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Abstract Randomized load balancing greatly improves the sharing of re-
sources while being simple to implement. In one such model, jobs arrive ac-
cording to a rate-aN Poisson process, with a@ < 1, in a system of N rate-1
exponential server queues. In Vvedenskaya et al. [19], it was shown that when
each arriving job is assigned to the shortest of D, D > 2, randomly chosen
queues, the equilibrium queue sizes decay doubly exponentially in the limit as
N — o0. This is a substantial improvement over the case D = 1, where queue
sizes decay exponentially.

The reasoning in [19] does not easily generalize to jobs with nonexponential
service time distributions. A modularized program for treating randomized
load balancing problems with general service time distributions was introduced
in Bramson et al. [5]. The program relies on an ansatz that asserts that, for a
randomized load balancing scheme in equilibrium, any fixed number of queues
become independent of one another as N — oco. This allows computation of
queue size distributions and other performance measures of interest.

In this article, we demonstrate the ansatz in several settings. We consider
the least loaded balancing problem, where an arriving job is assigned to the
queue with the smallest workload. We also consider the more difficult prob-
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lem, where an arriving job is assigned to the queue with the fewest jobs, and
demonstrate the ansatz when the service discipline is FIFO and the service
time distribution has a decreasing hazard rate. Last, we show the ansatz always
holds for a sufficiently small arrival rate, as long as the service distribution
has 2 moments.

Keywords Load balancing - join the shortest queue - join the least loaded
queue - asymptotic independence

1 Introduction

Randomized load balancing is a canonical method for efficiently sharing re-
sources among different jobs that is often simple to implement. For example, it
is commonly used in hash tables in data switches for looking up the addresses
of incoming packets at high speed; this application was first modeled and ana-
lyzed by Azar et al. [1]. In the dynamic version of randomized load balancing,
jobs arrive at a bank of N queues, with each arriving job being assigned to a
server so as to reduce the long-term backlog in the system. Dynamic random-
ized load balancing is often referred to as the supermarket model.

We are interested here in two load balancing policies for the supermarket
model. In each case, jobs arrive at the bank of N servers according to a rate-
aN Poisson process, with @ < 1. The servers each employ the same service
discipline (such as FIFO) and the service times are IID with a given arbitrary
distribution F'(-) having mean 1. As throughout this article, service at each
queue is assumed to be non-idling. The join the shortest queue policy SQ(D)
assigns each arrival to the shortest of D queues chosen independently and
uniformly at random, where the shortest queue means the queue with the
least number of jobs. When the arrival is instead assigned to the queue with
the smallest amount of remaining work, or workload, we refer to the policy
as join the least loaded queue and write LL(D). In both cases, the D queues
are chosen without replacement (from among the (g) possible sets). Ties are
assumed to be broken randomly, with the arriving job being assigned with
equal probability to each of the queues.

When the service times are exponentially distributed, it is not difficult to
show that the underlying Markov process is positive recurrent and a unique
equilibrium distribution exists. Vvedenskaya et al. [19] analyzed the equilib-
rium distribution under the SQ(D) policy, with replacement, and found that,
for D, D > 2, as the number of queues N goes to infinity, the limiting probabil-
ity that the number of jobs in a given queue is at least k is a(P*=1/(D=1) Thjg
is a substantial improvement over the case D = 1, where the corresponding
probability is o,

The model with exponentially distributed service times was also studied by
Mitzenmacher [17]. Its path space evolution was studied by Graham [11] who
moreover showed that, starting from independent initial states, as N — oo, the
queues of the limiting process evolve independently. Luczak and McDiarmid
[15] showed that the length of the longest queue scales as (loglog N)/log D +
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O(1). Certain generalizations have also been explored. Martin and Suhov [10]
studied the supermarket mall model where each node in a Jackson network
is replaced by M parallel servers, and a job joins the shortest of D randomly
chosen queues at the node to which it is directed. Luczak and McDiamid [14]
studied the maximum queue length of the original supermarket model when
the service speed scales linearly with the number of jobs in the queue.

Little theoretical work has been done on the supermarket model with non-
exponentially distributed service times. In this setting, the positive Harris
recurrence of the Markov process underlying the supermarket model is no
longer obvious. (Since the state space will typically be uncountabile, positive
Harris recurrence rather than positive recurrence is needed.) In particular, for
the SQ(D) policy, jobs might be assigned to short queues where the remaining
work is high, which can cause service inactivity after queues with many jobs,
but low remaining work, empty. If the system can be “tricked” too often in this
manner, it is conceivable that it is unstable although o < 1 and the service
time has mean 1. Moreover, for general service distributions, the evolution of
the supermarket model with the SQ(D) policy will be influenced by the service
discipline, which complicates analysis.

Foss and Chernova [10] demonstrated positive Harris recurrence for the
supermarket model, for given NV, under the FIFO service discipline and general
service times. In particular, for given N, a unique equilibrium distribution £V)
exists. Bramson [41] extended this to general service disciplines and showed
uniform bounds, in N, on the tails of £™) at each queue. (Both works pertain
to a more general setting for arrivals and the rule for selecting the D queues.)
Fluid limits are employed as the main tool in [10] and an appropriate Lyapunov
function is employed in [4].

For general service times, one wishes to analyze the limiting behavior of the
equilibria £ | at a given queue, as N — co. In Bramson et al. [5], a modular-
ized program is developed for this purpose and relies on an ansatz that asserts
that, in equilibrium, any fixed number of queues become independent of one
another as N — oo. This allows computation of queue size distributions and
other quantities of interest. Employing the ansatz, it is shown in Bramson et
al. [0] that the limiting equilibrium distribution will sometimes have a doubly
exponential tail, but that other behavior is also possible, depending on the
service discipline and the tail of the service distribution F'(-).

