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Abstract—The performance metrics that network design-
erstypically optimize their designfor are: throughput, delay
and queueback-logs. Thesemetrics have guided the design
of wireline networks, like the Internet, and network com-
ponents (e.g switches,routers, etc). In wirelessnetworks,
the energy consumedby transmissionnodesis a preciousre-
sourcewhoseconsewation is very important. This hasmoti-
vated the reseach community to designwir elessnetworks
so as to deliver high throughput, achieve low delays, and
minimize energy consumption. This paper makesa start at
understanding how minimizing communication energy im-
pactsthe designof high-performancenetwork algorithms.

Specitcally we considera “switch” topology asthis cap-
tur esmostof the constraints of a generalacyclicwir elesset-
work. We study the problem of designingminimum energy
transmissionschedulesvhich deliver maximum thr oughput.
We show that the optimal policy is the solution of a convex
optimization problem. We provide an iterati ve schemethat
exploits the structur e of the problem to obtain the solution.
We also obtain approximations which are implementation-
ally simpler and interestingin their own right.

I. INTRODUCTION

The designof network algorithmsis usuallyguidedby
two main performancemetrics: the throughput,and the
delayexperiencedy apacletin thenetwork. Bothmetrics
determinethe quality-of-service(QoS) perceved by user
applicationsandobseredby network operators.

The designof wirelessnetworks is signiEcantlyinau-
encedby anothemetric: the enegy usedto switch paclet
aows from their sourceto their destination. Minimiz-
ing enegy prolongsthe batterylife duration,andpermits
greatemodemobility. This paperis concernedvith mini-
mizing the enegy per bit requiredfor transmissionSince
enepy is directly relatedto power, our derivation of the
enegy consumedallows us to view enepgy-perbit and
power-costsinterchangeably

The ultimate aim of our work is to studythe trade-of
betweenenepy, delay andthroughput. However, in the
presenpaperwe shallonly considetthetrade-of between
enegy andthroughputwhile designingalgorithms.As we
shall see the studyof this trade-of is alreadyinteresting,
andourmodelsallow theincorporatiorof delayincremen-
tally. Specifcallywe shallassumehatdataarrivesdeter
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ministically at the transmissiomodes. This allows us to
designzero-delayswitchingalgorithms.In future we plan
to incorporatedelaysby consideringrandompaclet pro-
cessedor dataarrivals.

Il. SWITCH CONSTRAINED NETWORKS

Consideraradionetwork with N transmitterg TXs) and
N recevers (RXs). Assumethe trafEc is stationary and
followsthe StrongLaw of LargeNumbers;\;; is theaver
agearrival rate of the trafEc comingat TX ¢ anddirected
toRX j,1 <1i,j < N; thearrival matrixis A = [);;] and
it is known. In generaltheconnectvity betweenr X i and
RX j is determinedyy the availablechannelcapacity the
topologyandotherphysicallayereffects.

Let v;; bethe fraction of time suchthat TX i is trans-
mitting to RX j; I' = [v;5] is thecorrespondingnatrix and
v = [i;] is thevectorobtainedby stackingthe columnsof
I'. Consideratime intenal of sizeT'. We assumehatTX
i transmitsto RX j in aninterval of duration~;;7" using
aconstanpower P;;, achieving arate R;; (bps). Therate
is relatedto the transmissiorschemeaswill be described
later

To achiere 100% throughputandto expendminimum
enegy perbit, thefollowing relationholds: R;;v;; = Ai;.
Now P;; is afunctionof therate R;; i.e,

Pij(Rij) = gij(Rij)

whereg;;(-) is a corvex function which dependson the
transmissionscheme(see[1]). Then, the total average
poweris P(vy) = >_, ; Pij(vij). Similarly, we cande£ne
theenegy perbit E;;:

= Pyi(vij) = 9i5(Nij /viz)

i) = {Pij(%‘j)//\ij ff Aij >0

0 if )\ij =0
andthe total enegy perbit E(y) = >_, . E;j(v;;). Note
thatboth E(~) and P(~y) arecorvex functions.

