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Abstract

Architectures based on a non-blocking fabric, such as a crosspoint switch, are attractive for use in high-speed LAN switches, IP
routers, and ATM switches. When operating at the highest speed, memory bandwidth limitations dictate that queues be placed at the
input of the switch. But it is well known that input-queueing can lead to low throughput, and does not allow the control of latency
through the switch. This is in contrast to output-queueing which maximizes throughput and permits the accurate control of packet
latency through scheduling. We ask the question: Can a switch with combined input and output queueing be designed to behave
identically to an output-queued switch? In this paper, we prove that if the switch uses virtual output queueing and has an internal
speedup of just four, it is possible for it to behave identically to an output-queued switch, regardless of the nature of the arriving tra$c.
Our proof is based on a novel scheduling algorithm, called Most Urgent Cell First. We "nd that with a speedup of four the most urgent
cell "rst algorithm (or MUCFA) enables perfect emulation of a FIFO output-queued switch, i.e. one in which packets depart in the
same order that they arrived. We extend this result to show that with a small modi"cation, the MUCFA algorithm enables perfect
emulation of a variety of output scheduling policies, including strict priorities and weighted fair-queueing. This result makes possible
switches that perform as if they were output-queued, yet use memories that run more slowly. ! 1999 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Many commercial switches and routers today employ
output-queueing.! When a packet arrives at an output-
queued (OQ) switch, it is immediately placed in a queue
that is dedicated to its outgoing line, where it will wait
until departing from the switch. This approach is known
to maximize the throughput of the switch: so long as no
input or output is oversubscribed, the switch is able to
support the tra$c and the occupancies of queues remain
bounded.

The use of a separate queue for each output means that
#ows of packets for di!erent outputs are kept separate,
and cannot interfere with each other. By carefully sched-
uling the time that a packet is placed onto the outgoing
line, a switch or router can control the packet's latency,
and hence provide quality-of-service (QoS) guarantees.
But output queueing is impractical for switches with high
line rates, or with a large number of ports: the fabric and
memory of an N!N switch must run N times as fast
as the line rate (or the bandwidth of the input/output
lines). Unfortunately, at the highest line rates, memories
with su$cient bandwidth are simply not available. For
example, consider a 32!32 OQ switch operating at a line
rate of 10 Gbit/s. If we use a 512-bit memory datapath
(that is, 512 is the number of bits that can be simulta-
neously written into or read out of the memory), we
require memory devices that can perform both a write
and a read operation every 1.6 ns.

On the other hand, the fabric and the memory of an
input-queued (IQ) switch need only run as fast as the
line rate. This makes input-queueing very appealing for
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switches with fast line rates, or with a large number of
ports. That is, for a given speed of memory it is possible
to build a faster switch; or for a given speed switch it is
possible to use slower, lower-cost memory devices. For
example, consider again the 32!32 switch operating at
a line rate of 10 Gbit/s. If the switch uses input-queueing
instead of output-queueing, we can use memory devices
that perform a write and a read operation every 51.2 ns.
This is readily achievable with commercially available
memories.

But the main problem of IQ switching is head-of-line
(HOL) blocking, which can have a severe e!ect on
throughput. It is well known that if each input maintains
a single FIFO, then HOL blocking can limit the through-
put to just 58.6% (Karol, Hluchyi & Morgan, 1987).

One method that has been proposed to reduce HOL
blocking is to increase the `speedupa of a switch.
A switch with a speedup of S can remove up to S packets
from each input and deliver up to S packets to each
output within a time slot, where a time slot is the time
between packet arrivals at input ports. Hence, an OQ
switch has a speedup of N while an IQ switch has
a speedup of 1. For values of S between 1 and N packets
need to be bu!ered at the inputs before switching as well
as at the outputs after switching. We call this architecture
a combined input and output queued (CIOQ) switch.