In this article, we will demonstrate this independence ansatz under several
settings. We first do so for LL(N) policies; this requires no additional assump-
tions. We next consider SQ(N) policies, which we are only able to analyze
when the service discipline is FIFO and the service time distribution has a de-
creasing hazard rate (DHR). This includes heavy-tailed service distributions
and is shown in [6] to lead to interesting phenomena. Last, we show the ansatz
holds for a sufficiently small arrival rate, with no assumptions on the policy
for selecting a queue, as long as the service distribution has 2 moments. The
demonstration of the ansatz in the general setting, without any restrictions,
appears to be a difficult problem.
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This article is organized as follows. In Section 2, we state the ansatz pre-
cisely and then state the main results corresponding to the above cases, with
independence for the LL(N) policies being demonstrated in Theorem 2.1, inde-
pendence for the FIFO SQ(N) policy being demonstrated in Theorem 2.2, and
independence for small arrival rates being demonstrated in Theorem 2.3. The
first two proofs are based on a monotonicity argument that states the process
starting from the empty state is dominated by the process starting from any
other state. This is then employed to show uniform convergence as t — oo, in
N, to the corresponding equilibria, when observation of the state is restricted
to a fixed number of queues. The third proof employs branching-like reasoning
to construct a supermartingale, from which this uniform convergence in N
again follows.

In Section 3, we provide basic background on the properties of the state
space and Markov process that underly the different supermarket models. Sec-
tion 4 develops the monotonicity argument mentioned above and Section 5 ap-
plies it to demonstrate uniform convergence for the LL(D) and SQ(D) models.
In Section 6, uniform convergence is also demonstrated for general policies and
small enough arrival rates. Rather than monotonicity, a martingale argument
is applied there. Section 7 shows for all three models that, for large N, near
independence persists over small times when the queues are independent in
the initial state. In Section 8, the main results of Sections 5-7 are applied to
demonstrate Theorems 2.1-2.3.

2 Main results

We state the ansatz and the main results of the article, Theorems 2.1-2.3, and
briefly discuss their proofs. For this, we need to introduce some terminology.

Each result is stated in terms of the limit, as N — oo, of Markov processes
XN )(t)7 t > 0, underlying supermarket models with N queues. Such a Markov
process is defined on an appropriate state space S(V) that is a product of state
spaces S corresponding to each queue. In order to avoid technical details, we
postpone until Section 3 the construction of SV) and X¥)(.). At this point,
we require only limited specifics, namely that a state z € S(N) is given by
descriptors, including the number of jobs z™ at each queue n, n = 1,...,N;
the residual service times v™*, n=1,...,N and i =1,..., 2", for each of the
jobs currently in the system; and the amount of service already received s™°,
n=1,...,Nandi=1,...,2", by the jobs.

We denote by EWV-N ") the projection of the equilibrium measure £V) onto
the first N’ queues. (Since X V) (t) is exchangeable when X (V) (0) is, the choice
of queues will not matter.) We say that a service discipline for the supermarket
model is local if the amount of service, at a given queue n, that is assigned to
each of the jobs currently there, is a function only of the state of the process at
n (e.g., involving terms such as 2™, v™¢ i =1,...,2" and s i=1,...,2").
This assumption on X)(-) will be needed to ensure the independence of
individual queues as N — oo in the ansatz.
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We need to describe the evolution of individual queues for the limiting
process, as N — oo. For this, we construct a process X*(t), ¢t > 0, on S, as
follows. Let H denote a probability measure on S(), which we refer to as the
environment of the process X 7(-); we refer to X7 (-) as the cavity process. We
define X7 (-) so that potential arrivals arrive according to a rate—Da Poisson
process. When such a potential arrival to the queue occurs at time ¢, X" (t—)
is compared with the states of D — 1 independent random variables with law
H; we refer to these D — 1 states at a potential arrival as the comparison
states. Choosing from among these D states, the job is assigned by following
the same policy as for the corresponding supermarket model. (For instance, if
the SQ(D) policy is employed, then the job is assigned to the state with the
fewest number of jobs.) If the job has chosen the state X7 (¢—) at the queue,
it then immediately joins the queue; otherwise, the job immediately leaves the
system. In either case, the independent D — 1 states employed for this purpose
are immediately discarded. Jobs have the same service distribution and are
served according to the same local service discipline as for the corresponding
supermarket model. We note that when X7 (t) has measure  (i.e., the same
measure as the comparison states), a potential arrival will choose the queue
with probability 1/D, and so arrivals to the queue occur at rate o. When the
environment is a function of ¢, in which case we write H(t), we refer to it as
the environment process; X7*()(-) is then defined as above.

When a process X *(-), with environment H, is stationary with the equilib-
rium measure H (i.e., X7¢(¢) has the distribution # for all t), we say that H is
an equilibrium environment. One can think of an equilibrium environment as
being the restriction of an equilibrium measure for the corresponding super-
market model, viewed at a single queue, when “the total number of queues N
is infinite”. When a process X () (), with environment process H(-), at every
time ¢ has distribution H(t), we say that H(-) is an equilibrium environment
process.

We now state the ansatz. Here, = on SV ") denotes convergence in total
variation with respect to an appropriate metric d’ (-,-) on SN, (The metrics
will be specified in Section 3.)

Ansatz Consider the supermarket model, with N queues, operating under the
SQ(D) or LL(D) policy for fixed D, and possessing a local service discipline
that is the same at all queues. Jobs are assumed to have an arbitrary service
time distribution F(-), with mean 1, and arrivals to the system are Poisson
and occur at rate o« < 1. Then, (a) for each N',

EWN') 2 g(o0,N') as N — o, (2.1)

where E>N') s the N'-fold product of £V . Moreover, (b) £V s the
unique equilibrium environment for this supermarket model.