We assumehatthe maximumpower availableatthe TX
is limited and equalto Py 4x, correspondingo a trans-
missionrate Rasax;; for the particularlink from TX i to
RX j. Hence,

Rij < Rvaxy, = N o Yij

(1)

Vij > 5——
Ryax;;

where{%;;} arenormalizedarrival rates.
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Fig. 1. Exampleof 3 TX-RX couplescommunicatingeach
other at the sametime, using 3 differentfrequenciesr'1,
F2andF3.

Sofar, thedescribednodelis generalanddoesnot de-
pendon the transmittingand receving constraintswvhich
areinvolved in practical systems. We now modelthese
communicatiorconstraints.

All theTXs andRXs usesomekind of diversityscheme
to communicatebetweenthemseles without conwicts.
Thediversityschemeanbefrequeng-basedtime-based,
spatial-based¢ode-basedr somecombinationof them.
For simplicity, we focus our attentionon a frequeng-
basedchemebutthesameholdsfor all theotherschemes,
where “frequeng” in the following descriptionis sub-
stituted by “time-slot”, “antenna-direction’or “CDMA-
code”.

ConsidereachRX tunedon a £xedfrequeng. EachTX
transmitsusingthe frequeny correspondindo the desti-
nationRX. To avoid interferenceye assumehatno more
thanoneTX cantransmitat the sametime usingthe same
frequeng; the schedulerselectsa set of pacletsto be
transferredsatisfyingthesetransmissiorconstraints.Fig-
ure 1 depictssucha scenario. Packets which are at the
TX andcannotbe transmittedare storedin FIFO queues.
To achieve the maximumthroughputand avoid the well-
known HoL blocking problem[2], we assumehat at ev-
ery TX ¢ we have separatequeuedor all RX j. Hence,
the problemof schedulingcan be modeledasa problem
of £ndingmatchingsin a bipartitegraphwith appropriate
costsassociateavith eachedge.

Radio networks with such communicationconstraints
arereferredto asswitch constainednetworks

A. Previouswork

The throughputof schedulingpoliciesin switch con-
strainednetworks was £rst studiedin [3]. Later papers
[4], [?] have addressedhe sameproblemwhenthe net-
work connectvity is time-varying. Similar resultswere
alsofoundin the contect of schedulingfor input-queued
switched6], [7]. But pastwork doesnt considerttheprob-

lem of minimizing enegy. As we shallsee this extracon-
straintineuenceghe designof schedulingalgorithmssig-
niEcantly

[11. THE MINIMUM-ENERGY SCHEDULING PROBLEM

The minimum-enegy schedulingproblemcanbe mod-
eledasamatchingproblemwith anadditionalenegy con-
straint. Formally, the min-energy optimization problem
is:

min E(y) (2)

Z%:j =1 Z%’j =1 3)
i J

Yij > Nij 4)

where (3) correspondgo the non-idling constraints,and
(4) follows from (1). Note thatthe sameproblemcanbe
formulatedin termsof power-minimizationandtherethe
costfunctionwill be P(~).

Now supposewe can efEciently solve the abore op-
timization problem and obtain I'.  Then given that I
is a doubly-stochastienatrix, the Birkhoff-von-Neumann
(BvN) decompositiorallows usto write it as(for example,
se€8]):

I'=>"a,M
k

Zakzl
k

whereM,, arepermutatiormatrices.Theschedulingalgo-
rithm thenchoosesnatchingM}, for «;, fractionof time.

We demonstratéhe abore conceptwith a simpleexam-
ple with N = 2. For simplicity, Rysax,; = 1, andit is
giventhat:

A1l A1
A pu—
[/\21 /\22}
Any feasiblesolutioncanbewritten as:
T 1—=z
I(z) = [1 -z ]

with (4) becomingzx > z; andx < zy, wherex; =
max{/\n, AQQ} andzy = min{l — )\12, 1-— Agl}. The
optimizationproblemis ming<,<; F(z) andits optimal
solutionz,,; canbeeasilycomputed:

z* if zp<z*<zg
Topt = § TL if z*<axp
TH if o*>axy

wherez* solves(dE(x)/dx)|z=a+ = 0.



