the right medium in which to treat all three models. Convergence in total
variation, as in (2.1), means that

lim
N→∞

sup
A∈S (N′)

|E(N,N ′)(A)− E(∞,N ′)(A)| = 0.

For all of our models, we will in fact employ a somewhat stronger version of
convergence in total variation. Consider a sequence of probability measures
Mk, k = 1, 2, . . ., defined on the path space [0, T ]×S(N ′), for given T,N ′ > 0,
of right continuous paths with left limits, and corresponding Borel σ-algebra

B(N ′)
T . Then, Mk converges to M∞ in total variation, written Mk

v→ M∞, if

lim
k→∞

sup
A∈B(N′)

T

|Mk(A)−M∞(A)| = 0.

Except when stated otherwise, in the remainder of the article, X(N)(·)
will denote the Markov process underlying one of the three supermarket or
generalized supermarket models. When two or more processes, e.g., X(N)(·),
i = 1, 2, are employed together, they will correspond to the same model and
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parameters, differing only in the initial state. When confusion is unlikely, we
will sometimes drop the superscript N from quantities such as X(N)(·).

4 Monotonicity for the LL(D) and SQ(D) models

In this section, we introduce the standard coupling for the LL(D) supermarket
model and for the SQ(D) supermarket model that is FIFO with DHR. The
coupling for the LL(D) model is defined on S(N) and the coupling for the

SQ(D) model is defined on S
(N)
r ; in both cases, we will often drop the super-

script N for convenience. These couplings induce a monotonicity property for
each model that will imply convergence, when starting from the empty state,
to a limiting distribution that will also be an equilibrium. Estimates in Section
5 show this convergence is uniform in N in an appropriate sense, which will
be used in conjunction with Proposition 7.1 to demonstrate Theorems 2.1 and
2.2 in Section 8.

The standard coupling

The standard coupling for the LL(D) supermarket model on S is the pathwise
coupling between two copies X1(·) and X2(·) of the corresponding Markov
process that is defined as follows. For a random permutation πt = (πn

t ), n =
1, . . . , N , on t ≥ 0, each queue n of X1(·), at time t, is coupled with queue
πn
t of X2(·) so that these queues have the same potential arrivals, for each ω,

and so that the corresponding arrivals, which are assigned according to the
LL(D) policy in each case, have the same service times. Setting π0 equal to
the identity, the permutation πt is assumed to be constant in between arrivals,
where it is updated inductively. For a given queue n1, an arrival at time t may
occur at n1, for X1(·), but at n2 ̸= πn1

t−, for X2(·), due to different workloads
in the two systems. (Ties in the workload at queues in the selection set are
broken in the same way for each process.) When this occurs, one changes the
permutation at time t by setting

πn1
t = n2, π

n′
1

t = πn1
t−, πn

t = πn
t− for n ̸= n1, n

′
1,

where n′1 is defined by π
n′
1

t− = n2. That is, the queues in each system where the
arrival has just occurred are coupled together, as are the pair of queues previ-
ously coupled with them, with all other queues retaining the same coupling.
At arrivals where n2 = πn1

t−, the permutation remains the same. We denote by
X2,π(·) the process obtained from X2(·) by permuting its queues according to
π·, that is,

Xn
2,π(t) = X

πn
t

2 (t).

The standard coupling, on Sr, for the SQ(D) supermarket model that is
FIFO with DHR is defined so that both processes again share the same po-
tential arrival and service time processes. In this setting, π· is always defined
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to be the identity map, that is, the nth queue of X1(·) is always coupled with
the nth queue of X2(·), and hence X2,π(·) = X2(·). (This will be needed in
the proof of Lemma 4.1 when comparing Sn

1 (t) with Sn
2 (t).) In addition, the

service times of the oldest jobs at a given queue n are coupled so that, when
Sn
1 (t) ≤ Sn

2 (t), service for both processes is completed simultaneously at rate
h(Sn

2 (t)) and, independently of this, service for the first process only is also
completed at rate h(Sn

1 (t))−h(Sn
2 (t)). If service for the job in the first process

is completed before that in the second process, completion of service continues
at rate h(·) for the latter. This coupling relies on the DHR property. Note that,
if service commences at a new job for the first process when the corresponding
job for the second process is already being served, then completion of service
for the new job occurs at a faster rate than for the other job. (This relies again
on the DHR property.) Upon a potential arrival, ties in the length of queues
in the selection set are broken in the same way for each process, for a given ω.

Extensions of the standard coupling, from 2 to L copies of the processes
X1(·), . . . , XL(·), hold for both supermarket models by applying the same rea-
soning as above. In Section 5, the coupling, with L = 3, will be employed
in one place. The bijection φ(·), which was defined at the end of Section 3,
induces a coupling for the SQ(D) supermarket model on S from the standard
coupling on Sr. We will first employ it in Section 5, where we will employ the
notation π· as well.

For both the LL(D) and SQ(D) models, we define a preorder between
pairs of states x1, x2 in S or Sr. For the LL(D) model, we say that xn1 ≤ xn2
if wn

1 ≤ wn
2 , with x1 ≤ x2 if wn

1 ≤ wn
2 for all n = 1, . . . , N . For the SQ(D)

model, we require instead that zn1 ≤ zn2 and sn1 ≤ sn2 ; the last condition is
equivalent to rn1 ≤ rn2 . (For the LL(D) model, x1 ≤ x2 and x2 ≤ x1 together
need not imply x1 = x2, and so “≤” is not a partial order whereas, for the
SQ(D) model, “≤” is a partial order.) Note that the state x1 = 0, where each
queue is empty, satisfies x1 ≤ x2 for any other state x2. The following lemma
states that, if the preorder holds initially, then it persists for all time under
the standard coupling.

Lemma 4.1 For either the LL(D) supermarket model on S, or the SQ(D)
model on Sr that is FIFO with DHR, assume that the underlying Markov pro-
cesses X1(·) and X2(·) satisfy X1(0) ≤ X2(0) and are coupled by the standard
coupling π·. Then, for each ω,

X1(t) ≤ X2,π(t) for all t. (4.1)

Proof We apply the standard coupling to each model and argue by contradic-
tion, setting T = inf{t : X1(t) � X2,π(t)} in each case. We first consider the
LL(D) supermarket model.

It is easy to see that T < ∞ cannot occur with X1(T ) ≤ X2,π(T ). If it
does, then, for small enough ϵ > 0 (depending on ω), there are no arrivals
or departures in the system over (T, T + ϵ]. Since Wn

1 (t) ≤ Wn
2,π(t) holds at

t = T , the inequality continues to hold for t ∈ (T, T + ϵ].
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Suppose now that X1(T ) � X2,π(T ). The inequality Wn
1 (t) ≤Wn

2,π(t) will
continue to hold at t = T for all n, except possibly at pairs where there is an
arrival for one of Xn

1 (·) and Xn
2,π(·), but not for both. On the other hand, if

such an arrival occurs at time t at n1 for X1(·) and at n2 ̸= n1 for X2,π(·),
then

Wn1
1 (t−) ≤Wn1

2,π(t−), Wn2
1 (t−) ≤Wn2

2,π(t−),

Wn1
1 (t−) ≤Wn2

1 (t−), Wn1
2,π(t−) ≥Wn2

2,π(t−),

and so

Wn1
1 (t−) ≤Wn2

2,π(t−), Wn2
1 (t−) ≤Wn1

2,π(t−).

Denoting by A the service time of the arrival at n1 and n2, it follows that

Wn1
1 (t) =Wn1

1 (t−) +A ≤Wn2
2,π(t−) +A =Wn1

2,π(t),

Wn2
1 (t) =Wn2

1 (t−) ≤Wn1
2,π(t−) =Wn2

2,π(t).

Consequently, W1(t) ≤W2,π(t), which again contradicts T <∞.
The argument for the SQ(D) supermarket model is the same whenX1(T ) ≤

X2(T ), but with Z
n
i (·) and Rn

i (·) replacingWn
i (·). Suppose now that X1(T ) �

X2(T ), and hence Xn
1 (T ) � Xn

2 (T ) for some n. Because of the DHR property
and the standard coupling, a departure at n for X2(·), at time T , can only
occur when a departure occurs there for X1(·), which would contradict the
above inequality. On the other hand, if an arrival at n occurs for X1(·) at time
T , but at some n′ ̸= n for X2(·), then

either Zn
1 (T−) < Zn′

1 (T−) or Zn
2 (T−) > Zn′

2 (T−),

because of the coupling. Since Zn′

1 (T−) ≤ Zn′

2 (T−), it follows that Zn
1 (T−) ≤

Zn
2 (T−) − 1, and hence Zn

1 (T ) ≤ Zn
2 (T ). Since S

n
1 (t) ≤ Sn

2 (t), and hence
Rn

1 (t) ≤ Rn
2 (t), continues to hold at time T , this implies Xn

1 (T ) ≤ Xn
2 (T ),

which again produces a contradiction. Consequently T < ∞ cannot occur for
the SQ(D) model as well.

We will say that two probability measures E1 and E2, on S or Sr, satisfy

E1
P
≤ E2 if, for some coupling of random variables X1 and X2 with these mea-

sures, X1(ω) ≤ X2(ω) for all ω. Let Ei(t), t ≥ 0, i = 1, 2, denote two families of
measures belonging to processes Xi(t) underlying either the LL(D) or SQ(D)
supermarket model. When restated in terms of these measures, Lemma 4.1
implies the following.

Lemma 4.2 For either the LL(D) supermarket model or the SQ(D) model
that is FIFO with DHR, define Ei(t), t ≥ 0, i = 1, 2, as above. Assume that
Ei(0) are each exchangeable with respect to n = 1, . . . , N . Then E2(t) = E2,π(t)

for all t. Moreover, if E1(0)
P
≤ E2(0), then

E1(t)
P
≤ E2(t) for all t. (4.2)
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Proof One can choose X1(0) and X2(0) with measures E1(0) and E2(0) so
that X1(0) ≤ X2(0). Since Ei(0) are each exchangeable, one can choose such
Xi(0) so that the pair (X1(0), X2(0)) is also exchangeable. Hence, under the
standard coupling, (X1(t), X2,π(t)) is exchangeable for each t.

Moreover, for given t, there is exactly one exchangeable measure for which
the distribution on the set of empirical measures, obtained from its coordinates
n = 1, . . . , N , is equal to the distribution on the set of empirical measures
obtained from X2,π(t). Since X2(t) and X2,π(t) are each exchangeable, with
the same distribution on the set of empirical measures, they are themselves
equal in distribution and hence E2(t) = E2,π(t).

On the other hand, by Lemma 4.1,

X1(t) ≤ X2,π(t) for all t.

It follows from this and the previous paragraph that E1(t)
P
≤ E2(t) for all t, as

desired.

The empty measure E0 = 0 and the equilibrium measure Em = E(N)
m , for

α < 1, of an LL(D) or SQ(D) supermarket model, are exchangeable. Applying
Lemma 4.2 to E1(0) = E0 and E2(0) = E1(t2 − t1) first and then to E1(0) = E0
and E2(0) = Em, we obtain the following results.

Lemma 4.3 For either the LL(D) supermarket model on S, or the SQ(D)
model on Sr that is FIFO with DHR, assume that the underlying Markov
process X(·) satisfies X(0) = 0 Then, for each t1, t2, with t1 ≤ t2, the corre-
sponding measures E(t) satisfy

E(t1)
P
≤ E(t2). (4.3)

If α < 1 and Em is the equilibrium measure, then

E(t)
P
≤ Em for all t. (4.4)

Set E(0) = 0. On account of (4.3) and (4.4) of Lemma 4.3, it will follow
that

E(t) → E(N)
m as t→ ∞, (4.5)

for “→” defined appropriately. In order to demonstrate Theorem 2.1 and The-
orem 2.2, we will in fact need to show that convergence is uniform on N , which
will be used to interchange the t and N limits in Section 8. For this, we will
need the uniform bounds that are given in the following subsection.
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Uniform bounds on E(N)
m

For both the LL(D) and SQ(D) supermarket models, we need uniform bounds

on the right tails of the corresponding equilibria E(N)
m that do not depend on

N ; these bounds rely on results from [4]. For x ∈ S(N), we set ∥x∥n = wn, n =

1, . . . , N , for the LL(D) model and, for x ∈ S
(N)
r , we set ∥x∥n = (zn−1)++rn,

n = 1, . . . , N , for the SQ(D) model.

Proposition 4.1 Fix α, F (·) and D, with α < 1 and F (·) having mean 1.
For both the LL(D) and SQ(D) supermarket models,

sup
N

sup
n≤N

{E(N)
m (∥X∥n > M)} → 0 as M → ∞. (4.6)

Proof (Sketch of proof) We note that, since the equilibria E(N)
m are exchange-

able in n for both models, the rate of convergence of the probabilities in (4.6)
does not depend on n.