We state the versions of the ansatz that we are able to demonstrate. The-
orem 2.1 states that the ansatz always holds for the least loaded policy. Since
the choice of service discipline has no effect on which queue an arriving job is
directed to, the robustness of this result is not surprising.
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Theorem 2.1 Suppose the assumptions of the ansatz are satisfied for the su-
permarket model operating under the LL(D) policy. Then the conclusions (a)
and (b) in the ansatz hold.

The ansatz is considerably more difficult to demonstrate for the supermar-
ket model satisfying the shortest queue policy, and most cases remain open.
The next result, Theorem 2.2, demonstrates the ansatz under the FIFO ser-
vice discipline, for a service distribution F'(-) having decreasing hazard rate
h(:) (i.e., h(s) = F'(s)/F(s) is nonincreasing in s, where F(s) =1 — F(s)).

Theorem 2.2 Suppose the assumptions of the ansatz are satisfied for the su-
permarket model operating under the SQ(D) policy. Suppose moreover that the
service discipline is FIFO and that F(-) has decreasing hazard rate. Then the
conclusions (a) and (b) in the ansatz hold.

The proofs of Theorems 2.1 and 2.2 employ similar arguments, which we
summarize briefly here. Each case utilizes a preordering among the states at
a given queue. Under such a preordering, if the states at all of the queues
for one initial state dominate those at another initial state, the processes can
be coupled so that this condition persists at all times. Since the empty state
is dominated by all other states, this implies the distribution of the process
starting from the empty state is increasing over time, and therefore converges
to an equilibrium distribution. By employing a suitable metric and the uniform
bounds from [1] on the equilibrium measures over all N, it will follow that this
convergence is uniform in V.

On the other hand, for large enough N, the process started from the empty
state will have nearly independent queues over a fixed time interval. By the
above uniform convergence of the process, for large enough N and appropriate
t, this process will be, at time ¢, both close to its equilibrium measure and have
nearly independent queues. Letting both N and ¢ go to infinity, it will follow
that the sequence of equilibrium measures indexed by N converges to a product
measure that is the unique equilibrium environment specified in Part (b) of
the ansatz.

Theorem 2.3 implies that, for a sufficiently small arrival rate, the conclu-
sions of the ansatz hold irrespective of the service discipline as long as the
service distribution has 2 moments. Its proof does not require the SQ(D) or
LL(D) policy but only that, after the set of D queues is selected, an arriving
job be assigned to one of them according to a fixed rule involving only the
states at these D queues, and not depending on N, with the assignment being
made in an exchangeable manner (i.e., with the labelling of the queues playing
no role). We refer to a model with such a policy as a generalized supermarket
model.

Theorem 2.3 Suppose the assumptions of the ansatz are satisfied for the gen-
eralized supermarket model and that its service distribution F(-) has 2% mo-
ment 0 < oco. For a < 1/(24/D(DV 0)), the conclusions (a) and (b) in the
ansatz hold.
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The proof of Theorem 2.3 compares the process corresponding to this model
to that for an M/G/1 queue, with Poisson arrival rate Da, and with the same
service distribution. The latter process is used, together with a martingale
argument, to provide a lower bound on the rate at which the original process
converges to its equilibrium measure, which does not depend on N. Theorem
2.3 will follow from this uniform convergence and reasoning similar to that
employed for Theorems 2.1 and 2.2.

The method of proof that was employed in Theorems 2.1 and 2.2 unfortu-
nately does not apply to many important service disciplines, such as processor
sharing and preemptive LIFO. A major part of the difficulty is the absence of
a natural preordering between states that is preserved over time, in contrast
to the above cases.

3 Markov process background

In this section, we provide a more detailed description of the construction of
the Markov processes X (V) () that underly the different versions of the super-
market models we consider. Related material for queueing networks is given in
Bramson [3] and, for a general family of join the shortest queue networks, in
Bramson [1]. Because of the similarity of these settings, we present a summary
here and refer the reader to [4] for more detail.

The state space S(N) will be defined somewhat differently for the three
models, depending on how much information we wish to record. In the LL(D)
and generalized supermarket model settings, we define S(N) to be the set

(z* x R*)™ (3.1)

subject to the following constraints. Only a finite number of the 5-tuples of
coordinates are nonzero, with each 5-tuple corresponding to a particular job
in the system. The first coordinate n, n = 1,..., N, corresponds to the queue
of the job; the next coordinate i, i = 1,...,2", where 2" is the number of
jobs at the queue, gives its rank at the queue based on the time of arrival
there, with “older” jobs receiving a lower rank. The third coordinate ¢, £ > 0,
is the age of the job (and is used to determine the second coordinate); the
fourth coordinate v, v > 0, is the residual service time; and the last coordinate
r, r € [0,1], is the current rate of service for the job. Since the discipline is
assumed to be non-idling, the sum of the last coordinates for all jobs at a
given nonempty queue must equal 1. The 5—tuples are ordered in increasing
order in terms of first the first coordinate, and then the second coordinate (so
that distinct points in SV) correspond to distinct states). The coordinates ¢,
v and 7 can be labelled in terms of the first two coordinates (e.g., £ denotes
the age of the (n,i)*™ job). Depending on the service discipline, it may not
be necessary to record as much information regarding the state, in which case
various coordinates of S may be omitted; alternatively, coordinates can also
be added when relevant.
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For the SQ(D) model, less information is required because of the FIFO
service discipline. In this setting, we define SV to be the set

(z xR?)" . (3.2)

Here, the first coordinate 2™, n = 1,..., N, corresponds to the number of
jobs at the n*® queue; the second coordinate s™, s > 0, is the amount of time
the oldest job there has already been served; and the last coordinate v, v > 0,
is the residual service time. (When 2™ = 0, set the other two coordinates equal
to 0.) One typically omits the second coordinate; in our setting, it will be used
in conjunction with the decreasing hazard rate of the service distribution.