A. Exampleof costfunction

In thissectiorwe discusspeci£enegy andpower cost
functionsto shav that the assumptionsn our modelare
realistic. More comple radio-communicatiomodelsalso
satisfy theseassumptiongl]. Let the transmitpower at
TX be P; thenthe receved power atthe RX is P x G
where G is a gain factor (dueto propagtionloss, G <
1). ThechannelcapacityC, measuredn bpsis (Shannon

capacity):
1 PG
C: §log2 <1+T>

whereN is the noisepower. Henceto transmitatrateC,
the powerrequiredis: P = N/G x (22¢ —1).
Thetotal amountof enegy spentF;; (7') is givenby:

Eij(T) = Tvi; Pij e
ij

= Tv;; -1 (5

Hence the averagepower spenton long termis givenby:

. 1
Byj(yy) = lim o Ejj(T)
N 2R N 2/\_./ -
= Yij (2 ij 1) = Yij (2 ij/ Vi _ 1)
ij GU ij G7]

It canbe shown that both P;;(~y;;) and E;;(v;;) arecon-
vex functions,andhencetheassumptionsf ourmodelare
met.

IV. SOLUTION OF THE MIN-ENERGY SCHEDULING
PROBLEM

The minimum-enegy problemfor N TXs-RXs canbe
solved as a corvex optimization problem, involving N2
variablessatisfyingN? + 2N constraints Standardneth-
odsto solve this probleminvolveinvertinga (N2 +2N) x
(N? 4+ 2N) matrix, whosecompleity is approximately
O(NY). We now wishto exploit the structureof the prob-
lemto obtainfastermethoddo solve the problem.

We have developedtwo methods:the £rstis anitera-
tive procedureandthe secondoneis an e-approximation
schemefor ary € > 0. In thefollowing, we will referto
f(v) asthe genericcost function (E(v) or P(y)) to be
minimized.

A. Optimallterative solutionfor the Sthedulingproblem

The proposedterative procedurgequiresthe computa-
tion of aninitial 4° whichis afeasiblesolution,satisfying
(3) and(4). We referto [8]:

Propositionl: If a matrix A = [\;;] is doubly sub-
stochastic,then there exists a doubly stochasticmatrix
S = [Sij] suchthat: Sij > ;\ijf VZ,]

Duringtheinitializationofouralgorithm,fy?j is setequalto
ary s;; satisfyingthe previous proposition. An algorithm
to computeS with a computationatompleity of O(N?)
is proposedn [8].

Let v bethe solutionat the endof iterationk. We ob-
tainthe next iterateasfollows:
Stepl: Building the residualgraph
Build the following bipartite direct graph, with a set of
left-mostverticesV; anda setof right-mostverticesVy.
Eachvertex v € V; corresponds$o a TX, andeachvertex
in v € Vp correspondso a RX. An edge(i, j) connects
v; € Vitov; € Vo if %kj < 1, its capacityKj; is setequal
to Kij = 1 — .. An edge(j,i) connectsu; € Vp to
v; € Viif yfj — 5\1-]- > 0, its capacityK; is setequalto
Kji =f — Xij. Edge(i, j) is associatedostc;;:

0

_ Y k
= ij(v)

Yig =L

C; 3

or, equivalently, thecostvectoris V f(+*). A cyclein such
a directedbipartitegraphis a collectionof edgesforming

two matchingst* and=— with 7+ having all edgesfrom

V1 to Vp andn~ having edgesfrom V to V;. The cost
of suchacycleis givenby (V f(v*), 7+ — n—), wherethe
operator(-, -) is thescalarproduct.

Stepll: Finding a negative-cycle

In the abore constructedresidual-bipartitegraph, search
for ary cycle with negative cost. Therearetwo possibili-
ties:(A) anggative cycle exists,or (B) nosuchcycle exists.