We first consider the proposition for the SQ(D) model. The limit (4.6)
will follow from the analogous limits for Zn and Rn in place of ∥X∥n. Since
r = r(s), the limit for Rn follows from that for Sn, which is the amount of
service already received by the job. This is bounded above by the total service
requirement of the job. Therefore, by comparison with the renewal process
with distribution F (·), it is not difficult to see that

sup
N

E(N)
r (Sn > M) ≤

∫ ∞

M

F̄ (t) dt ≤ 1. (4.7)

(The first inequality is in fact strict since a queue may be empty.) This implies
the desired limit for Sn and hence for Rn.

The limit for Zn is considerably more difficult, but follows from Corollary
1.2 of Theorem 1.3 in [4], with a little work. The spaces in the corollary contain

all the information in S(N), and hence in S
(N)
r , after appending to the states

the amount of time each job has already been served. We refer here to these

enriched spaces by S
(N)
e . As observed below (5.35) in [4], the conclusion (1.24)

in the corollary continues to hold on S
(N)
e for service disciplines including

FIFO. This implies in particular that the equilibria E(N)
e on S

(N)
e , for the

SQ(D) supermarket model, satisfy

sup
N

E(N)
e (Zn > M) → 0 as M → ∞. (4.8)

Projecting S
(N)
e by removing all information, except for the number of jobs

at each queue and the amount of time the oldest job there has already been

served, produces S
(N)
r . Since the evolution of the process depends only on the

number of jobs at each queue, the desired bound on Zn follows immediately
from (4.8).
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In order to show (4.6) for the LL(D) model, we need to show that, for given
n,

sup
N

{E(N)(Wn > M)} → 0 as M → ∞. (4.9)

The spaces in Corollary 1.2 of [4] already contain the information in S(N),
and so one does not need to enrich these spaces in the LL(D) setting. There
is less work needed here than that for Zn above, since the uniform stability of
the LL(D) model is considerably easier to analyze. By employing the norm in
(5.36)–(5.37) of [4], one can show (4.9).

5 Uniform convergence for the LL(D) and SQ(D) models

In order to demonstrate Theorems 2.1 and 2.2, we will need to demonstrate a
variant of (4.5) that is uniform in N . Our first main result for this is Proposi-
tion 5.1; the first part of the section is devoted to its proof. We then employ
Proposition 5.1 to show a stronger pathwise result, Proposition 5.2, on the
original spaces S(N) for both supermarket models; this is done in the second
part of the section. Proposition 5.2 will be used in conjunction with Section
7 to demonstrate Theorems 2.1 and 2.2 in Section 8. In the remainder of the
section, we use S

(N)
m to denote the spaces S(N) for the LL(D) model and S

(N)
r

for the SQ(D) model, with E(N)
m denoting the corresponding equilibria.

Proposition 5.1 states that, for large enough q0 not depending on N , each
system that is started at the empty state will be close to its equilibrium at
each time in t ≥ q0. For both the LL(D) and SQ(D) models, this is shown with

respect to d
(N)
r (·, ·), which, we recall, is only a pseudometric in the former case.

For a given supermarket model on S
(N)
m , with α < 1, we denote by X(N)(·)

the process started from the empty state and by X
(N)
E (·) the process started

from its equilibrium E(N)
m . We couple these processes by the standard coupling.

On account of Lemma 4.1, X(N)(t) ≤ X
(N)
E,π (t) for all t and ω. Recall that, in

the SQ(D) setting, π· is always the identity map.

Proposition 5.1 Consider, on S
(N)
m , either the LL(D) supermarket model, or

the SQ(D) supermarket model that is FIFO with DHR. Assume the processes

X(N)(·) and X
(N)
E (·) are defined as above, with α < 1 fixed. Then, for each

γ > 0, there exists q0 = q0(γ) not depending on N such that, for all t ≥ q0,

P
(
d(N),n
r (X(N)(t), X

(N)
E,π (t)) ≥ γ

)
≤ γ (5.1)

for all n = 1, . . . , N .

Proposition 5.2 is the analog of Proposition 5.1, but on the original spaces
S(N) for both supermarket models. It makes the stronger assertion, for given
T and large enough q1 not depending on N , that, for each q ≥ q1 and n,

X(N),n(t) = X
(N),n
E,πq

(t) simultaneously for t ∈ [q, q + T ], off of a negligible
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set of ω; here, X
(N),n
E,πq

(t)
def
= X

(N),πn
q

E (t), i.e., the permutation of queues for

X
(N)
E (·) is constant over [q, q + T ]. ((5.3) also holds with X

(N),n
E,π (t) in place

of X
(N),n
E,πq

(t), but we will find the present formulation more convenient.) For

the LL(D) supermarket model, we will employ the additional condition that,
for given N and appropriate ϵ > 0, the workload W of the equilibrium E(N)

satisfies

E(N)(Wni ∈ [c1, c2], i = 1, 2) ≤
(
E(N)(Wn1 ∈ [c1 − ϵ, c2 + ϵ])

)2

+ ϵ (5.2)

for each n1 ̸= n2 and 0 ≤ c1 ≤ c2. We will show in Proposition 7.3 that, for
given ϵ > 0, (5.2) is satisfied for large enough N .

Proposition 5.2 Consider, on S(N), either the LL(D) supermarket model, or
the SQ(D) supermarket model that is FIFO with DHR. Assume the processes

X(N)(·) and X(N)
E (·) are defined as above. (a) Then, for the SQ(D) model, for

each γ1 > 0 and T > 0, there exists q1 = q1(γ1) not depending on N such that,
for each q ≥ q1,

P
(
X(N),n(t) ̸= X

(N),n
E,πq

(t) for some t ∈ [q, q + T ]
)
≤ γ1, (5.3)

for all n = 1, . . . , N . (b) Assume that, for each N , (5.2) is satisfied for the
LL(D) model, with ϵ = ϵ(N) → 0 as N → ∞. Then, for each γ1 > 0 and
T > 0, there exists q1 = q1(γ1) not depending on N such that (5.3) holds for
large enough N , q ≥ q1 and all n = 1, . . . , N .

Demonstration of Proposition 5.1

We first introduce some notation. For two processes X
(N)
1 (·) and X(N)

2 (·) un-
derlying the same supermarket model, we set

ψ(N),n(t) = d(N),n
r

(
X

(N),n
1 (t), X

(N),n
2,π (t)

)
(5.4)

and ψ(N)(t) = (1/N)
∑N

n=1 ψ
(N),n(t).

In the proof of Proposition 5.1, we will employ “truncated” variants d
(N)
r,L (·, ·)

of the metric d
(N)
r (·, ·): for L ≥ 1, we set d

(N)
r,L (x1, x2) =

1
N

∑N
n=1 d

(N),n
r,L (x1, x2),

with
d
(N),n
r,L (x1, x2) = |(wn

1 ∧ L)− (wn
2 ∧ L)|

for the LL(D) supermarket model, and

d
(N),n
r,L (x1, x2) = |[(z̃n1 + rn1 ) ∧ L]− [(z̃n2 + rn2 ) ∧ L]|,

with z̃ni
def
= (zni − 1)+, for the SQ(D) supermarket model. We will need this

truncation because E[X
(N),n
E (0)] may be infinite. We set

ψ
(N),n
L (t) = d

(N),n
r,L

(
X

(N),n
1 (t), X

(N),n
2,π (t)

)
(5.5)
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and ψ
(N)
L (t) = (1/N)

∑N
n=1 ψ

(N),n
L (t). We also set ∥x∥nL = ∥x∥n ∧ L for both

the LL(D) and SQ(D) models. When x
(N)
1 ≤ x

(N)
2 , one has

d
(N),n
r,L (x

(N)
1 , x

(N)
2 ) = ∥x(N)

2 ∥nL − ∥x(N)
1 ∥nL,

which is the only setting in which we will employ these truncations.

The following lemma gives lower bounds on the rate of decrease ofE[ψ
(N)
L (t)]

as t increases. In the remainder of the subsection, we will assume that the
LL(D) supermarket model is defined on S(N) and the SQ(D) supermarket

model is defined on S
(N)
r .

Lemma 5.1 Suppose that processes X
(N)
1 (·) and X(N)

2 (·) underlying the LL(D)

or SQ(D) supermarket model that is FIFO with DHR satisfy X
(N)
1 (0) ≤ X

(N)
2 (0),

and are coupled by the standard coupling. Then, for given 0 < a ≤ b and L > 0,

E[ψ
(N)
L (b)]− E[ψ

(N)
L (a)]

≤ − 1

N

N∑
n=1

∫ b

a

{P (W (N),n
1 (t) = 0,W

(N),n
2,π (t) > 0)

− P (∥X(N)
2 (t)∥n ≥ L)} dt

(5.6)

for the LL(D) model, and

E[ψ
(N)
L (b)]− E[ψ

(N)
L (a)]

≤ − 1

N

N∑
n=1

∫ b

a

{P (Z(N),n
1 (t) = 0, Z

(N),n
2 (t) > 0)

− 2P (∥X(N)
2 (t)∥n ≥ L− 1)} dt

(5.7)

for the SQ(D) model.

Proof In order to obtain (5.6) and (5.7), it suffices to show that, after multi-

plying by N , the infinitesimal generator of the pair (X
(N)
1 (·), X(N)

2,π (·)), applied
to ψ

(N)
L (·), is at most the quantities in the integrands in (5.6) and (5.7) for each

coordinate n, and then to apply Dynkin’s formula. (See, e.g., Dynkin [9], page
133. The formula can be obtained here by applying the bounded convergence

theorem to
∫ b

a
1
h (E[ψ

(N)
L (t+ h)− ψ

(N)
L (t)]) dt as h ↘ 0.) When showing (5.6)

and (5.7), we avoid the explict formulas that are needed for a detailed proof.

To see (5.6), note that, since X
(N)
1 (·) ≤ X

(N)
2,π (·), ψ(N)

L (·) never increases

due to arrivals. Moreover, at each time t, for each n at whichW
(N),n
1 (t) = 0 and

W
(N),n
2,π (t) ∈ (0, L), ψ

(N)
L (·) decreases at rate 1/N due to the service performed

there whereas, when W
(N),n
2,π (t) ≥ L, ψ

(N)
L (·) can increase at rate at most 1/N

due to the decrease of W
(N),n
1 (·). Applying Dynkin’s formula over [a, b], one

obtains the bound in (5.6) for E[ψ
(N)
L (b)]− E[ψ

(N)
L (a)].



Randomized Load Balancing 19

To see (5.7), first note that ψ
(N)
L (·) does not increase due to a pair of

arrivals at the same queue n for the two processes. (Since r(0) = 1, ∥X(N)
i ∥n(·)

increases by 1 upon an arrival, whether or not the queue was empty.) But, if
a pair of arrivals occurs at different queues at time t, then

ψ
(N)
L (t)− ψ

(N)
L (t−) ∈ [0, 1/N ]

is possible when ∥X(N)
1 (t−)∥n ≥ L − 1, where n is the queue at which the

arrival occurs for the first process. On the other hand, for each n at which

Z
(N),n
1 (t) = 0 and ∥X(N)

2 (t)∥n ∈ (0, L), ψ
(N)
L (·) decreases at rate 1/N due

to the service performed there whereas, when ∥X(N)
2 (t)∥n ≥ L, ψ

(N)
L (·) can

increase at rate at most 1/N due to the decrease of ∥X(N)
1 (·)∥n. (Recall again

that r(0) = 1, and so the start of service of a job upon a departure at the

queue does not change ψ
(N)
L (·).) Again applying Dynkin’s formula and noting

that X
(N)
1 (·) ≤ X

(N)
2 (·), one obtains (5.7).

In Proposition 5.3, we will obtain lower bounds on the integrals of the

probabilities involving W
(N),n
· and Z

(N),n
· on the right side of (5.6) and (5.7)

that do not depend on N . For this, we will employ the following lemma, which
applies to distribution functions F (·) with decreasing hazard rate. (Recall that
r = r(s) is given by (3.6).)