In the proof of Theorem 2.2 for the SQ(D) model, we will employ the
spaces S’SN) obtained by omitting some of the information from SV). The
space given in (3.2) is replaced by SN = (Z x R)N, where the coordinate
v corresponding to the residual service time is suppressed. In addition, the
coordinate s corresponding to the amount of time the oldest job has been
served is truncated at s.,, with jobs receiving more service being assigned
this value, where s is the first value of s at which infy> h(s) is attained.
(Recall that the hazard rate h(-) is decreasing.) Note that when the service
distribution is exponential, s,, = 0.

These new spaces are needed, for the SQ(D) model, in order to use the
monotonicity relations between pairs of states that were mentioned in the
second section. After showing uniform convergence in N to the equilibria of
XM () on S it will not be difficult to show the desired uniform convergence
for the processes on S(V),

For given N’ < N, S(N) is the projection of SUN) obtained by restricting
nonzero 5-tuples and 3-tuples to the first N’ queues. For z € S®) as in
(3.1), the projection z’ € SN of z is the element obtained by omitting 5-
tuples with n > N’; for z € S®) as in (3.2), 2’ is obtained by omitting the
coordinates with n > N’. One can also define projections of S(N) onto spaces
SV corresponding to other subsets of {1,..., N} analogously; we will not
use these in the article.

We construct metrics d¥)(-,-), with d™)(-,-) = (1/N) Zﬁ;l dMNm(. ),
and dgN)(-, 1), with dSoN)(-, ) = (1/N) 25:1 dSN)’”(-, -), for the above spaces.
For the metric on SV specified by (3.1), and for given z,zy € S™), with
the coordinates labelled correspondingly, set

AN (@1, 30) =27 — 28

3 (16 = 51+ ot =gl I =05

i=1
For the metric on SN specified by (3.2), set

AN (g, o) = |27 — 22| + |87 — s%| + o — o?]. (3.4)
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For the metric on S obtained from S in (3.2), set
AN ™ (@1, x) = |(21 = D)4 — (25 = D | + |rf =75, (3.5)
where

r=r(s)= /OOO(F(S +t)/F(s))dt (3.6)

is the expected residual service time of a job, given that it has received s units
of service, and (y)4+ = y vV 0. (Note that r(s) is increasing in s when F(-) has
decreasing hazard rate.)

There is some flexibility in the choice of the metrics here; the above versions
will be convenient for our computations. We will employ 7 rather than s in
(3.5) using the monotonicity inherited from the DHR property of the service
distribution F(-), which is assumed in Theorem 2.2. One can check that

F(t) = e Joh(s)ds (3.7)

and hence

)= [ (B gy, (3.8)
0

where hg(s") def h(s" + s). Setting 7o, = sup, r(s) and employing the mono-
tonicity of h(-), it is therefore not difficult to check that there is a 1 to 1 cor-
respondence between s € [0, ] and r € [1, 7] for so < 00, and s € [0, 00)
and r € [1,r4) for se = c0.

We also define a pseudometric on S?Y), in (3.1), by setting

AN My, w2) = o) — w3, (3.9)

where w]' is the workload at queue n for the state x;.

One can check that the metrics d™)(,-) and dg\])(-7 1), given in (3.3), (3.4)
and (3.5), are separable and locally compact; more detail is given on page 82

of [3]. We equip SV and S™N) with the standard Borel o-algebra inherited

from d¥)(-,-) and dgN)(~, -), which we denote by .#() and 7N

The Markov process X V) (t), t > 0, underlying a given model is defined
to be the right continuous process with left limits, taking values  in S(N) or
SﬁN), whose evolution is determined by the model together with the assigned
service discipline. We denote the random values of the coordinates ¢™*, r™?,
etc., taken by XNV (¢), by L™(t), R™(t), etc. For the models on S™V) as in
(3.1), jobs are allocated service according to rates R™(t) that are assumed
to be constant in between arrivals and departures of jobs at the queues. Over
such an interval, L™(t) increases at rate 1 and V™(t) decreases at rate 1.
Upon an arrival or departure, rates are re-assigned according to the disci-
pline. The standard service disciplines satisfy this property. (The restriction
that service rates remain constant between arrivals and departures of jobs is
for convenience, and allows one to inductively construct XV)(-) over increas-
ing times in a simple way.) The evolutions of the Markov processes X (™) (.)
corresponding to SV) as in (3.2) and to S™) are specified similarly.
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For each of the above processes XV )(-), when an arrival in the system
occurs at time ¢, the set of D queues that is chosen will be referred to as the
selection set of the arrival. We will also say that a potential arrival occurs
then at each of these queues.

Along the lines of page 85 of [3], a filtration (]-"t(N))7 t € [0, 0], can be as-
signed to XM () so that X(™)(.) is a piecewise-deterministic Markov process,
and hence is Borel right. This implies that X (V) (.) is strong Markov. (We do
not otherwise use Borel right.) The reader is referred to Davis [8] for more
detail.