If its case(B) thenthe algorithmstops.Next we consider
thecase(A):

Suchacycle canbedecomposeihto two matchingsr
and7~ suchthat(V f(v*), 7+ — 7~) < 0. Notethatfor
all the nodesoutsidethe cycle, it is possibleto connect
arny unmatchedeft-mostnodewith ary unmatchedight-
mostnode. Add theseedgesto both 7 and=~ to obtain
completematchingsr* andzr .

Now compute:

b-i-
b” = min{Kj; : (j.1) € W_,'yfj > 5\1]}
b*, if exists,is suchthat f(v* — b*n+ +b*77) < f(4")

min{ K;; : (i, ) € 7r+,’71kj <1}

Notethatb™, b~ > 0. b* canbe computedasfollows:
6 =argmin{f(* —er* +en7) — f(4")}  (6)

Let,
e(k) = min{b", b7, b*}
Thenthenew iteratey**! is obtainedasfollows:

AR = Ak _e(k)r T + e(k)m™



Beforeproceedindurther, obserethat(6) requiresalocal
minimum searchprocedure.This canbe doneusing, for
example,ary dichotomicproceduré-

Theoeml: Let 4 bethe optimalsolution. If the algo-
rithm stopsatiterationk theny* = 7.

Proof: If thealgorithmstopsatiterationk, thenthere
doesnot exist ary cycle in the graphwith cost< 0. We
now shaw thatthisimplies: v = 7.

Denote~* by v4. Supposey* is not the optimal solu-
tion, thatis, ¥4 # 7. Thenf(y4) > f(3). Considerthe
following vector:

v(O) =7 +0(7 -7 be

Since f(vy) is a convex function,¥ is the only optimal so-
lution,

[0,1]

f(v(0)) = (1=0)f(~

for 0 € (0, 1]

f(A—0)y" +07) < A +0f(7)
< f(v*) (7)

By recalling the de£nitionof the objective function, we
canwrite:

v) = Zgij(%j) = ) = Zgij(vij(e))
Obsene that:
55! 0(0) =3 Zg S
and:

_ 0 _
v (0) = ’Yﬁ + 0335 — ’7«3) = %vzj(@) = Yij — 7{}

Note that vector V f(v) is given by termsin the form
09i;(vij)/0vij, hence,

o) I CRREEY
At thesametime,
) L f(0) = f(v(0)
5 (/O] = fim ; <0

wherethelastinequalityholdsbecaus®f (7). Hence,

(V.7 —2H <0 (8)

' For example,sayeo be the minimum precisionsetto computethe
minimum. Let h(z) = f(y* — 2nt + 277) — f(v*). Letzr(0) =
0 andz;(0) = min{b*,b”}. At iterations do the following. If
h(zr(s)) < h(zu(s)) thenzr(s +1) = zr(s) andzm(s + 1) =
(zn(s)+xu(s))/2. Otherwiserr(s+1) = (zr(s)+zu(s))/2and
zu(s+1) = zu(s). f (zu(s+1) —zr(s + 1)) < e thenstop,
otherwisestartiterations + 1.

Now we canwrite ¥ — 4 Z o; 7TL+Z o T,
with two matchingsr;, 7; and", 0" + 3=, 0 =0, Wlth
o > 0ando; < 0. Wecannow compute:

1), Zcrjm + Zafﬂﬁ
( J

€)
Note that (Vf(y )U"'m) > (Vf(v4), 0 m,) and
(Vf(vy )a ;) > (Vf(y?),o; 7), beingr* the maxi-
mumwelghtmatchlngandw* themlnlmumwelghtmatch-
ing. Hence,(9) becomes:

(Vi) 7= =

(V)7 =) > (Vv
= NZUZ-

By recalling (8), (Vf(y4), m — 7*) < 0. This means
that7* and, form a cycle with a negative costandthis
contradictsour assumption. |

Za

), e — )

A.1 Compleity of theoptimalalgorithm

Considemasingleiterationof thealgorithm. Stepl of the
algorithmrequiresoneto updatethe costsand capacities
of O(N?) edges Stepll requiresto £ndary negative-cost
cycle, andthis canbe doneusinga traditional depth-£rst
searchwith compleity O(N?). The binary-searctof a
“good” ¢ > 0 for augmentingeows on a boundedsize
interval (to some £xed-granularity)is of constantcom-
plexity. Hence,the overall compleity of eachiteration
isO(N3).