Lemma 5.2 Suppose that, for given F (·) with decreasing hazard rate, r1, r2
satisfy r2 − r1 ≥ δ, for given δ > 0. Then there exist M0 and ϵ ∈ (0, 1),
depending on only F (·) and δ, such that, for some M ≤M0,

F̄ (s2 +M)

F̄ (s2)
≥ F̄ (s1 +M)

F̄ (s1)
+ ϵ. (5.8)

Proof Choose s′2 such that r′2 − r1 = δ/2. Since r2 − r1 ≥ δ, this implies
r∞− r′2 ≥ δ/2. Then s′2 ≤ s3, for some s3 depending only on F (·) and δ. Since
F (·) has DHR, by (3.7), F̄ (s′2+M)/F̄ (s′2) is increasing in s′2, and so it suffices
to demonstrate (5.8) with s′2 substituted for s2.

One has ∫ ∞

0

[
F̄ (s′2 + t)

F̄ (s′2)
− F̄ (s1 + t)

F̄ (s1)

]
dt = r′2 − r1 =

δ

2
. (5.9)

Choose M0 large enough, but depending only on s3, so that∫ ∞

M0

F̄ (s′2 + t)

F̄ (s′2)
dt ≤ δ/4; (5.10)

applying (3.7). one can check that this is possible.
Applying (5.9) and (5.10), one has∫ M0

0

[
F̄ (s′2 + t)

F̄ (s′2)
− F̄ (s1 + t)

F̄ (s1)

]
dt ≥ δ

4
.



20 Maury Bramson et al.

Consequently,

F̄ (s′2 +M)

F̄ (s′2)
≥ F̄ (s1 +M)

F̄ (s1)
+

δ

4M0

for some M ∈ [0,M0]. The lemma follows upon setting ϵ = δ/(4M0).

Proposition 5.3 obtains bounds that will be applied to the right side of (5.6)

and (5.7). The proposition states that for initial states X
(N)
i (0), i = 1, 2, that

are not too close, with the smaller state X
(N)
1 (0) not being too large, there

is a uniform lower bound on the time over which the corresponding process

X
(N)
1 (·) is in the 0 state, but X

(N)
2 (·) is not.

Proposition 5.3 Consider either the LL(D) supermarket model, or the SQ(D)
supermarket model that is FIFO with DHR, with α ≤ 1. Suppose a pair of un-

derlying processes X
(N)
i (·), i = 1, 2, are coupled by the standard coupling and

satisfy X
(N),n
1 (0) ≤ X

(N),n
2 (0), with ∥X(N)

1 (0)∥nr ≤ M1 for given n and M1,
and ψ(N),n(0) ≥ δ for given δ > 0. Then, for large enough M2 and ϵ1 > 0
depending only on F (·), M1 and δ,∫ M2

0

P
(
W

(N),n
1 (t) = 0,W

(N),n
2,π (t) > 0

)
dt ≥ ϵ1 (5.11)

for the LL(D) model and, for the SQ(D) model,∫ M2

0

P
(
Z

(N),n
1 (t) = 0, Z

(N),n
2 (t) > 0

)
dt ≥ ϵ1. (5.12)

Proof It is not difficult to show (5.11) by settingM2 =M1+δ, and considering
the event on which no potential arrivals occur at n over [0,M2]. On this event,

W
(N),n
1 (t) = 0 but W

(N),n
2,π (t) = W

(N),n
2 (t) > 0 on [M1,M2). Since the proba-

bility of the event occurring is exp{−αDM2} ≥ exp{−DM2}, this implies the
inequality with ϵ1 = δ exp{−DM2}.

In order to show (5.12), we consider the cases where (A) Z
(N),n
1 (0) ≤

Z
(N),n
2 (0)−1 and where (B) Z

(N),n
1 (0) = Z

(N),n
2 (0) andR

(N),n
1 (0) ≤ R

(N),n
2 (0)−

δ separately.

We consider the case (A) first. Setting M2 = 4M1, we consider the event
A1 over which (1) no potential arrivals occur at n over [0,M2], (2) all of the
original jobs at n for the first system have departed by time M2/2 and (3)
at least one of the original jobs at n for the second system remains there
at time M2. The events in (1) and (2) are independent, with the first event
occurring with probability at least exp{−DM2}. The second event occurs with

probability at least 1/2 since 1
2 (M2/2) ≥ ∥X(N)

1 (0)∥n, which is the expected
service time for the original jobs there. The third event includes the event that
the last original job at n for the second system requires service at least M2,
which is independent of the events in (1) and (2) and occurs with probability
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at least exp{−M2}, since h(0) = 1. Consequently, under (A), (5.12) follows
with

ϵ1 = 2M1e
−4DM1 · 1

2
· e−4M1 =M1e

−4M1(D+1).

We now consider the case (B). We note that R
(N),n
i (0), i = 1, 2, satisfy

the assumptions of Lemma 5.2 with the same δ as in the lemma. Choosing
δ, ϵ and M0 as in the lemma, it follows that, with probability at least ϵ and
at some time M ≤ M0, the oldest original job of the first system has already
been served but the oldest of the second system has not. Also, by time M0,
the probability of there being no arrivals at n in either system is at least
exp{−DM0}.

Let T denote the time at which the oldest original job of the first system
is served, and let A2 denote the event where the oldest original job of the
second system is not served at T , with T ≤ M0, and where, by time M0,
no arrivals at n have occurred. It follows from the previous paragraph that
P (A2) ≥ ϵ exp{−DM0} and that, on A2,

Z
(N),n
1 (T ) < Z

(N),n
2 (T ).

Hence, X
(N),n
1 (T ) < X

(N),n
2 (T ), with

∥X(N)
1 (T )∥nr ≤

(
∥X(N)

1 (0)∥nr ∧ ∥X(N)
2 (T )∥nr

)
− 1.

Consequently, on A2, the assumptions of the proposition are satisfied at time
T , with the data falling under case (A). Application of the bounds obtained
in that case then imply that, under (B), (5.12) follows, with M2 =M0 + 4M1

and

ϵ1 = ϵe−DM0M1e
−4M1(D+1) ≤ ϵM1e

−4(M0∨M1)(2D+1).

Since (5.12) also holds in case (A) for these new choices of M2 and ϵ1, we can
employ them there as well. This demonstrates (5.12) and hence the proposi-
tion.

For M, ϵ, u > 0, set

LX(N)

M,ϵ,u = inf

{
L :

1

N

N∑
n=1

∫ M+u

u

P (∥X(N)(t)∥n ≥ L− 1) dt ≤ ϵ

}
,

where X(N)(·) is the underlying Markov process of a given supermarket model.
The following proposition is a quick consequence of Lemma 5.1 and Proposition
5.3, with ϵ2 = ϵ1/2. It will also be used to demonstrate Proposition 5.2 as well
as Proposition 8.5.

Proposition 5.4 Consider either the LL(D) supermarket model or the SQ(D)
supermarket model that is FIFO with DHR, with α ≤ 1. Suppose a pair of

underlying processes X
(N)
i (·), i = 1, 2, satisfy X

(N)
1 (0) ≤ X

(N)
2 (0) and are
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coupled by the standard coupling. Then, for each δ > 0 and M1, there exists

ϵ2 > 0 such that, for large enough M2, any u ≥ 0 and L ≥ supN L
X

(N)
2

M2,ϵ2,u
,

E[ψ
(N)
L (u+M2)]− E[ψ

(N)
L (u)]

≤ − ϵ2
N

N∑
n=1

P
(
ψ(N),n(u) ≥ δ, ∥X(N)

1 (u)∥n ≤M1

)
.

(5.13)

Proposition 5.4 implies that when X
(N)
1 (u) and X

(N)
2 (u) are not too close

together in the d
(N)
r (·, ·) metric/pseudometric and X

(N)
1 (u) is not too large,

the distance between the processes in the d
(N)
r,L (·, ·) metric/pseudometric must

decrease at least at a specified rate. Proposition 5.1 will follow from this and
Proposition 4.1.

Proof (Proof of Proposition 5.1) The proofs for the LL(D) and the SQ(D)
supermarket models are the same. We first claim that, in place of (5.1), it
suffices to show, for given γ > 0 and T > 0, there exists q0 not depending on
N such that, for some u(N) ≤ q0,

P
(
d(N),n
r (X(N)(u(N)), X

(N)
E,π (u(N))) ≥ γ

)
≤ γ (5.14)

for all n = 1, . . . , N , where π
(N)
· is the permutation for the standard coupling.

This is equivalent to

P
(
d(N),n
r (X

(N)
ϕ (u(N)), X

(N)
E (u(N))) ≥ γ

)
≤ γ (5.15)

for all n = 1, . . . , N , where ϕ
(N)
· = (π

(N)
· )−1. (It is more convenient to com-

pare X
(N),n
ϕ (u(N)) and X

(N),n
E (u(N)) here, rather than directly comparing

X(N),n(u(N)) and X
(N),n
E,π (u(N)).)

To show (5.15) suffices, let ũ(N) = q − u(N), for given q ≥ q0. It follows

from Lemma 4.1 that X(N)(ũ(N)) ≤ X
(N)
E,π (ũ(N))) or, equivalently,

X
(N)
ϕ (ũ(N)) ≤ X

(N)
E (ũ(N)). (5.16)

Set X
(N)
1 (0) = 0, X

(N)
2 (0) = X

(N)
ϕ (ũ(N)) and X

(N)
3 (0) = X

(N)
E (ũ(N)), and

denote by X
(N)
1 (·), X(N)

2 (·) and X
(N)
3 (·) the corresponding processes that

evolve according to the same shifted environment starting at time ũ(N). Since

X
(N)
1 (0) ≤ X

(N)
2 (0) ≤ X

(N)
3 (0) because of (5.16), it follows from Lemma 4.1

that

X
(N)
1,ϕ1

(u(N)) ≤ X
(N)
2,ϕ2

(u(N)) ≤ X
(N)
3 (u(N)), (5.17)

where ϕ1 and ϕ2 are the inverses of the permutations π1 and π2 corresponding

to the joint standard couplings of X
(N)
1 (·), X(N)

2 (·) and X(N)
3 (·).
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Applying (5.17) to (5.15), with X(N)(·) = X
(N)
1 (·), X(N)

E (·) = X
(N)
3 (·) and

ϕ = ϕ1, it follows that

P
(
d(N),n
r (X

(N)
2,ϕ2

(u(N)), X
(N)
3 (u(N))) ≥ γ

)
≤ P

(
d(N),n
r (X

(N)
1,ϕ1

(u(N)), X
(N)
3 (u(N))) ≥ γ

)
≤ γ

for all n = 1, . . . , N . Since X
(N)
2,ϕ2

(u(N)) = X
(N)
ϕ (q) and X

(N)
3 (u(N)) = X

(N)
E (q),

where X(N)(·) and X
(N)
E (·) are defined on the original environment, this im-

plies (5.1).

In order to show (5.14), we now let X
(N)
1 (·) denote the process starting

from the empty state and X
(N)
2 (·) the process starting from the equilibrium

state E(N)
m . It follows from (4.4) of Lemma 4.3 and Proposition 4.1 that, for

given γ > 0,

1

N

N∑
n=1

P
(
∥X(N)

1 (u)∥n > M1

)
≤ γ

2
(5.18)

for any u and large enough M1 not depending on N .

Note that X
(N)
1 (·) and X

(N)
2 (·) are exchangeable in n = 1, . . . , N . On

account of (5.18), to demonstrate (5.14) and consequently (5.1), it therefore
suffices to show that, for given γ > 0,

1

N

N∑
n=1

P
(
ψ(N),n(u) ≥ γ, ∥X(N)

1 (u)∥n ≤M1

)
≤ γ

2
(5.19)

for some u ≤ q, with q not depending on N .
Assume now that (5.19) fails, for some K, M2 and N , for each u = kM2,

k = 0, . . . ,K. We note that, by (4.4) of Lemma 4.3 and Proposition 4.1,

L = LM,ϵ
def
= sup

N,u
L
X

(N)
2

M,ϵ,u <∞ (5.20)

for each M, ϵ > 0. Choosing M2 and ϵ2 as in Proposition 5.4, and setting
M =M2, ϵ = ϵ2 and δ = γ, one has

E[ψ
(N)
L ((k + 1)M2)]− E[ψ

(N)
L (kM2)] ≤ −γϵ2/2 (5.21)

for each k = 0, . . . ,K. Summing over k gives

E[ψ
(N)
L ((K + 1)M2)] ≤ E[ψ

(N)
L (0)]− γϵ2(K + 1)/2. (5.22)

On the other hand, ψ
(N)
L (0) ≤ L by definition. Therefore, the right side

of (5.22) is negative for K ≥ 2L/(γϵ2), which is not possible. So (5.19) must
hold for one of the above choices of u for such K. The proposition therefore
follows, with q0 = 4LM2/(γϵ2).
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Demonstration of Proposition 5.2

The demonstration of Proposition 5.2 is similar for the LL(D) and SQ(D)
supermarket models. In both cases, we will apply Proposition 5.1 to show that
(5.3) holds. We will show that, in particular, for given γ1 > 0 and T > 0,

P
(
X(N),n(t) ̸= X

(N),n
E,πq+T

(t) for some t ∈ [q + T, q + 2T ]
)
≤ γ1 (5.23)

for all q ≥ q0(γ) and n = 1, . . . , N , with X(N)(·) and X
(N)
E (·) both defined

on S(N), and where q0(γ) is chosen as in Proposition 5.1 for some γ ≪ γ1.
Inequality (5.3) will follow upon setting q1(γ1) = q0(γ0) + T .