We note that, for the SQ(D) model, there is a natural map ¢ between
the sample paths XM (t), t € [0,00), for the state spaces S!¥) and S,(«N),
where o(z(-)), for a sample path z(-) on S?V) is defined by omitting the v
coordinate for the residual service time. The map is bijective since the residual
service time, at a given queue and time, is the remaining time until the next
departure there, which is contained in the corresponding sample path z(-)
taking values in S (although the residual service time depends on the values
of the path at later times). The standard coupling on SﬁN), which we construct
in the next section, is Markov. Its analog for the SQ(D) model on S?) is not
Markov, however. (This requires some thought.) On the other hand, for the
LL(D) model on S®), the standard coupling there is Markov; moreover, the
corresponding map ¢ of sample paths from SO to SﬁN), obtained by retaining
only the workload at each queue, is not bijective. For these reasons, our main
computations for the SQ(D) model will be performed on SﬁN), but our main
estimates for the LL(D) model will be performed on S™V).

One can show that the SQ(D) supermarket model is Feller, although the
LL(D) and generalized supermarket models are not. (We will not need these
results.) Convergence in total variation rather than weak convergence is there-
fore the right medium in which to treat all three models. Convergence in total
variation, as in (2.1), means that

lim  sup |ENND(A) — N (4)] = 0.
N—oo Aey(N’)

For all of our models, we will in fact employ a somewhat stronger version of
convergence in total variation. Consider a sequence of probability measures
My, k=1,2,..., defined on the path space [0, T] x SN for given T, N’ > 0,
of right continuous paths with left limits, and corresponding Borel o-algebra
B;N/). Then, M, converges to M, in total variation, written My, — M, if

lim sup |[Mg(A) — M (A4)] =0.

k—o0 AGB,;N/)

Except when stated otherwise, in the remainder of the article, X)(.)
will denote the Markov process underlying one of the three supermarket or
generalized supermarket models. When two or more processes, e.g., XV )(4),
i = 1,2, are employed together, they will correspond to the same model and
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parameters, differing only in the initial state. When confusion is unlikely, we
will sometimes drop the superscript N from quantities such as X V) ().

4 Monotonicity for the LL(D) and SQ(D) models

In this section, we introduce the standard coupling for the LL(D) supermarket
model and for the SQ(D) supermarket model that is FIFO with DHR. The
coupling for the LL(D) model is defined on S®¥) and the coupling for the

SQ(D) model is defined on SﬁN); in both cases, we will often drop the super-
script IV for convenience. These couplings induce a monotonicity property for
each model that will imply convergence, when starting from the empty state,
to a limiting distribution that will also be an equilibrium. Estimates in Section
5 show this convergence is uniform in N in an appropriate sense, which will
be used in conjunction with Proposition 7.1 to demonstrate Theorems 2.1 and
2.2 in Section 8.

The standard coupling

The standard coupling for the LL(D) supermarket model on S is the pathwise
coupling between two copies X;(-) and X5(-) of the corresponding Markov
process that is defined as follows. For a random permutation m; = (7}"), n =
1,...,N, on t > 0, each queue n of X;(-), at time ¢, is coupled with queue
73 of Xa(+) so that these queues have the same potential arrivals, for each w,
and so that the corresponding arrivals, which are assigned according to the
LL(D) policy in each case, have the same service times. Setting 7y equal to
the identity, the permutation 7 is assumed to be constant in between arrivals,
where it is updated inductively. For a given queue ny, an arrival at time ¢ may
occur at ny, for Xi(-), but at ny # w2, for Xo(+), due to different workloads
in the two systems. (Ties in the workload at queues in the selection set are
broken in the same way for each process.) When this occurs, one changes the
permutation at time ¢ by setting

!
ny __ ny . na n __,n !/
Tt = no, Tt =2, my =my  for n# ni,ni,

where n] is defined by wf; = ny. That is, the queues in each system where the
arrival has just occurred are coupled together, as are the pair of queues previ-
ously coupled with them, with all other queues retaining the same coupling.
At arrivals where ng = 17!, the permutation remains the same. We denote by
X = (+) the process obtained from X, (-) by permuting its queues according to
., that is,

Xpa(t) = X5 ().

The standard coupling, on S,, for the SQ(D) supermarket model that is
FIFO with DHR is defined so that both processes again share the same po-
tential arrival and service time processes. In this setting, 7. is always defined
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to be the identity map, that is, the n*® queue of X;(-) is always coupled with
the n*® queue of X»(+), and hence X5 .(-) = Xa(-). (This will be needed in
the proof of Lemma 4.1 when comparing ST (t) with SZ(¢).) In addition, the
service times of the oldest jobs at a given queue n are coupled so that, when
ST(t) < SB(t), service for both processes is completed simultaneously at rate
h(S%(t)) and, independently of this, service for the first process only is also
completed at rate h(ST(t)) — h(S%(t)). If service for the job in the first process
is completed before that in the second process, completion of service continues
at rate h(-) for the latter. This coupling relies on the DHR property. Note that,
if service commences at a new job for the first process when the corresponding
job for the second process is already being served, then completion of service
for the new job occurs at a faster rate than for the other job. (This relies again
on the DHR property.) Upon a potential arrival, ties in the length of queues
in the selection set are broken in the same way for each process, for a given w.

Extensions of the standard coupling, from 2 to L copies of the processes
X1(-)y..., X1(+), hold for both supermarket models by applying the same rea-
soning as above. In Section 5, the coupling, with L = 3, will be employed
in one place. The bijection ¢(-), which was defined at the end of Section 3,
induces a coupling for the SQ(D) supermarket model on S from the standard
coupling on S,.. We will first employ it in Section 5, where we will employ the
notation 7. as well.

For both the LL(D) and SQ(D) models, we define a preorder between
pairs of states z1,x2 in S or S,. For the LL(D) model, we say that a7 < z}
if w < wlh, with 1 < x9 if W} < w§ for all n = 1,..., N. For the SQ(D)
model, we require instead that 27 < 27 and s? < s3; the last condition is
equivalent to r{ < rZ. (For the LL(D) model, 1 < x2 and xo < x; together
need not imply z1 = x9, and so “<” is not a partial order whereas, for the
SQ(D) model, “<” is a partial order.) Note that the state 21 = 0, where each
queue is empty, satisfies 1 < x5 for any other state x5. The following lemma
states that, if the preorder holds initially, then it persists for all time under
the standard coupling.