Both analytical and simulation studies of a CIOQ
switch which maintains a single FIFO at each input have
been conducted for various values of speedup (Chang,
Paulraj & Kailath 1994; Iliadis & Denzel, 1990; Gupta
& Georganas, 1991; Oie, Murata, Kubota & Miyahara,
1989; Chen & Stern, 1991). A common conclusion of
these studies is that with S"4 or 5 one can achieve about
99% throughput when arrivals are independent and iden-
tically distributed at each input, and the distribution of
packet destinations is uniform across the outputs.

But it has been shown that a throughput of 100% can
be achieved with a speedup of just one, if we arrange the
input queues di!erently. That is, HOL blocking can be
eliminated entirely using a scheme known as virtual out-
put-queueing in which each input maintains a separate
queue for each output. It has been shown that for inde-
pendent arrivals, the throughput of an IQ switch can be
increased to 100% (McKeown, Anantharam & Walrand,
1996). We may draw the conclusion: Speedup is not neces-
sary to eliminate the ewect of HOL blocking.

In practice, we are not only interested in the through-
put of a switch, but also in the latency of individual
packets. This is particularly important if a switch or
router is to o!er QoS guarantees. Packets in an IQ
switch not only contend for an output, they also contend
for entry into the switch fabric with packets that are
destined for other outputs. We call this phenomenon
input contention. Each input can deliver only one packet
into the fabric at a time; if it has packets for several free
outputs, it must choose just one packet to deliver, hold-

ing other packets back. This places a packet at the mercy
of other packets destined for other outputs. This is in
stark contrast with output-queueing, where a packet is
una!ected by packets destined for other outputs. We
may draw the conclusion: To control delay, we need a
mechanism to eliminate input contention.

Previous studies of CIOQ switches make no guaran-
tees about the delay of an individual packet; instead they
consider only average delay and throughput. We are
interested in controlling the delay of individual packets.
Hence our result subsumes previous work, and our ap-
proach is quite di!erent. Rather than "nd values of
speedup that work well on average, or with simplistic and
unrealistic tra$c models, we "nd the minimum speedup
such that a CIOQ switch behaves identically to an OQ
switch for all types of tra$c. Here, `behave identicallya
means that, when the same inputs are applied to both the
OQ switch and to the CIOQ switch, the corresponding
output processes from the two switches are completely
indistinguishable. Two processes are indistinguishable if
and only if their packet sequences are identical* both in
terms of packet-occurence times and packet identities.
Further, we place no restrictions on arrivals: our results
apply for any type of tra$c, even if the arrivals saturate
the switch.

The need for a switch that can deliver a certain grade
of service, irrespective of the applied trazc is particularly
important given the number of recent studies that show
how little we understand about network tra$c processes
(Leland, Willinger, Taqqu & Wilson, 1993; Paxson &
Floyd, 1995). Indeed, a sobering conclusion of these
studies is that it is not yet possible to accurately model or
simulate a trace of actual network tra$c. Furthermore,
new applications, protocols or data-coding mechanisms
may bring new tra$c types in future years. A well-
designed network switch should perform predictably in
the face of all types of arrival process.

In this respect the formulation presented here is both
novel and powerful: We seek algorithms that enable
a CIOQ switch to perform exactly the same as an OQ
switch, using memory devices operating more slowly, for
arbitrary switch sizes, and for arbitrary input tra$c pat-
terns. Speci"cally, we exhibit a packet scheduling algo-
rithm that enables a CIOQ switch with a speedup of four
to mimic an OQ switch employing a variety of scheduling
policies including, FIFO, Strict Priority and Weighted
Fair Queueing (WFQ). We also discuss the complexity of
implementing the algorithms we propose.

Since this formulation of the problem became known,
some interesting results including algorithms and
implementations have been discovered, most notably
Charny, Krishna, Patel & Simcoe (1998) Chuang, Goel,
McKeown & Prabhakar (1999) and Krishna, Patel,
Charny & Simcoe (1998). The thesis of Charny (1998)
addresses the problem of providing QoS in crossbar
switches using speedup.
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Fig. 1. A schematic of a CIOQ switch.