We begin by employing the standard coupling for each model on S
(N)
m ,

and denote by σn
q = σ

(N),n
q the first time t, t ≥ q, at which X(N),n(t) =

X
(N),n
E,π (t) = 0. (Recall that, for the LL(D) model, the coupling for XN)(·) is

defined on S(N) whereas, for the SQ(D) model, we employ S
(N)
r .) Since the

queue n is empty at time σn
q , it is also empty then for the corresponding state

of the SQ(D) model on S(N), given by the bijection φ at the end of Section
3. It follows that, for both models defined on S(N), the coupled queues are
identical at σn

q .

Let A
(N),n
1,q,T = {σn

q ≤ q + T}. Denote by A
(N),n
2,q,T the subset of A

(N),n
1,q,T on

which, under the standard coupling, each potential arrival over [σn
q , q + 2T ],

at n and its coupled queue, is an arrival at both queues or at neither.

It is not difficult to see for the LL(D) model that, on A
(N),n
2,q,T ,

X(N),n(t) = X
(N),n
E,π (t) = X

(N),n
E,πq′

(t) for t ∈ [σn
q , q + 2T ], (5.24)

where q′ = σn
q . In particular, since the states at n and its coupled queue are

equal at time σn
q , and the service times of arriving jobs at these queues are

identical, their states at future times through q + 2T will be the same; note
that on An

2,q,T , for t ∈ [σn
q , q + 2T ], πn

σn
q
= πn

t , since the coupling does not

change over the interval. For the same reasons, (5.24) also holds for the SQ(D)

model on S
(N)
r . Moreover, employing the bijection φ(·), it is not difficult to

check that (5.24) also holds for the SQ(D) model on S(N) as well.
In order to demonstrate (5.23), and hence (5.3), it therefore suffices to show

Proposition 5.5 Assume the processes X(N)(·) and X
(N)
E (·) are defined as

in Proposition 5.1. (a) For the SQ(D) supermarket model, for each γ1 > 0 and
T > 0, there exists q1 = q1(γ1) not depending on N such that, for each q ≥ q1,

P
(
(A

(N),n
2,q,T )c

)
≤ γ1 (5.25)

for all n = 1, . . . , N . (b) Assume that, for given N and ϵ > 0, (5.2) is satisfied
for the LL(D) supermarket model, with ϵ = ϵ(N) → 0 as N → ∞. Then, for
each γ1 > 0 and T > 0, there exists q1 = q1(γ1) such that, for large enough N
and q ≥ q1, (5.25) holds for all n = 1, . . . , N .
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We first obtain upper bounds on P ((A
(N),n
1,q,T )c).

Lemma 5.3 Assume the processes X(N)(·) and X
(N)
E (·) are defined as in

Proposition 5.1. For both supermarket models and given γ > 0,

P
(
max

(
∥X(N)∥n(q), ∥X(N)

E,π ∥n(q)
)
> M

)
≤ γ (5.26)

for all q and large enough M not depending on N and n. Moreover, for T ≥
2ML, with L = 4e2DM log(1/γ),

P
(
(A

(N),n
1,q,T )c

)
≤ 2γ. (5.27)

Proof The inequality (5.26) follows from Proposition 4.1, and Lemma 4.1 ap-

plied to X
(N)
1 (·) = X(N)(·) and X(N)

2 (·) = X
(N)
E (·).

To show (5.27), we first note that the probability of there being no potential
arrivals, and hence no arrivals, over (q, q + 2M ] is at least e−2DM for both
models, where M is chosen as in (5.26). Denote by A the intersection of the
events where this holds, but the event in (5.26) does not. Then, on A,

W (N),n(q + 2M) =W
(N),n
E,π (q + 2M) = 0

for the LL(D) model, whereas for the SQ(D) model,

P
(
Z(N),n(q + 2M) = Z

(N),n
E,π (q + 2M) = 0 |A

)
≥ 1/2,

by applying Markov’s inequality to the expected workload at time q. Applying
these displays together with (5.26), it follows that, for either model,

P
(
X(N),n(q + 2M) = X

(N),n
E,π (q + 2M) = 0

)
≥ 1

2
(1− γ)e−2DM .

We repeat this argument at the times Mℓ, ℓ = 1, . . . , L − 1, noting that

2ML ≤ T . It follows that the probability X(N),n(q + 2Mℓ) = X
(N),n
E,π (q +

2Mℓ) = 0 fails at each of these times, and hence that the event A
(N),n
1,q,T fails,

is at most

γ +
(
1− 1

2e
−2DM

)L ≤ γ + exp
{
−L

2 e
−2DM

}
≤ 2γ,

for L = 4e2DM log(1/γ), which implies (5.27).

Let C(N),n
q,T denote the set of pairs (t, n′), t ∈ [q, q + 2T ] and n′ = 1, . . . , N ,

n′ ̸= n, such that a potential arrival occurs at time t with selection set that
includes n and n′. It is easy to see that, for any N , n, q and T ,

E
[
|C(N),n

q,T |
]
= 2α(D − 1)T. (5.28)

This equality will be used to bound the probability of A
(N),n
3,q,T = A

(N),n
1,q,T ∩

(A
(N),n
2,q,T )c for both supermarket models. The argument for the SQ(D) model

is simpler, so we show it first.
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Lemma 5.4 Assume that X(N)(·), X(N)
E (·) and q0(γ) are defined as in Propo-

sition 5.1. Then, for the SQ(D) model, for each γ > 0, T > 0 and q ≥ q0(γ),

P
(
A

(N),n
3,q,T

)
≤ 2αDTγ (5.29)

for all N and n.

Proof We first note that, for the SQ(D) model,

d(N),n
r

(
X(N)(t−), X

(N)
E (t−)

)
< 1,

for given n, implies that Z(N),n(t−) = Z
(N),n
E (t−), sinceX(N)(t−) ≤ X

(N)
E (t−)

on account of the standard coupling. (Recall that π· is the identity map here.)
But, the standard coupling guarantees that an arrival cannot occur at one of

the two queues n ̸= n′ for X(N)(·) and at the other queue for X
(N)
E (·), at

a given time t, if the coupled pair of queues, in both cases, have the same

number of jobs at t−. So, A
(N),n
3,q,T can only occur if, for some (t, n′) ∈ C(N),n

q,T ,

d
(N),n
r (X(N)(t−), X

(N)
E (t−)) ≥ 1. Since (5.1) is satisfied for t ∈ [q, q + 2T ], it

follows from (5.28) that P (A
(N),n
3,q,T ) ≤ 2α(D − 1)Tγ, which implies (5.29).

The upper bound on P (A
(N),n
3,q,T ) requires some work. We will need to use

the condition (5.2) as well as the following lemma, which gives an upper bound
on the density of the equilibrium measures.

Lemma 5.5 For the LL(D) supermarket model, with λ < 1 and any N , the
equilibrium measure E(N) satisfies

E(N)(W (N),n ∈ [c, c+ δ)) ≤ eDδ (5.30)

for each n, c and δ ∈ (0, 1/D].

Proof Consider the process X(N)(·) with initial distribution E(N). Let Ud de-
note the expected number of times over (0, δ] that the workload W (N),n(·) at
queue n has decreased from at least c to strictly less than c (through service)
and let Ui denote the expected number of times over (0, δ] that W (N),n(·) has
increased from strictly less than c to at least c (through the arrival of a job at
n). Also, let A denote the event on which there are no potential arrivals over
(0, δ] at n.

Since X(N)(0) and X(N)(δ) have the same distribution,

Ud = Ui.

On the other hand,

Ud ≥ P (W (N),n(0) ∈ [c, c+ δ); A) = P (A)E(N)(W (N),n ∈ [c, c+ δ))

≥ e−1E(N)(W (N),n ∈ [c, c+ δ))
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since δ ≤ 1/D, whereas

Ui ≤ E[# of potential arrivals over (0, δ] at n] ≤ Dδ.

It follows from the above three equations that

E(N)(W (N),n ∈ [c, c+ δ)) ≤ eDδ,

as desired.

We now bound P (A
(N),n
3,q,T ) for the LL(D) model.

Lemma 5.6 Assume that X(N)(·), X(N)
E (·) and q0(γ) are defined as in Propo-

sition 5.1 for the LL(D) supermarket model, and that (5.2) is satisfied for given
N and ϵ > 0, with ϵ = ϵ(N) → 0 as N → ∞. Then, for each γ > 0, T > 0
and q ≥ q0(γ),

P
(
A

(N),n
3,q,T

)
≤ hT (γ,N) (5.31)

for all n = 1, . . . , N , where

lim
γ↘0

lim sup
N→∞

hT (γ,N) = 0 for each T. (5.32)

Proof For given γ > 0, suppose N is large enough so that ϵ(N) < γ. It follows
from (5.2) and Lemma 5.5 that, for each n and c,

E(N)(W (N),n,W (N),n′
∈ [c− γ, c+ γ])

≤
(
E(N)(W (N),n ∈ [c− 2γ, c+ 2γ))

)2

+ γ

≤4eDγE(N)(W (N),n ∈ [c− 2γ, c+ 2γ)) + γ.

(5.33)

Choose K = K(γ) such that for all N and n, E(N)(W (N),n ≥ Kγ) ≤ γ.
Summing (5.33) over intervals of the form [kγ, (k + 4)γ), it follows that

E(N)(|W (N),n −W (N),n′
| ≤ γ)

≤ 4eDγ

K−1∑
k=0

E(N)(W (N),n ∈ [kγ, (k + 4)γ)) +Kγ + E(N)(W (N),n ≥ Kγ)

≤ (16eD +K + 1)γ.

(5.34)

Choose q as in Proposition 5.1. Then, by the proposition,

P
(
W

(N),n
E,π (t)−W (N),n(t) ≥ γ or W

(N),n′

E,π (t)−W (N),n′
(t) ≥ γ

)
≤ 2γ

for any pair n,n′, and t ∈ [q, q+2T ]. The same inequality holds with t replaced
by t−, since the probability of an arrival then is 0. Together with (5.34), this
implies

P
(
[W (N),n(t−),W

(N),n
E,π (t−)] ∩ [W (N),n′

(t−),W
(N),n′

E,π (t−)] ̸= ∅
)

≤ (16eD +K + 3)γ
(5.35)
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for any pair n ̸= n′ and t ∈ [q, q + 2T ].

The standard coupling guarantees that the event A
(N),n
3,q,T cannot occur at

time t unless the event in (5.35) is violated for some (t−, n′), with (t, n′) ∈
C(N),n
q,T . It therefore follows, from (5.28) and (5.35) that, for any ϵ(N) < γ,

P (A
(N),n
3,q,T ) ≤ 16αDT (2eD +K + 3)γ. (5.36)

Set hq(γ,N) = 1 if ϵ(N) ≥ γ and set hq(γ,N) equal to the right side of (5.36)
if ϵ(N) < γ. Since the right side of (5.36) goes to 0 as γ ↘ 0, both (5.31) and
(5.32) follow.

The proof of Proposition 5.5 follows quickly from Lemmas 5.3, 5.4 and 5.6.

Proof (Proof of Proposition 5.5) For given γ > 0 and T > 0,

P
(
(A

(N),n
2,q,T )c

)
≤ P

(
(A

(N),n
1,q,T )c

)
+ P

(
A

(N),n
3,q,T

)
.

It follows from Lemmas 5.3, 5.4 and 5.6 that, for the SQ(D) model, this is
at most 2(1 +DT )γ and, for the LL(D) model, at most 2γ + hT (γ,N), for q
chosen as in Proposition 5.1 (and not depending on N or n), where

lim
γ↘0

lim sup
N→∞

hT (γ,N) = 0 for each T. (5.37)

Setting γ = γ1/(2(1 + DT )) implies (5.25) for the SQ(D) model. On the
other hand, (5.37) implies that for appropriate γ ≤ γ1/4 and large enough N ,
hT (γ,N) ≤ γ1/2, which implies (5.25) for the LL(D) model as well.