Lemma 4.1 For either the LL(D) supermarket model on S, or the SQ(D)
model on S, that is FIFO with DHR, assume that the underlying Markov pro-
cesses X1(+) and Xa(+) satisfy X1(0) < X2(0) and are coupled by the standard
coupling w.. Then, for each w,

X1(t) < Xo (1) for all t. (4.1)

Proof We apply the standard coupling to each model and argue by contradic-
tion, setting T' = inf{¢ : X;(¢t) £ X2 (¢)} in each case. We first consider the
LL(D) supermarket model.

It is easy to see that T' < oo cannot occur with X;(T) < Xy (7). If it
does, then, for small enough € > 0 (depending on w), there are no arrivals
or departures in the system over (7,7 + ¢]. Since W' (t) < W3' () holds at
t =T, the inequality continues to hold for ¢t € (T, T + €.
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Suppose now that X (7)) £ Xz (7). The inequality W7 (t) < W, (t) will
continue to hold at t = T for all n, except possibly at pairs where there is an
arrival for one of X7'(-) and X3, (), but not for both. On the other hand, if
such an arrival occurs at time ¢ at ny for X;(-) and at ng # ny for Xs (-,
then

Wit (t=) < Wi(t=), Wi (t—) < Ws(t-),

Wit (t=) <Wi=(t=),  Woi(t=) = Wai(t-),

and so
Wit (t=) < Wis(t—),  Wi”(t—) < Wi (t-).

Denoting by A the service time of the arrival at ny and no, it follows that
Wit () = Wit (t=) + A < W5 (t=) + A = Wy (D),
Wi (t) = Wi (t—) < Wyl (t—) = Wy (2).

Consequently, Wi (t) < Wa »(t), which again contradicts T' < co.

The argument for the SQ(D) supermarket model is the same when X3 (T") <
X5(T), but with Z*(-) and R!(-) replacing W*(-). Suppose now that X1 (T") £
X5(T), and hence X7 (T') « X3 (T) for some n. Because of the DHR property
and the standard coupling, a departure at n for Xs(-), at time 7', can only
occur when a departure occurs there for X;(-), which would contradict the
above inequality. On the other hand, if an arrival at n occurs for X () at time
T, but at some n’ # n for X5(+), then

cither Z}(T—)< Z}(T—) or ZNT-)> Zy (T-),

because of the coupling. Since Z} (T—) < Zy' (T—), it follows that Z*(T—) <
Z3(T—) — 1, and hence Z}(T) < ZZ(T). Since ST (t) < SZ(t), and hence
R} (t) < R3(t), continues to hold at time T, this implies X7(T) < X7(T),
which again produces a contradiction. Consequently T' < oo cannot occur for
the SQ(D) model as well.

We will say that two probability measures £ and &, on S or S, satisfy

&1 g &, if, for some coupling of random variables X; and X5 with these mea-
sures, X1 (w) < Xs(w) for all w. Let £;(t), t > 0, i = 1,2, denote two families of
measures belonging to processes X;(¢) underlying either the LL(D) or SQ(D)
supermarket model. When restated in terms of these measures, Lemma 4.1
implies the following.

Lemma 4.2 For either the LL(D) supermarket model or the SQ(D) model
that is FIFO with DHR, define £;(t), t > 0, ¢ = 1,2, as above. Assume that
&i(0) are each exchangeable with respect tom =1,...,N. Then E(t) = E2 (1)

P
for all t. Moreover, if £1(0) < &5(0), then

E(1) &M forallt. (4.2)
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Proof One can choose X7(0) and X3(0) with measures £;(0) and &2(0) so
that X;(0) < X5(0). Since &;(0) are each exchangeable, one can choose such
X(0) so that the pair (X;(0), X2(0)) is also exchangeable. Hence, under the
standard coupling, (X1(t), X2 ~(t)) is exchangeable for each t.

Moreover, for given t, there is exactly one exchangeable measure for which
the distribution on the set of empirical measures, obtained from its coordinates
n =1,...,N, is equal to the distribution on the set of empirical measures
obtained from X5 . (t). Since Xo(t) and X2 (t) are each exchangeable, with
the same distribution on the set of empirical measures, they are themselves
equal in distribution and hence &2 (t) = &s . (¢).

On the other hand, by Lemma 4.1,

X1(t) < Xo,(t) for all t.

P
It follows from this and the previous paragraph that & (t) < & (¢) for all ¢, as
desired.

The empty measure & = 0 and the equilibrium measure &,, = &(nN), for
a < 1, of an LL(D) or SQ(D) supermarket model, are exchangeable. Applying
Lemma 4.2 to & (0) = & and &(0) = &1 (t2 — t1) first and then to £;(0) = &
and &3(0) = &, we obtain the following results.

Lemma 4.3 For either the LL(D) supermarket model on S, or the SQ(D)
model on S, that is FIFO with DHR, assume that the underlying Markov
process X () satisfies X(0) = 0 Then, for each ti,ta, with t1 < ta, the corre-
sponding measures E(t) satisfy

E(tr) < E(t). (4.3)

If a <1 and &,, is the equilibrium measure, then

EW) L&, forallt. (4.4)

Set £(0) = 0. On account of (4.3) and (4.4) of Lemma 4.3, it will follow
that

Eit) = EN)ast — oo, (4.5)

for “—” defined appropriately. In order to demonstrate Theorem 2.1 and The-
orem 2.2, we will in fact need to show that convergence is uniform on N, which
will be used to interchange the ¢ and N limits in Section 8. For this, we will
need the uniform bounds that are given in the following subsection.
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Uniform bounds on Ean)

For both the LL(D) and SQ(D) supermarket models, we need uniform bounds
on the right tails of the corresponding equilibria &(nN) that do not depend on
N; these bounds rely on results from [4]. For 2 € S™V), we set ||z||” = w", n =
1,..., N, for the LL(D) model and, for x € S™) e set lz]|™ = (2™ =1) 4 +r",
n=1,..., N, for the SQ(D) model.