The maximumvalue of objective function f(-) of ary
feasibley is boundedabore by thevalueof objective func-
tion for I' = A. Sincethe optimalvalueis non-neative,
theaboveiterative algorithmdoesnot needto decreas¢he
value of enegy by morethana constantamount. Given
thatthe enegy functionis continuousandhascontinuous
boundedderwatives, which are null only at the ‘uncon-
strained’optimal value; the numberof iterationstaken to
reacha value at mostJ away from the optimal value is

O (1/8) whered is a function of § and dependson the
dervativesof the costfunction.

B. Approximatesolutionfor the schedulingproblem

The algorithm presentedabore obtainsthe exact solu-
tion via aniterative procedure.In this sectionwe present
a schemethat obtainsan e-approximatesolutionin one-
iteration. The techniquesusedin this algorithmare well
knownin slightly differentformsin othercorvex optimiza-
tion problems.



Let f(v) bethe corvex objective function to be mini-
mizedwith constraintasbefore.By continuityof f, there
existsad(e) > 0 suchthat,givenary feasibley; and-;:

71— 72lee <6(6) = [f(m) = flr)<e (10)

Next createa bipartitegraphG¢ asfollows: asbefore,
thereare N verticesin onepatrtitionrepresentingV TXs,
andN verticesin the otherpartitionrepresentingV RXs.
Add theedgeshetweenT X i andRX j asfollows:

() oneedgeof capacityj\l-j andcost” —oo” (equialently
large enoughnegative constant).

(i) L =1[(1— 5\@‘)/5(6)1 edges/;; — 1 of themareeach
of capacityd(e), andthe lastoneis suchthatthe net ca-
pacity of all edgesbetweenTX i andRX j is 1. Thecost
of n'" edgeis, forn = 1,...,1;; — 1

9ij(Aij +nd(€)) — gij(Aij + (n —1)d(e))
andthe costof thelastedgeis: g;;(1) — gij(\i; + (lij —
1)6(e)).

Add a sources andsink ¢ to the G¢ suchthat, s has
edgesto all N TXs andt hasedgesto from all N RXs.
The costof eachof theseedgess 0 andthe capacityis 1.

Solve for themin-costmaximunrowbetweens andt in
graphGe¢. By constructionthe value of maximumeow is
N. Let~¢ bevalueof suchmin-costmaximunrowfor the
graphGe for the edgesbetweenN TXs and N RXs. We
claimthefollowing theorem:

Theoem?2: Let the actualminimization problemhave
valueOPT = f(7),thenf(r°) < f(7) +e.

Proof. Providedin the longerversionof the paper
|

B.1 Complity of theapproximatedalgorithm

Thealgorithmfor this solutionis effectively a min-cost
maximumeow algorithmfor a network with |E| = N2/
edgesand |V/| 2N nodes. The bestknown algo-
rithm hasa compleity of O(|V||E|log |V |/log |E|), that
is, 0 (N?/6).

V. CONCLUSIONS

This paperconsideredthe minimum enegy/bit trans-
missionschedulingoroblem,arisingin switch-constrained
networks. The problemis shavn to be a constrainedton-
vex optimization problem,whoseoptimal solution mini-
mizesthe enegy spentwhile maximizingthe throughput.
Two algorithmsweredeveloped;onefor £ndingthe opti-
mal solution,andanotherfor £ndingan efEcientapproxi-
mation.

A numberof relatedproblemsremainopenand com-
pelling. First, the delay performanceneedsto be charac-
terized undergenericstochastictrafEc. Second,the as-
sumptionthatthe arrival ratematrix is known oughtto be
relaxedto bettermodelrealisticconditions,andfor devel-
opingefEcienton-linealgorithmsbasedn the stateof the
system.
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