6 Uniform convergence for generalized supermarket models

In this section, we demonstrate Propositions 6.1 and 6.4. Proposition 6.1 is
the analog of Proposition 5.2, but for generalized supermarket models rather
than for the LL(D) and SQ(D) models; it will be employed in Section 8 to
demonstrate the first part of Theorem 2.3. Proposition 6.4 is a modification
of Proposition 6.1 that will be employed in Section 8 to show uniqueness
of the equilibrium environment in Theorem 2.3. Recall that, for generalized
supermarket models, the only requirement in the selection rule is that, after
the D queues in the selection set have been chosen, the arriving job is assigned
to one of these queues based only on the states at these D queues and in an
exchangeable manner (that does not depend on N). Rather than requiring
α < 1 as before, we require here the stronger α ≤ 1/(2

√
D(D ∨ θ)), where θ

is the second moment of the service distribution F (·) (which has mean 1).

We consider processes X(N)(t) and X
(N)
E (t), t ≥ 0, corresponding to a

generalized supermarket model whose initial states are the empty state and
the equilibrium state E(N), and that are coupled using a variant of the standard
coupling. Here, the nth queue of X(N)(·) will always be coupled with the nth

queue ofX
(N)
E (·). We will require that, for each ω, the processes share the same
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arrival and selection set processes, and arriving jobs for the two processes share
the same service times. When each pair of states at the coupled queues for the
selection set of an arrival are the same, arrivals are assigned to queues in the
same manner for each process; also, when the states at a given queue are
identical for the two processes, jobs are served in the same manner in each
case. At queues where the states are not identical, we allow any coupling since
the choice does not affect the proof.

We will show the processes in the above coupling become close at large
times. For this, we employ the following notation. Consider the queue n at time
t, and set L(N),n(t) = 0 if the coupled processes are identical at n whereas, if
the processes are not identical at n, set L(N),n(t) equal to 1

10 plus the maximum

of the two workloads there. Set L(N)(t) =
∑N

n=1 L
(N),n(t). We denote by K(t)

the number of queues n, n = 1, . . . , N , at time t at which the two processes
are not identical. We refer to these queues as discrepancies; K(N)(t) is then
the number of discrepancies.

The main result in this section is Proposition 6.1, which is the analog
of Proposition 5.2. In Section 5, we employed the monotonicity comparisons
from Section 4 to demonstrate Proposition 5.2. Here, we employ a martingale
argument involving K(N)(·) and L(N)(·) to demonstrate Proposition 6.1.

Proposition 6.1 Consider the coupled generalized supermarket model pro-

cesses X(N)(·) and X(N)
E (·), as given above. Assume that α ≤ 1/(2

√
D(D ∨ θ)).

Then, for each γ1 > 0 and T > 0, there exists q1 = q1(γ1) not depending on
N such that, for q ≥ q1,

P
(
X(N),n(t) ̸= X

(N),n
E (t) for some t ∈ [q, q + T ]

)
≤ γ1, (6.1)

for all n = 1, . . . , N .

Demonstration of Proposition 6.1

In order to demonstrate Proposition 6.1, we will compare the generalized su-
permarket model with the M/G/1 queue having arrival rate Dα and the same
service distribution F (·) as the generalized supermarket model, with mean
1 and finite second moment θ. We denote by w∗ the expected workload in

equilibrium for this queue; w∗ < ∞ because θ < ∞. Let W (N)(·), W (N)
E (·),

W∗(·) and W∗,E(·) denote the workloads corresponding to X(N)(·), X(N)
E (·),

the M/G/1 queue X∗(·) with X∗(0) = 0, and the M/G/1 queue in equilibrium.
Recall that a family I of random variables Yi, i ∈ I, is uniformly integrable if

lim
M→∞

sup
i∈I

E[|Yi|; |Yi| > M ] = 0.

The following lemma gives upper bounds on E[W (N)(t)] and E[W
(N)
E (t)].
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Lemma 6.1 For the above M/G/1 queue,

w∗ = αθ/(2(1− α)). (6.2)

Moreover, W (N),n(t) is uniformly integrable over all t, N and n, and

E[W (N),n(t)] ≤ w∗, E[W
(N),n
E (t)] ≤ w∗. (6.3)

Proof The equality (6.2) follows, with a little computation, from the Pollaczek-
Khinchin formula and Little’s law.

To see (6.3), couple the process X(N)(·), at a given queue n, with X∗(·),
where arrivals at the M/G/1 queue are coupled to potential arrivals at queue
n for X(N)(·) so that the service times of the jobs are also the same. Then,

W (N),n(t) ≤W∗(t) for all t.

Also, under the obvious coupling,

W∗(t) ≤W∗,E(t) for all t.

The first part of (6.3) and the uniform integrability of W (N),n(t) follow from
these inequalities; the second part of (6.3) follows from these inequalities and
a form of the dominated convergence theorem.

Our main step in the demonstration of Proposition 6.1 is given by the
following proposition.

Proposition 6.2 Consider the coupled generalized supermarket model pro-

cesses X(N)(·) and X
(N)
E (·), and the discrepancy process K(N)(·) as above.

Assume that α ≤ 1/(2
√
D(D ∨ θ)). Then, (a)

M (N)(u)
def
= L(N)(u) +

1

2
α2

∫ u

0

K(N)(t) dt (6.4)

is a supermartingale with respect to the filtration generated by X(N)(·) and

X
(N)
E (·), and (b) for each γ > 0, there exists u(N) = u(N)(γ), with u(N) ≤

θ/α2γ2, such that
P (K(N)(u(N))/N ≥ γ) ≤ γ. (6.5)

Proof The reasoning for Part (b) is quick, if one assumes Part (a). Since
X(N)(0) = 0, it follows from (6.3) that

E[M (N)(0)] ≤ N(w∗ +
1
10 ). (6.6)

By the optional sampling theorem, for each u > 0,

1

2
α2E

[∫ u

0

K(N)(t) dt

]
≤ E[M (N)(u)] ≤ E[M (N)(0)] ≤ N(w∗ +

1
10 ).

It follows that, for u ≥ 2(w∗ +
1
10 )/(α

2γ2),

P
(
K(N)(u(N))/N ≥ γ

)
≤ γ for some u(N) ∈ [0, u].



Randomized Load Balancing 31

By (6.2), this bound on u is at most 2θ/(αγ2) + 1/(10α2γ2) ≤ θ/(α2γ2), and
so (6.5) follows.

In order to show M (N)(·) is a supermartingale, it suffices to show the

infinitesimal generator of the pair (X(N)(·), X(N)
E (·)) applied to L(N)(t) is at

most − 1
2α

2K(N)(t) at each t and then to apply Dynkin’s formula. To obtain

the bound, we first claim that L(N)(t) decreases at rate at least

K(N)(t) (6.7)

due to the performed service, and that it increases at rate at most

αD(1.1 + w∗)K
(N)(t) (6.8)

due to arrivals.
The bound in (6.7) is clear. For the bound given by (6.8), note that a

discrepancy can only be created or increased at a queue when a potential
arrival occurs at the queue and there already is a discrepancy at one of the
queues in the corresponding selection set. This implies that discrepancies are
created or increased in the system at rate at most

αDK(N)(t) (6.9)

in the system. On the other hand, when this occurs at a queue n, L(N),n(t)
increases by at most Y +W (N),n(t)+ 1

10 when the discrepancy is created, and
by Y when the discrepancy is increased, where Y is an independent random
variable having distribution F (·). (Note that when there is no discrepancy at n

at time t, W (N),n(t) = W
(N),n
E (t).) Taking expectations and employing (6.3),

the expected increase in the workload will be at most 1.1+w∗. Multiplication
of this by the bound in (6.9) produces the desired bound in (6.8) on the rate
of increase due to arrivals. Subtracting the bounds in (6.8) and (6.7) shows
that the rate of change of L(N)(t) is at most

(αD(1.1 + w∗)− 1)K(N)(t).

The demonstration of Part (a) will be complete once we show that

αD(1.1 + w∗)− 1 +
1

2
α2 ≤ 0. (6.10)

Since α ≤ 1/(2
√
D(D ∨ θ)) and D ≥ 2, one automatically has α ≤ 1/4 and

αD ≤ 1/2. Because of (6.2) and θ ≥ 1, the left side of (6.10) equals

αD

(
1.1 +

αθ

2(1− α)

)
− 1 +

1

2
α2 ≤ αD(1.1 + αθ)− 1 ≤ αD(1 + αθ)− .95.

It therefore suffices to check that αD(1+αθ)− .95 ≤ 0, which is equivalent
to

α ≤ 1

2θ

[√
1 + 4(.95)θ/D − 1

]
. (6.11)
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One can show (6.11) by considering the cases 4θ/D ≤ 2.5 and 4θ/D > 2.5
separately. Setting f(x) =

√
1 + x, with x = 4θ/D ≤ 2.5, one uses f ′(x) ≥ .265

for x ∈ [0, 2.5] whereas, for x = 4θ/D > 2.5, one uses f(x) − 1 ≥ .55
√
x.

Employing α ≤ 1/(2
√
D(D ∨ θ)), the bound follows in both cases.

The following somewhat stronger version of Proposition 6.2 follows with a
bit of work.

Proposition 6.3 Under the same assumptions as in Proposition 6.2, for each
γ > 0 and some q0 = q0(γ) not depending on N ,

P (K(N)(t)/N > γ) ≤ γ (6.12)

for all t ≥ q0.

Proof It follows from Lemma 6.1 that L(N),n(t) is uniformly integrable over
all t, N and n. In particular, for each ϵ > 0, there exists a δ > 0 so that, for A
with P (A) < δ, E[L(N),n(t);A] < ϵ (see, e.g., Chung [7], page 96). On account
of the second part of Proposition 6.2, for given γ′ > 0,

P
(
L(N),n(u(N)(γ′)) ̸= 0

)
≤ 2γ′

for eachN and n. It follows from this and the uniform integrability ofW (N),n(t),
t ∈ R+, that, for given ϵ > 0 and small enough γ′ not depending on N ,

E
[
L(N),n(u(N)(γ′))

]
≤ ϵ.

It therefore follows from the first part of Proposition 6.2 that, for t ≥ u(N),

E
[
L(N),n(t)

]
≤ ϵ

for each N and n. Summing over n, since L(N),n(t) ≥ 1
10 when L(N),n(t) ̸= 0,

one obtains

E
[
K(N)(t)/N

]
≤ 10ϵ.

Hence

P
(
K(N)(t)/N ≥ γ

)
≤ γ

for γ =
√
10ϵ, which implies (6.12).

We now employ Proposition 6.3 to complete the proof of Proposition 6.1.
The reasoning is similar, but simpler, than that employed in the proof of
Proposition 5.2 for the SQ(D) model.
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Proof (Proof of Proposition 6.1) For given q, N and n, we set B
(N),n
1,q =

{L(N),n(q) = 0}. Denote by B
(N),n
2,q,T the subset of B

(N),n
1,q on which, under

the standard coupling, each potential arrival over [q, q + T ], for the coupled
queues at n, is an arrival at both queues or at neither. As in (5.24), it is not

difficult to see that, on B
(N),n
2,q,T ,

X(N),n(t) = X
N),n
E (t) for t ∈ [q, q + T ]. (6.13)

In order to demonstrate (6.1), it therefore suffices to show that, for each γ1 > 0,
there exists q1(γ1) not depending on N such that, for each q ≥ q1(γ1),

P
(
(B

(N),n
2,q,T )c

)
≤ γ1 (6.14)

for all n.
We note that, by (6.12) with t = q and q ≥ q0(γ),

P
(
(B

(N),n
1,q )c

)
≤ 2γ. (6.15)

On the other hand, denoting by C(N),n
q,T the set of pairs (t, n′), with t ∈ [q, q+T ]

and n′ ̸= n, such that a potential arrival occurs at time t with selection set
that includes n and n′, then, for any N , n, q and T ,

E
[
|C(N),n

q,T |
]
= α(D − 1)T, (6.16)

which is the analog of (5.28). It thus follows that, as in Lemma 5.4, for q ≥
q0(γ) with q0(γ) as in Proposition 6.3,

P
(
B

(N),n
1,q ∩ (B

(N),n
2,q,T )c

)
≤ DTγ. (6.17)

Together with (6.15), (6.17) implies that

P
(
(B

(N),n
2,q,T )c

)
≤ (2 +DT )γ.

Setting γ = γ1/(2 +DT ) implies (6.14) with q1(γ1) = q0(γ).