The paper is organized as follows. Sections 2 and
3 introduce the notation and terminology that will be
used in the sequel. Sections 4 and 5 prove that it is
possible to exactly emulate a FIFO OQ switch by
a CIOQ switch so long as the fabric speedup is at least 4.
Section 6 extends this result to OQ switches that employ
a variety of `monotonea output scheduling policies, in-
cluding Strict Priority and Weighted Fair Queueing.
Section 7 discusses the complexity of implementing the
algorithms we introduce. Section 8 concludes.

2. Exact mimicking of FIFO output-queueing

Consider the single stage, N!N switch shown in
Fig. 1. Throughout the paper we assume that packets
begin to arrive at the switch from time t"1, the switch
having been empty before that time. Although packets
arriving to the switch or router may have variable length,
we will assume that they are treated internally as "xed
length `cellsa. This is common practice in high perfor-
mance LAN switches and routers; variable length
packets are segmented into cells as they arrive, carried
across the switch as cells, and reassembled back into
packets again before they depart (Partridge et al., 1998;
Cisco Systems GSR 12000 Technical Product Descrip-
tion). We take the arrival time between cells as the basic
time unit. The switch is said to have a speedup of S, for
S3!1, 2,2,N" if it can remove up to S cells from each
input and transfer at most S cells to each output in a time
slot. A speedup of S requires the fabric of the switch to
run S times as fast as the input or output line rate. As
mentioned in the introduction, the extreme values of
S"1 and S"N give a purely input-queued (IQ) and
a purely output-queued (OQ) switch, respectively. For
1(S(N bu!ering is required both at the inputs and at
the outputs, and leads to a combined input and output
queued (CIOQ) architecture. The following is the prob-
lem we wish to solve.

The speedup problem: Determine the smallest value of
S, say S

!"#
, and an appropriate cell scheduling algorithm

# that

1. allows a CIOQ switch to exactly mimic the perfor-
mance of an output-queued switch (in a sense that will
be made precise),

2. achieves this for any arbitrary input tra$c pattern,
3. is independent of switch size.

In an OQ switch, arriving cells are immediately for-
warded to their corresponding outputs. This (a) ensures
that outputs never idle so long as there is a cell destined
for them in the system, and (b) allows the departure of
cells to be scheduled to meet latency constraints. Because
of these features an OQ switch has the highest possible
throughput and allows a tight control of cell latency
which is important for supporting multiple qualities-of-

service (QoS). We will require that any solution of the
speedup problem possesses these two desirable features;
that is, a CIOQ switch must exactly mimic the perfor-
mance of an OQ switch in the following sense.

Identical Behavior : Consider an OQ switch whose out-
put bu!ers are "rst-in-"rst-out (FIFO). A CIOQ switch is
said to behave identically to an OQ switch if, under
identical inputs, the departure time of every cell from
both switches is identical.

To complete the description of the model, we refer to
Fig. 1 again. All input and output bu!ers are assumed to
have in"nite capacity. Each input maintains a separate
FIFO queue for cells destined for each output. Hence,
there are N FIFO queues at each input. Call these queues
Virtual Output Queues (<OQs)* with the understanding
that <OQ

!"
bu!ers cells at input i destined for output j.

Finally, we wish to make explicit the assumption that the
output bu!ers of the CIOQ switch are not necessarily
FIFO, although the OQ switch whose performance it is
mimicking has FIFO output bu!ers.

A scheduling algorithm selects a matching between
inputs and outputs in such a way that each non-empty
input is matched with at most one output and, con-
versely, each output is matched with at most one input.
The matching is used to con"gure the switch before cells
are transferred from the input side to the output side.
A CIOQ switch with a speedup of S is able to make
S such transfers each time slot.

3. MUCFA: A scheduling algorithm that achieves
identical behavior

In this section we present a novel scheduling algorithm
that allows a CIOQ switch with a small speedup to
behave identically to an OQ switch for any input tra$c.
The algorithm is called the Most Urgent Cell First Algo-
rithm (MUCFA).

We begin by introducing the notion of a `phasea.

De5nition 1. For a switch with speedup S, a time slot is
said to be divided into S equal phases. During each phase
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Fig. 2. A CIOQ switch (left) and its reference OQ switch (right).