Proposition 4.1 Fiz «, F(-) and D, with « < 1 and F(-) having mean 1.
For both the LL(D) and SQ(D) supermarket models,

sup sup {EM (| X" > M)} =0 as M — oc. (4.6)
N n<N

Proof (Sketch of proof) We note that, since the equilibria S,(nN) are exchange-
able in n for both models, the rate of convergence of the probabilities in (4.6)
does not depend on n.

We first consider the proposition for the SQ(D) model. The limit (4.6)
will follow from the analogous limits for Z™ and R™ in place of || X||™. Since
r = r(s), the limit for R™ follows from that for S™, which is the amount of
service already received by the job. This is bounded above by the total service
requirement of the job. Therefore, by comparison with the renewal process
with distribution F(+), it is not difficult to see that

sup EMN (8™ > M) < / F(t)dt < 1. (4.7)
N M

(The first inequality is in fact strict since a queue may be empty.) This implies
the desired limit for S™ and hence for R™.

The limit for Z™ is considerably more difficult, but follows from Corollary
1.2 of Theorem 1.3 in [4], with a little work. The spaces in the corollary contain
all the information in S®), and hence in SﬁN), after appending to the states
the amount of time each job has already been served. We refer here to these
enriched spaces by St"). As observed below (5.35) in [4], the conclusion (1.24)
in the corollary continues to hold on SéN) for service disciplines including
FIFO. This implies in particular that the equilibria 5§N) on SéN), for the
SQ(D) supermarket model, satisfy

supEMN(Z™ > M) = 0 as M — oo. (4.8)
N

Projecting SV by removing all information, except for the number of jobs
at each queue and the amount of time the oldest job there has already been
served, produces S,(«N). Since the evolution of the process depends only on the

number of jobs at each queue, the desired bound on Z” follows immediately
from (4.8).
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In order to show (4.6) for the LL(D) model, we need to show that, for given
n’

sup{EM (W™ > M)} -0 as M — oo. (4.9)
N

The spaces in Corollary 1.2 of [] already contain the information in S0V),
and so one does not need to enrich these spaces in the LL(D) setting. There
is less work needed here than that for Z™ above, since the uniform stability of
the LL(D) model is considerably easier to analyze. By employing the norm in
(5.36)—(5.37) of [1], one can show (4.9).

5 Uniform convergence for the LL(D) and SQ(D) models

In order to demonstrate Theorems 2.1 and 2.2, we will need to demonstrate a
variant of (4.5) that is uniform in N. Our first main result for this is Proposi-
tion 5.1; the first part of the section is devoted to its proof. We then employ
Proposition 5.1 to show a stronger pathwise result, Proposition 5.2, on the
original spaces SV) for both supermarket models; this is done in the second
part of the section. Proposition 5.2 will be used in conjunction with Section
7 to demonstrate Theorems 2.1 and 2.2 in Section 8. In the remainder of the
section, we use S™) to denote the spaces SUV) for the LL(D) model and S
for the SQ(D) model, with gy denoting the corresponding equilibria.

Proposition 5.1 states that, for large enough gy not depending on N, each
system that is started at the empty state will be close to its equilibrium at
each time in ¢ > ¢o. For both the LL(D) and SQ(D) models, this is shown with
respect to dSN) (+,-), which, we recall, is only a pseudometric in the former case.

For a given supermarket model on SSnN), with o < 1, we denote by X(N)(-)
the process started from the empty state and by X éN)(-) the process started
from its equilibrium Ean). We couple these processes by the standard coupling.
On account of Lemma 4.1, X(V)(¢) < Xg\;)(t) for all ¢ and w. Recall that, in
the SQ(D) setting, 7. is always the identity map.

Proposition 5.1 Consider, on Sr(nN), either the LL(D) supermarket model, or
the SQ(D) supermarket model that is FIFO with DHR. Assume the processes

XN and XéN)() are defined as above, with a < 1 fized. Then, for each
v > 0, there exists gqo = qo(7y) not depending on N such that, for all t > qo,

P (d™m (XN (1), X (1) 2 7) <4 (5.1)

foralln=1,...,N.

Proposition 5.2 is the analog of Proposition 5.1, but on the original spaces
SN for both supermarket models. It makes the stronger assertion, for given
T and large enough ¢; not depending on N, that, for each ¢ > ¢; and n,
XNty = ng)’"(t) simultaneously for ¢t € [g,q + T, off of a negligible

Tq
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N),7y . .
set of w; here, Xg\jr)q"(t) def Xé )7 (t), i.e., the permutation of queues for

XéN)(-) is constant over [q,q + T]. ((5.3) also holds with Xg\;)’"(t) in place
of X g\;)qn(t), but we will find the present formulation more convenient.) For
the LL(D) supermarket model, we will employ the additional condition that,

for given N and appropriate ¢ > 0, the workload W of the equilibrium &@)
satisfies

2
EM(W™ € [e1,¢9],i=1,2) < (€(N)(W"1 €ler —€ —l—e])) +e  (5.2)

for each n; # ny and 0 < ¢; < ¢o. We will show in Proposition 7.3 that, for
given € > 0, (5.2) is satisfied for large enough N.