Statement and demonstration of Proposition 6.4

In order to show uniqueness of the equilibrium environment in Section 8 for
generalized supermarket models, we will employ a variant of Proposition 6.1,

with X(N)(·) being compared with X
(N)

Ẽ (·) rather than with X
(N)
E (·), where

X
(N)

Ẽ (·) is the process whose initial state has i.i.d. coordinates, with the dis-

tribution being given by some equilibrium environment Ẽ for the generalized

supermarket model. Note that, unlike X
(N)
E (·), the distribution of X

(N)

Ẽ (·) is
not constant over time.
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Proposition 6.4 Consider coupled generalized supermarket model processes

X(N)(·) and X
(N)

Ẽ (·), as given above. Assume that α ≤ 1/(2
√
D(D ∨ θ)).

Then, for each γ1 > 0 and T > 0, there exists q1 = q1(γ1), not depending
on N , such that, for q ≥ q1,

P
(
X(N),n(t) ̸= X

(N),n

Ẽ (t) for some t ∈ [q, q + T ]
)
≤ γ1, (6.18)

for all n = 1, . . . , N .

The demonstration of Proposition 6.4 is very similar to that for Proposition

6.1 on account of the bounds given in the following lemma. Here,X Ẽ(·) denotes
the stationary cavity process on S with environment Ẽ and X∗,E(·) denotes

the stationary process for the corresponding M/G/1 queue, with X Ẽ and X∗,E
being used for random vectors with the corresponding equilibrium measures.
Also, X∗,Ẽ(·) denotes the process for the M/G/1 queue with initial distribution

given by Ẽ . We let W Ẽ(·), W∗,E(·), etc., denote the corresponding workloads.

Lemma 6.2 If α < 1, then every equilibrium environment Ẽ of a generalized
supermarket model satisfies

P
(
W Ẽ ≥ y

)
≤ P (W∗,E ≥ y) for all y. (6.19)

Moreover,

P
(
W

(N),n

Ẽ (t) ≥ y
)
≤ P (W∗,E ≥ y) for all y (6.20)

and all t, N and n = 1, . . . , N , and hence

E
[
W

(N),n

Ẽ (t)
]
≤ w∗ for all t. (6.21)

Proof For given n, couple X Ẽ(·) and X∗,Ẽ(·) so that

W Ẽ(t) ≤W∗,Ẽ(t) for all t. (6.22)

This is possible since X Ẽ(0) and X∗,Ẽ(0) have the same distribution, and

arrivals for X∗,Ẽ(·) can be coupled with potential arrivals for X Ẽ(·). Since
α < 1, the M/G/1 queue is positive recurrent, and so

W∗,Ẽ(t)
D→W∗,E . (6.23)

Therefore, since Ẽ(t) is invariant in t for the cavity process, (6.19) follows from
(6.22) and (6.23).

For given N and n, we now couple X
(N),n

Ẽ (·) with X∗,E(·) so that

W
(N),n

Ẽ (t) ≤W∗,E(t) for all t. (6.24)

On account of (6.19), this is possible at t = 0 and, by coupling arrivals for

X∗,E(·) with potential arrivals at n for X
(N),n

Ẽ (·), (6.24) holds for all t. This

implies (6.20). Inequality (6.21) follows immediately from (6.20).
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Proof (Proof of Proposition 6.4) The argument is the same as that for Propo-
sition 6.1, with the only difference being that (6.21) of Lemma 6.2 is used
to justify the analogs of (6.6) and (6.3), which are employed in the proofs of
Part (b) of Proposition 6.1 and in Proposition 6.3, respectively. The rest of
the argument for Propositions 6.1 and 6.3, and the proof of Proposition 6.1
itself are not affected, since the transition rules of the processes are the same.

7 Local independence for small times

In Sections 5 and 6, we demonstrated the convergence, as t → ∞, of the
processes X(N)(t), with X(N)(0) = 0, that underly the different supermarket
models. In this section, for fixed T and N ′, we demonstrate the convergence, as
N → ∞, of the restriction of X(N)(t), t ∈ [0, T ], to the coordinates 1, . . . , N ′,

for all generalized supermarket models. For this, we employ the convergence
v→

on [0, T ]× S(N ′) that was introduced at the end of Section 3. Rather than as-
suming X(N)(0) = 0, we will assume that X(N),n(0) is i.i.d. over n = 1, . . . , N ,
and that the corresponding distribution does not depend on N . The results in
this section are related to those in Graham [11] and Graham and Méléard [12]
on the propagation of chaos.

Most of the section is devoted to demonstrating the following result. At
the end of the section, we will justify the inequality (5.2) that was used in
Proposition 5.2 for the LL(D) supermarket model.

Proposition 7.1 Suppose that for the processes X(N)(·), N ∈ Z+, underlying
a generalized supermarket model, X(N)(0) is i.i.d., and the distribution does

not depend on N . For T > 0 and N ′ ≤ N , let M(N,N ′)
T denote the probability

measures on [0, T ]×S(N ′) induced by the first N ′ coordinates of X(N)(t), with
t ∈ [0, T ]. Then,

M(N,N ′)
T

v→ M(∞,N ′)
T as N → ∞, (7.1)

for some probability measure M(∞,N ′)
T , where M(∞,N ′)

T is the N ′-fold product

of M(∞,1)
T .

In order to demonstrate (7.1), we reinterpret X(N)(·) in terms of a branch-

ing process in reversed time. For this, we employ I(N,N ′)
T (u), for u ∈ [0, T ] and

N ′ ≤ N , which we refer to as the influence process of {1, . . . , N ′}; I(N,N ′)
T (·)

is the right continuous, piecewise constant process on subsets of {1, . . . , N},
with I(N,N ′)

T (0) = {1, . . . , N ′}, that is nondecreasing and can increase at a
time u only if there is a potential arrival at time t = T − u and queue n, with

n ∈ I(N,N ′)
T (u−), in which case we set

I(N,N ′)
T (u) = I(N,N ′)

T (u−) ∪A, (7.2)

where A is the selection set containing n. Also, denote by t1 < t2 < . . . < tK
the (random) arrival times in the system over (0, T ], set uk = T − tk, for k =
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1, . . . ,K, and denote by Bk the corresponding selection sets. (We will exclude
realizations where arrival times are not distinct, which only occur on a set of

probability 0.) We refer to the selection sets Bk with I(N,N ′)
T (uk−)∩Bk ̸= ∅ as

intersecting selection sets for the triple (T,N,N ′); this condition is equivalent

to Bk ⊆ I(N,N ′)
T (uk).

For t ∈ [0, T ] and n′ ≤ N ′, X(N),n′
(t) is determined by the intersecting

selection sets for (T,N,N ′), the service times of the corresponding arrivals

and the initial values X(N),n(0), with n ∈ I(N,N ′)
T (T ). One can check this by

arguing inductively going backward in time starting at time T , and first noting
that, if Bk1 is the last selection set containing a given n′ ≤ N ′ before time t,
then X(N),n′

(t) is determined by X(N),n1(tk1), for n1 ∈ Bk1 , and the service
time of the arrival there. We refer to the intersecting selection sets together
with the service times of the corresponding arrivals and the above values of
X(N),n(0) as the underlying data for (T,N,N ′).

Set I
(N,N ′)
T (u) = |I(N,N ′)

T (u)|. One can couple I
(N,N ′)
T (·) with a continuous

time D-ary branching process I
(N,N ′)
T,∞ (·) that branches at rate αD for each

parent, with I
(N,N ′)
T,∞ (0) = N ′, so that

I
(N,N ′)
T (u) ≤ I

(N,N ′)
T,∞ (u) for all u ∈ [0, T ]. (7.3)

In this coupling, when Bk is an intersecting selection set,

I
(N,N ′)
T,∞ (uk) = I

(N,N ′)
T,∞ (uk−) +D − 1;

I
(N,N ′)
T,∞ (·) also increases at times corresponding to births for the additional

parents not included in I(N,N ′)
T (·). Note that I

(N,N ′)
T (T ) ̸= I

(N,N ′)
T,∞ (T ) only

when, for some k,

q(uk)
def
= |Bk ∩ I(N,N ′)

T (uk−)| ≥ 2. (7.4)

We then say the selection set Bk is deficient with deficiency ℓ if q(uk) = ℓ+1.

One has the following bounds on the first and second moments of I
(N,N ′)
T,∞ (T ).

Lemma 7.1 For the above process I
(N,N ′)
T,∞ (·),

E
[
I
(N,N ′)
T,∞ (T )

]
= N ′ exp {α(D − 1)DT} (7.5)

and

E

[(
I
(N,N ′)
T,∞ (T )

)2
]
≤ 2D(N ′)2 exp {2(D − 1)DT}. (7.6)

Proof Since I
(N,N ′)
T,∞ (·) is a continuous time D-ary branching process that

branches at rate αD per parent, with I
(N,N ′)
T,∞ (0) = N ′, (7.5) is a standard

result from branching process theory (see, e.g., Athreya and Ney [2] or Harris
[13]). Equation (7.6) follows after some computation using generating func-
tions, as in Theorem 6.1 on page 103 of [13].
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Set G
(N,N ′)
T = {ω : I

(N,N ′)
T (T ) ̸= I

(N,N ′)
T,∞ (T )}. The following proposition

shows that, for given T , N ′, and large N , the event G
(N,N ′)
T is unlikely.

Proposition 7.2 For G
(N,N ′)
T as defined above,

P
(
G

(N,N ′)
T

)
≤ 2D(N ′)2

N
exp {2(D − 1)DT}. (7.7)

Proof We will show that

P
(
G

(N,N ′)
T |σ(I(N,N ′)

T,∞ (T ))
)
≤

(
I
(N,N ′)
T,∞ (T )

)2

/N. (7.8)

Employing (7.8), together with (7.6), implies that

P
(
G

(N,N ′)
T

)
≤ 1

N
E

[(
I
(N,N ′)
T,∞ (T )

)2
]
≤ 2D(N ′)2

N
exp {2(D − 1)DT},

as claimed.
In order to show (7.8), we first note that G

(N,N ′)
T can only occur if the event

in (7.4) occurs for some k. Moreover, conditioning on n ⊆ Bk ∩ I(N,N ′)
T (uk−),

for given n, the other D − 1 queues in Bk occur with equal probability. Ab-

breviating I = I
(N,N ′)
T,∞ (T ), some thought therefore shows that the left side of

(7.8) is dominated by the probability that, starting from N ′ distinct queues
and sequentially choosing each of the remaining I−N ′ queues randomly from
among all N queues, at least two of the I queues are the same. This latter
probability can be written as

1−
I−N ′−1∏

j=0

(1− (N ′ + j)/N) ≤ 1− (1− I/N)I ≤ I2/N, (7.9)

which implies (7.8).

One can extend the process I(N,N ′)
T (·) to a process I(N,N ′)

T,∞ (·) defined on

subsets of Z+ (rather than {1, . . . , N}), with

I(N,N ′)
T (u) ⊆ I(N,N ′)

T,∞ (u), I(N,N ′)
T (u) = I(N,N ′)

T,∞ (u) ∩ {1, . . . , N}

and |I(N,N ′)
T,∞ (u)| = I

(N,N ′)
T,∞ (u), for u ∈ [0, T ], where I(N,N ′)

T,∞ (u) is nondecreasing

in u, and I
(N,N ′)
T,∞ (·) is the branching process defined earlier. We assume that

the restriction of I(N,N ′)
T,∞ (·) to {1, . . . , N} satisfies the analog of (7.2) for the

intersecting selection sets. When the intersecting selection set at u = uk has
deficiency ℓ and

I(N,N ′)
T,∞ (u−)− {1, . . . , N} = {N + 1, . . . , N + L}, (7.10)

for some L, we set

I(N,N ′)
T,∞ (u) = I(N,N ′)

T (u) ∪ {N + 1, . . . , N + L+ ℓ}. (7.11)
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We furthermore endow each n ∈ Z+ − {1, . . . , N} with a rate-αD Poisson

point process; when an event occurs at time u and site n ∈ I(N,N ′)
T,∞ (u−) −

{1, . . . , N}, with (7.10) holding for some L, we define I(N,N ′)
T,∞ (u) as in (7.11),

with ℓ = D − 1. One can check that this construction for I(N,N ′)
T,∞ (·) satisfies

the properties given at the beginning of the paragraph. In essence, I(N,N ′)
T,∞ (·)

extends I(N,N ′)
T (·) to Z+ from {1, . . . , N} so that the additional sites that are

added in Z+ − {1, . . . , N} ensure that |I(N,N ′)
T,∞ (·)| is a branching process.

We also extend X(N),n(0) from n = 1, . . . , N to n ∈ Z+ so that X(N),n(0)
are i.i.d.