!
!
, 14i4S, the switch can remove at most one cell from

each input and can transfer at most one cell to each
output.

It is assumed that cells arriving at the switch will do so
at the beginning of phase !

!
, while departures from the

switch take place at the end of phase !
#
.

A crucial aspect of MUCFA is the concept of the
`urgency of a cella. Recall that the de"nition of `identical
behaviora requires a CIOQ switch to identically match
cell departures with an OQ switch when they are both
subjected to identical inputs. Therefore, our de"nition of
identical behavior requires a CIOQ switch and a refer-
ence OQ switch. This is illustrated in Fig. 2.

The urgency of a cell is "rst explained with respect to
the reference OQ switch. Every arriving cell to this switch
is stamped with a number, which is its `urgency valuea at
that time. This number indicates the time from the pres-
ent that it will depart from the switch. At each successive
time slot, the urgency value is decremented by one. When
the value reaches zero, the cell will depart. Alternatively,
since the bu!ers of the OQ switch are FIFO, the urgency
of a cell at any time equals the number of cells ahead of it
in the output bu!er at that time.

More precisely, if a cell c arrives at input i at time
¹ and departs from output j at time D5¹, its urgency at
any time R, ¹4R4D, equals D!R. Suppose there are
two cells, a and b, in the bu!er at output j at some time,
with urgencies u

$
and u

%
, respectively. Cell a is said to be

`more urgenta than b if u
$
(u

%
. Given that the output

bu!er is FIFO, it is clear that if b arrived at the switch
after a then necessarily u

$
(u

%
. If a and b arrive at the

same time, then u
$
(u

%
i! the number of the input port at

which a arrives is less than the number of the input port
at which b arrives. That is, the OQ switch is assumed to
transfer cells from inputs to outputs in a round robin
fashion starting with the smallest numbered input "rst.

Now consider the CIOQ switch. By assumption, the
same input is applied to it and to the OQ switch. (Thus
for every cell c in the CIOQ switch, there is an exact copy
in the OQ switch. We shall refer to this exact copy as the
`clone of cell ca.) Therefore, cell c arrives at input i at time

¹ and is destined for output j. Since the speedup may
now be less than N, c may not be forwarded to the bu!er
at j during time slot ¹. Note that c may not be required at
output j for some time, because its clone in the OQ switch
is some distance from the HOL. Therefore, the urgency is
an indication of how much time there is before c is
needed at its output if the CIOQ switch is to mimic the
behavior of the OQ switch. This motivates the following
de"nition.

De5nition 2. The urgency of a cell in a CIOQ switch at
any time is the distance its clone is from the head of the
output bu!er in the corresponding reference OQ switch.

The cells in any output bu!er of the CIOQ switch are
arranged in increasing order of urgencies, with the most
urgent cell at the head. Once cell c is forwarded to its
output in the CIOQ switch, its position is determined by
its urgency.

We are now ready to describe the Most Urgent Cell
First Algorithm (MUCFA).

Phase-by-phase description of MUCFA:

1. At the beginning of each phase outputs try to obtain
their most urgent cells from the inputs.

2. If more than one output requests an input, then the
input will grant to that output whose cell has the
smallest urgency number. If there is a tie between two
or more outputs, then the output with the smallest
port number wins.

3. Outputs that lose contention at an input will try to
obtain their next most urgent cell from another (un-
matched) input.

4. When no more matching of inputs and outputs is
possible, cells are transferred and MUCFA goes to the
next phase (Step 1).

The operation of MUCFA over one time slot is illus-
trated by means of an example in Fig. 3. Note that at the
beginning of phase 1, both outputs 1 and 2 request
input 1 to obtain their most urgent cells. Since there is
a tie in the urgency of their requests, by our assumption
input 1 grants to output 1. Output 2 proceeds to obtain
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Fig. 3. The operation of a 3!3 CIOQ switch with S"2 over one time slot under MUCFA. The dashed lines indicate the `output threada of the cell
with urgency 5 in VOQ

"#
.

its next most urgent cell which happens to be at input 2
and has an urgency of 3.