Proposition 5.2 Consider, on SN), either the LL(D) supermarket model, or
the SQ(D) supermarket model that is FIFO with DHR. Assume the processes

XN () and XéN)(~) are defined as above. (a) Then, for the SQ(D) model, for
eachv1 > 0 and T > 0, there exists 1 = q1(y1) not depending on N such that,
Jor each q = qu,

P (X(N)vn(t) £ Xg\;)q"(t) for some t € [q,q + T]) <M, (5.3)

forallm =1,...,N. (b) Assume that, for each N, (5.2) is satisfied for the
LL(D) model, with € = ¢(N) — 0 as N — oo. Then, for each 1 > 0 and
T > 0, there exists ¢ = q1(71) not depending on N such that (5.3) holds for
large enough N, ¢ > q1 and alln=1,...,N.

Demonstration of Proposition 5.1

We first introduce some notation. For two processes Xl(N)(~) and XQ(N)(-) un-
derlying the same supermarket model, we set

and YN (1) = (1/N) 250, o0 (8).
In the proof of Proposition 5.1, we will employ “truncated” variants diﬁ) (")

of the metric d\" (-,-): for L > 1, we set diﬁ)(zl, T2) = & ZnN:1 di{?’”(zl, Z2),
with N
Ay " (e 2) = |(wf A L) — (wf AL)
for the LL(D) supermarket model, and
A" @a,we) = [ +7) A L) = [ + 1) AL,
with 20 et (27 = 1)4, for the SQ(D) supermarket model. We will need this
truncation because E[X éN)’"(O)] may be infinite. We set

N), N), N), N),
£ = df (xM ), x5 ) (5.5)
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and v\ (1) = (1/N) N N (). We also set [|z]|7 = ||z]|™ A L for both
the LL(D) and SQ(D) models. When argN) < xéN), one has

N)n, (N N N)n N)n
dD (@M, ey = a8 — (|27,

r,L

which is the only setting in which we will employ these truncations.
The following lemma gives lower bounds on the rate of decrease of E| (LN) )]

as t increases. In the remainder of the subsection, we will assume that the
LL(D) supermarket model is defined on S?¥) and the SQ(D) supermarket

model is defined on SﬁN).

Lemma 5.1 Suppose that processes XI(N)(-) and XQ(N) (+) underlying the LL(D)

or SQ(D) supermarket model that is FIFO with DHR satisfy X{N) (0) < XQ(N) (0),
and are coupled by the standard coupling. Then, for given 0 < a < b and L > 0,

EN(0)] - BV ()]

A
2 [t —ow w0 6o)

n=1"4a

— PIXSV )" = L)} dt
for the LL(D) model, and

EY )] - B ()]

N b
1 (N),n - (N),n
<oy 2 [T =000 > 0 (57)

—2P(| X" )" > L~ 1)} dt
for the SQ(D) model.

Proof In order to obtain (5.6) and (5.7), it suffices to show that, after multi-
plying by N, the infinitesimal generator of the pair (Xl(N)(~)7 Xéfjr) (+)), applied
to w(LN)(-), is at most the quantities in the integrands in (5.6) and (5.7) for each
coordinate n, and then to apply Dynkin’s formula. (See, e.g., Dynkin [9], page
133. The formula can be obtained here by applying the bounded convergence
theorem to ff H(E] (LN) (t+h)— (LN)(t)]) dt as h \,0.) When showing (5.6)
and (5.7), we avoid the explict formulas that are needed for a detailed proof.

To see (5.6), note that, since XfN)(-) < Xéf:?(), (LN)(~) never increases
due to arrivals. Moreover, at each time ¢, for each n at which Wl(N)’n(t) = 0and
WQ(IX)n(t) € (0,L), (LN)(') decreases at rate 1/N due to the service performed

there whereas, when WQ(JX)n(t) > L, w(LN)(-) can increase at rate at most 1/N

due to the decrease of Wl(N)"() Applying Dynkin’s formula over [a, b], one

obtains the bound in (5.6) for E[v\™ (b)) — E[{™(a)).
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To see (5.7), first note that w(LN)(-) does not increase due to a pair of

arrivals at the same queue n for the two processes. (Since 7(0) =1, HXi(M ™)
increases by 1 upon an arrival, whether or not the queue was empty.) But, if
a pair of arrivals occurs at different queues at time ¢, then

() — N (1) € [0,1/N]

is possible when ||X{N) (t—=)|™ > L — 1, where n is the queue at which the
arrival occurs for the first process. On the other hand, for each n at which
ZiN)’n(t) = 0 and ||X§N)(t)||” e (0,L), (LN)(-) decreases at rate 1/N due
to the service performed there whereas, when ||X2(N) N > L, w(LN)(-) can

increase at rate at most 1/N due to the decrease of ||X§N)()H” (Recall again
that 7(0) = 1, and so the start of service of a job upon a departure at the

queue does not change (LN)()) Again applying Dynkin’s formula and noting

that Xl(N)(-) < XQ(N)(-), one obtains (5.7).

In Proposition 5.3, we will obtain lower bounds on the integrals of the
probabilities involving W and 28" on the right side of (5.6) and (5.7)
that do not depend on N. For this, we will employ the following lemma, which
applies to distribution functions F'(-) with decreasing hazard rate. (Recall that
r =r(s) is given by (3.6).)

Lemma 5.2 Suppose that, for given F(-) with decreasing hazard rate, 1,79
satisfy ro — 11 > 6, for given & > 0. Then there exist My and ¢ € (0,1),
depending on only F(-) and §, such that, for some M < My,

F(SQ"’M) F(Sl—FM)
F(s2) > Fsn) +e. (5.8)

Proof Choose s, such that ry —r; = §/2. Since ro — r; > 4, this implies
Too —Th >