By employing the same construction as outlined in the paragraph beginning

below (7.2), the process I(N,N ′)
T,∞ (·), the service times at intersecting selection

sets (including the sets intersecting Z+ − {1, . . . , N}, which we also refer to

as selection sets), and X(N),n(0), with n ∈ I(N,N ′)
T,∞ (T ), together define a right

continuous process X
(N,N ′)
T,∞ (t) with left limits and taking values in S(N ′), for

t ∈ [0, T ]. Note that, on
(
G

(N,N ′)
T

)c

,

X
(N,N ′),n
T,∞ (t) = X

(N),n
T (t) for t ∈ [0, T ], n ≤ N ′. (7.12)

We denote by M(N,N ′)
T,∞ the probability measure on [0, T ] × S(N ′) induced by

X
(N,N ′)
T,∞ (t), for t ∈ [0, T ]. The following lemma showsM(N,N ′)

T,∞ does not depend
on N .

Lemma 7.2 For the measures M(N,N ′)
T,∞ defined above and N1, N2 ≥ N ′,

M(N1,N
′)

T,∞ = M(N2,N
′)

T,∞ . (7.13)

Proof The influence processes I(Ni,N
′)

T,∞ (·), i = 1, 2, each induce the same con-
tinuous time D-ary branching process that was introduced before (7.3), with

both branching processes starting with N ′ ancestors. The processes I(Ni,N
′)

T,∞ (·)
include corresponding ancestral trees, where the line of descent of each indi-
vidual is explicitly given; the labelling of the coordinates for the respective
trees differs for N1 ̸= N2,

One can couple the influence processes so that, for all u ∈ [0, T ] and n ∈ Z+,

I(N1,N
′)

T,∞ (u) ∩ {πn
1 } = I(N2,N

′)
T,∞ (u) ∩ {πn

2 }, (7.14)

where the random permutations πi : Z+ → Z+, i = 1, 2, are defined so that

π1
i , π

2
i , . . . orders the queues according to their times of inclusion in I(Ni,N

′)
T,∞ (·),

with lower indexed queues being ordered first in case of ties; note that πn
i = n

for n ≤ N ′. Service times of arrivals and X(Ni),n(0) can also be coupled since

they are each are i.i.d., and are independent of I(Ni,N
′)

T,∞ (·) and each other.
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Denote by Ĩ(Ni,N
′)

T,∞,π (·) and X̃
(Ni),n
T,∞,π (0) the ancestral trees and initial data

obtained by permuting I(Ni,N
′)

T,∞ (·) and X(Ni),n(0) according to πi, and denote

by X̃
(Ni,N

′)
T,∞,π (·) the processes induced by them and the permuted service times.

By the above coupling, X̃
(N1,N

′)
T,∞,π (·) and X̃(N2,N

′)
T,∞,π (·) have the same law. More-

over, since the policy dictating which queue an arriving job selects does not

depend on the labelling of the queues and since πn
i = n for n ≤ N ′, X

(Ni,N
′)

T,∞ (·)
and X̃

(Ni,N
′)

T,∞,π (·), i = 1, 2, have the same law. Consequently, X
(N1,N

′)
T,∞ (·) and

X
(N2,N

′)
T,∞ (·) have the same law, which implies (7.13).

SinceM(N,N ′)
T,∞ does not depend onN , we drop the index and setM(∞,N ′)

T =

M(N,N ′)
T,∞ .
Proposition 7.1 follows quickly from Proposition 7.2 and Lemma 7.2.

Proof (Proof of Proposition 7.1) On
(
G

(N,N ′)
T

)c

, for given T > 0 and N ′ ≤ N ,

I(N,N ′)
T (u) = I(N,N ′)

T,∞ (u) for u ∈ [0, T ],

and hence{
X(N),n(0), n ∈ I(N,N ′)

T (T )
}
=

{
X(N),n(0), n ∈ I(N,N ′)

T,∞ (T )
}
.

So, by Proposition 7.2 and Lemma 7.2, for any set A ∈ B
(N ′)
T ,

|M(N,N ′)
T (A)−M(∞,N ′)

T (A)| = |M(N,N ′)
T (A)−M(N,N ′)

T,∞ (A)|

≤ 2D(N ′)2

N
exp {2(D − 1)DT}.

Since the last quantity converges to 0 as N → ∞, this implies (7.1).

We still need to show that M(∞,N ′)
T is the N ′-fold product of M(∞,1)

T , for

which we employ the influence process I(N,N ′)
T,∞ (·) from the proof of Lemma 7.2,

with N = N ′. The evolutions of the different subtrees emanating from each of
the N ′ original ancestors are independent (although the labelling is not). Since
the service times of arrivals for the different subtrees are also independent, as
are the values X(N ′),n(0) taken at the (nonoverlapping) sites n ∈ Z+ corre-

sponding to each subtree, it follows that the processes X
(N ′,N ′),n′

T,∞ (t), t ∈ [0, T ],
are independent over n′ = 1, . . . , N ′. Since the subtrees corresponding to dif-
ferent n′ ∈ N ′ have the same law, as do the corresponding service times and

values X(N ′),n(0), X
(N ′,N ′),n′

T,∞ (·) has the same law as X
(N ′,N ′),1
T,∞ (·), for each

n′ ≤ N ′. It follows that M(N ′,N ′)
T,∞ , and hence M(∞,N ′)

T , has the desired prop-
erties.

In Proposition 5.2, we required the condition (5.2) for the LL(D) super-
market model. By employing Proposition 7.1 together with Proposition 5.1,
(5.2) follows without difficulty.
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Proposition 7.3 The inequality (5.2) is satisfied for the LL(D) supermarket
model, with ϵ = ϵ(N) → 0 as N → ∞.

Proof It suffices to show (5.2) for n1 = 1 and n2 = 2. Let M(N,N ′)(t) denote
the probability measure on (S(N ′),S (N ′)) at time t induced by the first N ′

coordinates of X(N)(t) and, for B ∈ S , denote by Bδ the set of points in S

within distance δ > 0 of B, according to the d
(1),1
r (·, ·) pseudometric given by

(3.9). It follows from Proposition 5.1 that, for given ϵ > 0 and large enough t
not depending on N ,

E(N,2)(B1 ×B2) ≤ M(N,2)(t;B
ϵ/2
1 ×B

ϵ/2
2 ) + ϵ/4,

M(N,1)(t;B
ϵ/2
i ) ≤ E(N,1)(Bϵ

i ) + ϵ/4,
(7.15)

for all Bi ∈ S , i = 1, 2, where M(N,N ′)(t;B) denotes the measure of B ∈
S (N ′) with respect to M(N,N ′)(t). (By Lemma 4.2, Eπ(t) = E(t) for each t.)

On the other hand, by Proposition 7.1, for given ϵ > 0 and t, and large
enough N ,

|M(N,2)(t;B
ϵ/2
1 ×B

ϵ/2
2 )−M(N,1)(t;B

ϵ/2
1 ) ·M(N,1)(t;B

ϵ/2
2 )| ≤ ϵ/4. (7.16)

Together with (7.15), this implies that, for given ϵ > 0 and large enough t,

E(N,2)(B1 ×B2) ≤ E(N,1)(Bϵ
1) · E(N,1)(Bϵ

2) + ϵ. (7.17)

Setting Bi = [c1, c2], i = 1, 2, one obtains (5.2) from (7.17).

8 Demonstration of Theorems 2.1, 2.2 and 2.3

In this section, we combine the main results of Sections 5-7 to demonstrate
Theorems 2.1-2.3. Since the proofs of the different theorems are similar, we
combine their arguments while demonstrating each part of the conclusions
(a) and (b) in the ansatz. In particular, we break the proof into Propositions
8.1-8.4, where we show convergence to a limit, as in (2.1), in Proposition 8.1;
identify the limit as theN ′-fold product of some measure E(∞,1), in Proposition
8.2; show this measure is an equilibrium environment in Proposition 8.3; and
show this measure is the unique equilibrium environment in Proposition 8.4.

In these propositions, we employ the following notation. The measures
E(N,N ′), N ′ ≤ N , denote the measures on S(N ′) of the restriction to the first
N ′ coordinates of the equilibrium measure of the corresponding generalized su-

permarket model with N queues; E(N,N ′)
T , N ′ ≤ N , denotes the corresponding

measure, on [0, T ]×S(N ′), for the stationary process X
(N)
E (·), with initial mea-

sure E(N,N ′), that is restricted to the first N ′ coordinates. As in Proposition

7.1, M(N,N ′)
T , N ′ ≤ N , denote the measures on [0, T ]×S(N ′) corresponding to

the process started from the empty state, and M(∞,N ′)
T denotes their limit as

N → ∞; M(N,N ′)
q,T and M(∞,N ′)

q,T will denote the measures on the same space
corresponding to the process over [q, q + T ], with q ≥ 0.
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Proposition 8.1 states that, as N → ∞, respectively q → ∞, the measures

E(N,N ′)
T , respectively M(N,N ′)

q,T , converge to a limit that is the same in both

cases. Consequently, the limiting behavior of M(N,N ′)
q,T , as N → ∞ and q → ∞,

does not depend on the order in which the limits are taken. By restricting the

limit E(∞,N ′)
T to its marginal E(∞,N ′) at any t ∈ [0, T ], one obtains the limit

in (2.1). The proof employs Propositions 5.2, 6.1 and 7.1.

Proposition 8.1 For given T and N ′, let E(N,N ′)
T and M(∞,N ′)

q,T denote the
above measures corresponding to a LL(D) supermarket model, a SQ(D) super-
market model that is FIFO with DHR, or a generalized supermarket model,
where α < 1 is assumed in the first two cases and α ≤ 1/(2

√
D(D ∨ θ)) is

assumed in the third case. Then,

E(N,N ′)
T

v→ E(∞,N ′)
T as N → ∞ (8.1)

and
M(∞,N ′)

q,T
v→ E(∞,N ′)

T as q → ∞, (8.2)

for some probability measure E(∞,N ′)
T on [0, T ] × S(N ′), whose marginals are

invariant in t ∈ [0, T ].

Proof The reasoning for (8.1) and (8.2) is similar. For (8.1), it follows from
Propositions 5.2, 6.1 and 7.3 that, for given T , N ′ and ϵ > 0, and large enough
q and Ni, i = 1, 2,

|M(Ni,N
′)

q,T (A)− E(Ni,N
′)

T (A)| ≤ ϵ (8.3)

for any A ∈ B(N ′)
T , where B(N)

T is defined at the end of Section 3. (It follows

from Lemma 4.2 that X
(N)
E (·) and X(N)

E,πq
(·) have the same law over [q, q+T ].)

On the other hand, by Proposition 7.1, for given q, T , N ′ and ϵ > 0, and large
enough Ni, i = 1, 2,

|M(N1,N
′)

q,T (A)−M(N2,N
′)

q,T (A)| ≤ ϵ. (8.4)

Combining (8.3) and (8.4), one obtains

|E(N1,N
′)

T (A)− E(N2,N
′)

T (A)| ≤ 3ϵ, (8.5)

from which it follows that

E(∞,N ′)
T (A) = lim

N→∞
E(N,N ′)
T (A) (8.6)

exists for all A ∈ B(N ′)
T . One can check that E(∞,N ′)

T defines a probability

measure on ([0, T ]× S(N ′),B(N ′)
T ). This shows (8.1).

To show (8.2), we note that, for given T , N ′ and ϵ > 0, and large enough
qi, i = 1, 2, and N , it follows from Propositions 5.2 and 6.1 that

|M(N,N ′)
q1,T

(A)−M(N,N ′)
q2,T

(A)| ≤ ϵ (8.7)
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for any A ∈ B(N ′)
T . On the other hand, by Proposition 7.1, for given qi, i = 1, 2,

T , N ′ and ϵ > 0, and large enough N ,

|M(N,N ′)
qi,T

(A)−M(∞,N ′)
qi,T

(A)| ≤ ϵ. (8.8)

Combining (8.7) and (8.8), one obtains

|M(∞,N ′)
q1,T

(A)−M(∞,N ′)
q2,T

(A)| ≤ 3ϵ, (8.9)

from which it follows that

Ẽ(∞,N ′)
T (A) = lim

q→∞
M(∞,N ′)

q,T (A) (8.10)

exists for all A ∈ B(N ′)
T and defines a probability measure. This shows (8.2).

We still need to show that

Ẽ(∞,N ′)
T = E(∞,N ′)

T . (8.11)

Note that, on account of (8.3) and (8.8), for given ϵ > 0, large q, and sufficiently
larger N ,

|M(∞,N ′)
q,T (A)− E(N,N ′)

T (A)| ≤ 2ϵ (8.12)

for all A ∈ B(N ′)
T . Together with (8.6) and (8.10), (8.12) implies (8.11). Since

the marginals of E(N,N ′)
T do not depend on t ∈ [0, T ], neither do the marginals

of E(∞,N ′)
T .