We can make the following key observation about the
working of MUCFA: During any phase, there are only
two reasons that a cell will not be transferred from its
input to its output.

Input contention: The output is ready to receive the cell,
but the input wants to send a more urgent cell. (In the
example of Fig. 3, output 2 cannot receive its most urgent
cell in phase 1 because input 1 wants to send to output 1.)

Output contention: The input wants to send the cell,
but the output wants to receive a more urgent cell. (In
phase 2 of the example of Fig. 3, input 2 cannot send
its most urgent cell because output 3 wants to receive
from input 3.)

3.1. MUCFA and the stable marriage problem

The way in which MUCFA matches inputs and out-
puts is a variation of the stable marriage problem, which
was "rst introduced by Gale and Shapley (1962). Solu-
tions to the stable marriage problem "nd a `stablea and
complete matching between inputs and outputs. A match
is unstable if there is an input and output who are not
matched to each other, yet both prefer the other to their
partner in the current matching. A stable matching is any
matching that is not unstable. There exists a well-known
algorithm (the Gale}Shapley algorithm, or GSA) that
will always "nd a stable matching in N" iterations.

MUCFA can be implemented using the GSA with
preference lists as follows. Output j "rst assigns a prefer-

ence value to each input i, equal to the urgency of the cell
at head-of-line of <OQ

!"
. If <OQ

!"
is empty then the

preference value of input i for output j is set to #R. The
preference list of the output is the ordered set of its
preference values for each input. Likewise, each input
assigns a preference value for each output, and creates
the preference list accordingly. A matching of inputs
and outputs can then be obtained using GSA. The rela-
tionship between the stable marriage problem and cell
scheduling is explored in more detail in McKeown
(1995).

4. The main result

Theorem 1. An N!N CIOQ switch operating under
MUCFA can behave identically to an OQ switch, regardless
of input trazc patterns and for arbitrary values of N, if its
speedup S54.

Theorem 2, which is a strengthening of Theorem 1 will
be proved in the next section. For now, we will explore
some of the implications of Theorem 1, assuming that it is
true. This will allow us to come to certain conclusions
which help in the statement and proof of Theorem 2. In
order to proceed, we will need to introduce the concept of
`output threadsa and `input threadsa.

De5nition 3. At any time, the output thread of a cell
c which is queued in <OQ

!"
is the ordered set of all cells c$

which are queued in <OQ
!$"

, 14i$4N, and are more
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urgent than c. The thread of output j is the output thread
of its least urgent cell.

For example, the output thread of the cell with urgency
"ve in VOQ

"#
at the beginning of phase 1 (see Fig. 3) has

cells with urgencies !0,1,2,3,4". The output thread of the
same cell at the beginning of phase 2 has cells with urgen-
cies !1,2,3,4". The dashed lines in Fig. 3 indicate the output
thread of this cell at the beginning of phases 1 and 2.

De5nition 4. The input thread of a cell c queued in <OQ
!"

is the ordered set of all cells c$ which are in <OQ
!"$

,
14j$4N, and are more urgent than c. If cells p and
q have the same urgency then p is placed before q in an
input thread if p's output has a smaller number than q's
output. The thread of input i is the input thread of its least
urgent cell.

For example, the input thread of the cell with urgency
three in VOQ

!#
at the beginning of phase 1 (see Fig. 3)

has cells with urgencies !1,1,2". The input thread of the
same cell at the beginning of phase 2 has cells with
urgencies !1,2".

With these de"nitions, one may draw some inferences
about MUCFA. (The following discussion is intended to
motivate the statement and proof of Theorem 2 and is
therefore presented in an informal manner.) Consider
a CIOQ switch with speedup S operating under MUCFA
from time 1, having been empty before that time. It will
fail to behave identically to an OQ switch at time ¹ if an
input thread has S#1 or more cells with urgency 0. If
this should happen, then clearly there are not enough
phases to transfer all the most urgent cells to their out-
puts, and MUCFA fails. Therefore, if MUCFA causes
a CIOQ switch with speedup S to behave identically to
an OQ switch, it must be the case that every input thread
has S or fewer cells with urgency 0 at the beginning of every
time slot. Conversely, if there are always S or fewer cells
with urgency 0 at each input, then MUCFA never fails.
We record this in the following lemma.