The proof that E(N,N ′)
T , and hence E(N,N ′), is a product measure follows

quickly from the previous proposition and Proposition 7.1.

Proposition 8.2 Assume that the LL(D), SQ(D) and generalized supermar-

ket models are as specified in Proposition 8.1, and let E(∞,N ′)
T be the limit given

in (8.1). Then, E(∞,N ′)
T is the N ′-fold product of the measures E(∞,1)

T .

Proof By Proposition 7.1, M(∞,N ′)
q,T is the N ′-fold product of M(∞,1)

q,T for all
q, T and N ′. So, the claim follows from (8.2).

The marginal of E(∞,1)
T , at a given time t, does not depend on t. We next

show that this measure E(∞,1) is an equilibrium environment. To show this,

we first recall the process X
(N,N ′)
T ′,∞ (·) on [0, T ′] × S(N ′), from Section 7, that

was constructed using the influence process I(N,N ′)
T ′,∞ (·) and the corresponding

intersecting selection sets, the service times of the corresponding arrivals, and

X(N),n(0), n ∈ Z+. Here, we set N = N ′ = 1, restrict X
(1,1)
T ′,∞(·) to t ∈ [q, q+T ],

with T = T ′−q, and we writeX1
q,T (·) for the corresponding process on [0, T ]×S

that is obtained by translating this restriction by q in time. Also, recall that, by

Lemma 7.2, the probability measure M(∞,1)
T

def
= M(N,1)

T,∞ , and hence M(∞,1)
q,T ,

does not depend on N . The evolution over different branches of I(1,1)
T ′,∞(·) is
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independent with the same law, as are the corresponding intersecting selection
sets andX(N),n(0). One can therefore check that the processX1

q,T (·) is a cavity
process with the equilibrium environment process M1

q,T (t), t ∈ [0, T ], where

M1
q,T (t) is the marginal at time t of M(∞,1)

q,T , and whose policy is that of the
original generalized supermarket model.

Proposition 8.3 Assume that the LL(D), SQ(D) and generalized supermar-

ket models are as specified in Proposition 8.1, let E(∞,1)
T be as in (8.1), and

let E(∞,1) be its marginal. Then, E(∞,1) is an equilibrium environment for the
corresponding model.

Proof Fix T > 0. In addition to X1
q,T (·), we consider the cavity processes

X2
q,T (·) and X3

T (·) on [0, T ] × S, where X2
q,T (·) and X3

T (·) have the same

policy as X1
q,T (·), and X2

q,T (0) = X1
q,T (0), but where X

2
q,T (·) and X3

T (·) have
environment process E(∞,1)

T (·), with E(∞,1)
T (t)

def
= E(∞,1) for all t, instead of

M1
q,T (·), and X3

T (0) is distributed accord to E(∞,1); note that the law of X3
T (·)

does not depend on q. We will write M2
q,T and M3

T for the measures on
[0, T ]× S corresponding to these cavity processes.

We first compare M1
q,T with M2

q,T . By (8.2), for given T and ϵ > 0, and
large enough q,

|E(∞,1)
T (A)−M1

q,T (A)| ≤ ϵ

for any A ∈ B(1)
T , and hence

|E(∞,1)(B)−M1
q,T (t;B)| ≤ ϵ (8.13)

for any B ∈ S , whereM1
q,T (t;B) is the measure of B with respect toM1

q,T (t).
Recall that S is the Borel σ-algebra on S.

By employing the maximal coupling (see, e.g., Thorisson [18], page 107)
and (8.13), one can couple X1

q,T (·) and X2
q,T (·) so that potential arrivals occur

together and, when a potential arrival occurs, the D − 1 comparison states
are the same for both processes except on a set of probability ϵ(D − 1). On
the other hand, the expected number of potential arrivals over [0, T ] is DT .
Letting Fq,T denote the set on [0, T ] × S where, for some potential arrival,
the comparison sets for X1

q,T (·) and X2
q,T (·) are not identical, it follows that,

under this coupling,
P (Fq,T ) ≤ ϵ(D − 1)DT.

Since X2
q,T (0) = X1

q,T (0), it follows that

P (X2
q,T (t) ̸= X1

q,T (t) for some t ∈ [0, T ]) ≤ ϵ(D − 1)DT

and hence, for any A ∈ B(1)
T ,

|M2
q,T (A)−M1

q,T (A)| ≤ ϵ(D − 1)DT. (8.14)

The comparison of M2
q,T with M3

T is simpler. The environment processes

for X2
q,T (·) and X3

T (·) have the same law, and so can be coupled so that the



44 Maury Bramson et al.

potential arrivals and comparison states are identical. On account of (8.2),
their initial states can be coupled so that, for given T and ϵ > 0, and large
enough q,

P (X3
T (0) ̸= X2

q,T (0)) ≤ ϵ.

It therefore follows that

P (X3
T (t) ̸= X2

q,T (t) for some t ∈ [0, T ]) ≤ ϵ

and hence, for any A ∈ B(1)
T ,

|M3
T (A)−M2

q,T (A)| ≤ ϵ. (8.15)

Together, (8.14) and (8.15) imply that, for given T and ϵ > 0, and large
enough q,

|M3
T (A)−M1

q,T (A)| ≤ ϵ[(D − 1)DT + 1] (8.16)

for any A ∈ B(1)
T . On the other hand, for given T and ϵ > 0, and large enough

q, (8.2) implies that

|M1
q,T (A)− E(∞,1)

T (A)| ≤ ϵ (8.17)

for any A ∈ B(1)
T . It follows from (8.16) and (8.17) that, for given T and ϵ > 0,

and large enough q,

|M3
T (A)− E(∞,1)

T (A)| ≤ ϵ[(D − 1)DT + 2]

for any A ∈ B(1)
T ; letting ϵ ↘ 0, it follows that M3

T = E(∞,1)
T . Since X3

T (·)
has environment process E(∞,1)

T (·), it follows that E(∞,1)
T (·) is an equilibrium

environment process; consequently, E(∞,1) is an equilibrium environment, as
desired.

Proposition 8.4 Assume that the LL(D), SQ(D) and generalized supermar-

ket models are as specified in Proposition 8.1, and let E(∞,1)
T be as in (8.1).

Then, its marginal E(∞,1) is the unique equilibrium environment for the cor-
responding model.

Demonstration of Proposition 8.4

The remainder of the section is devoted to demonstrating Proposition 8.4, for
which we require two preliminary results. The following lemma states that an
equilibrium environment process is determined by its initial value.

Lemma 8.1 Suppose Hi(·), i = 1, 2, are equilibrium environment processes
for a generalized supermarket model, with H1(0) = H2(0). Then H1(t) = H2(t)
for all t.
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Proof LetXi(·), i = 1, 2, denote cavity processes corresponding toHi(·), which
we couple in the natural fashion so that X1(0) = X2(0), potential arrivals are
coupled and, at each potential arrival, the maximal coupling is applied to the
comparison states. Denote by p(t) the probability that X1(t) ̸= X2(t), which
is at least the distance between H1(t) and H2(t) in the total variation norm.
The rate at which potential arrivals occur is D, and so one can check that

p(t) ≤
∫ t

0

(D − 1)Dp(u) du.

Since p(0) = 0, it follows from Gronwall’s inequality that p(t) = 0 for all t,
which implies the claim.

The following corollary follows from Proposition 7.1 and Lemma 8.1.

Corollary 8.1 Suppose the processes X(N)(·), N ∈ Z+, are as in Proposition
7.1, with the coordinates X(N),n(0) of X(N)(0) having distribution given by an
equilibrium environment Ẽ for the corresponding supermarket policy, and let

M(∞,1)
T be the limit in (7.1). Then M(∞,1)

T (t) = Ẽ for all t ∈ [0, T ].

Proof The same reasoning as above Proposition 8.3 implies that M(∞,1)
T (·) is

an equilibrium environment process. (The only change is that here, X(N)(0)
has distribution Ẽ , rather than X(N)(0) = 0 as before.) On the other hand,

ẼT (·) is also an equilibrium environment process, with ẼT (t)
def
= Ẽ for t ∈ [0, T ].

Since the marginal at time 0 of M(∞,1)
T equals Ẽ , it follows from Lemma 8.1

that M(∞,1)
T (t) = ẼT (t) for t ∈ [0, T ], which implies the corollary.

The following proposition is a slight variant of Proposition 5.2. Here,X
(N)
1 (·)

denotes the process with X
(N)
1 (0) = 0 and X

(N)
2 (·) denotes the process where

X
(N),n
2 (0), n = 1, . . . , N , are i.i.d. with distribution given by an equilibrium

environment Ẽ . (Note that X
(N)
E,πq

(q) = X
(N)
E,π (q), for πq as in Proposition 5.2.)

Proposition 8.5 Consider, on S(N), either the LL(D) supermarket model, or
the SQ(D) supermarket model that is FIFO with DHR. Assume the processes

X
(N)
1 (·) and X(N)

2 (·) are defined as above. Then, for each γ1 > 0, there exists
q = q(γ1), with q → ∞ as γ1 ↘ 0, such that, for large enough N depending
on q,

P
(
X

(N),n
1 (q) ̸= X

(N),n
2,π (q)

)
≤ γ1 (8.18)

for all n = 1, . . . , N .

Proof (Summary of proof) The argument is essentially the same as those em-
ployed for Propositions 5.1 and 5.2, with changes in two places.

Since the assumptions in Proposition 5.4 continue to hold in the present
setting, the analog of the inequality in (5.13) holds. By employing (5.13), one
can show the analog of (5.1) in Proposition 5.1 holds for large enough N
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depending on q where, as in Proposition 8.5, q is chosen so that q → ∞ as
γ1 ↘ 0. The reasoning is the same as in the proof of Proposition 5.1, except
that, since the supremum in (5.20) might not be finite, (5.20) is replaced by

L = LM,ϵ,q
def
= sup

N≥Nq,u≤q
L
X

(N)
2

M,ϵ,u <∞; (8.19)

on account of Corollary 8.1, Nq may be chosen to grow sufficiently quickly
when q increases so that this supremum is finite.

The same reasoning may be applied as in the proof of Proposition 5.2,
starting with (5.23), except that (5.26) needs to be modified by restricting N
as above so that N ≥ Nq, and Nq grows with q. The proofs of Lemmas 5.3-5.6
and Proposition 5.5 then proceed as before.

The proof of Proposition 8.4 follows quickly from (8.2), Corollary 8.1 and
Proposition 8.5.

Proof (Proof of Proposition 8.4) For a given equilibrium environment Ẽ(∞,1),
we wish to show Ẽ(∞,1) = E(∞,1), where E(∞,1) is the equilibrium environ-

ment in Proposition 8.3. To show this, we employ the processes X
(N)
i (·),

i = 1, 2, with the corresponding supermarket policy, where X
(N)
1 (0) = 0 and

X
(N)
2 (0) has i.i.d. coordinates with distribution given by Ẽ(∞,1). Since X

(N)
1 (0)

and X
(N)
2 (0) are exchangeable, it follows from Lemma 4.2 that X

(N)
2 (t) and

X
(N)
2,π (t) have the same distribution for each t. Denoting the space-time mea-

sures of X
(N),1
i (t), i = 1, 2, by M(N,1)

i , it therefore follows from Proposition
8.5 that, for the LL(D) and SQ(D) policies and each ϵ > 0, there exists q, with
q → ∞ as ϵ→ ∞, such that, for large enough N depending on q,

|M(N,1)
2 (q;B)−M(N,1)

1 (q;B)| ≤ ϵ (8.20)

for any B ∈ S . Moreover, on account of Proposition 6.4, (8.20) also holds for
generalized supermarket models, when α ≤ 1/(2

√
D(D ∨ θ)).

In all three cases, it follows from Proposition 7.1 that, for given q and large
enough N ,

|M(N,1)
i (q;B)−M(∞,1)

i (q;B)| ≤ ϵ (8.21)

for any B ∈ S and i = 1, 2. Also, because of (8.2), for large enough q,

|M(∞,1)
1 (q;B)− E(∞,1)(B)| ≤ ϵ. (8.22)

Moreover, it follows from Corollary 8.1 that, for each q

M(∞,1)
2 (q) = Ẽ(∞,1). (8.23)

Combining (8.20),(8.21), (8.22) and (8.23), it follows that, for each ϵ > 0,

|Ẽ(∞,1)(B)− E(∞,1)(B)| ≤ 4ϵ (8.24)

for any B ∈ S . Letting ϵ↘ 0 implies Ẽ(∞,1) = E(∞,1), as desired.
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