Lemma 1. A CIOQ switch with speedup S operating under
MUCFA behaves identically to an OQ switch if, and only if,
there are S or fewer cells with urgency 0 in each input at all
times.

Since cells in an input thread are ordered according to
urgency, this is the same as saying that a cell with ur-
gency 0 cannot appear in the (S#1)th position in any
input thread. Similarly, it is also clear that a cell with
urgency 1 cannot appear in the (2S#1)th position at any
time (assuming that every 0 occupies a position less than
or equal to S), as this would lead to a failure of MUCFA
in the next cell time. In general, Lemma 1 is equivalent to
the statement: A CIOQ switch with speedup S operating
under MUCFA behaves identically to an OQ switch if,

and only if, a cell with urgency l cannot occupy position
(l#1)S#1 in an input thread at any time.

If we assume that MUCFA behaves identically to an
OQ switch at all times when the speedup equals S, it is
clear that it will also behave identically at every speedup
S$'S. Indeed, more ought to be true: Under identical
inputs if a tagged cell c is forwarded to its output
F phases after its arrival when the speedup is S, then it
must be forwarded to its output within F$4F phases
when the speedup is S$. In particular, if c belongs to the
thread of input i at time ¹ when the speedup is S$, then it
also belongs to the thread of input i at time ¹ when the
speedup is S. This implies the following crucial point.

Key observation. If MUCFA behaves identically to an
OQ switch at speedup S, then at any speedup S$5S a cell
with urgency l cannot appear at position S(l#1)#1 in
an input thread.

In Theorem 2 we prove the following stronger statement
for S54: At the beginning of each time slot ¹, a cell with
urgency l does not occupy position l#1 in an input
thread; excluding any cell that might have just arrived. If
this property were true for all input threads at all times
then clearly MUCFA never fails to behave identically to
an OQ switch, and Theorem 1 is veri"ed.

5. A speedup of four su7ces

In this section we shall prove Theorem 2 from which
Theorem 1 follows as a corollary. But "rst, we need to
develop the following lemma.

Lemma 2. Consider a tagged cell c which, at the beginning
of time slot ¹, is at an input of a CIOQ switch with speedup
S operating under MUCFA. If c remains in its input at the
end of time slot ¹ and is not forwarded to its output, then
a totality of S cells either from c's input thread or from its
output thread must be delivered to their outputs during time
slot ¹.

Proof. This is a consequence of input and output conten-
tion. That is, c is not forwarded to its output during
a phase either because a cell in its input (output) thread
has kept its input (output) busy. And there are S such
phases in each time slot. "

Theorem 2. Consider an N!N CIOQ switch operating
under MUCFA with a speedup of S. Suppose that the switch
has been operating from time slot 1, having been empty
before that time. Let S!(t) be the thread at input i just at the
beginning of time slot t, before any new cells have arrived.
Then for each i and for each t, it is never the case that a cell
with urgency l occupies position l#1 in S!(t) so long as
S54.
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Discussion. Observe that if Theorem 2 is true, there can
never be more than two cells at an input with urgency
0 at any time. Indeed, if there are two cells with urgency
0 at an input at time t and Theorem 2 is true, then one of
them must have arrived at the input at the beginning of
time t. Thus, every cell with urgency 0 will be at its
respective output at the end of the second phase of every
cell time (either because it was already there or because it
was transferred in phase 1 or 2). This ensures that the
CIOQ switch can mimic the OQ switch at all times.

We now brie#y describe the idea of the proof of
Theorem 2, which is proved by contradiction. Thus, we
suppose that at some time ¹ the conclusion of the the-
orem is false. In other words, there is a cell, say p, which
appears farther in an input thread than its urgency value.
We argue that the only way this could have happened is
for MUCFA to have transferred cells more urgent than
p and therefore left p behind at its input. But, these more
urgent cells must belong either to p's input thread or to
p's output thread, as these are the only cells that could
have taken precedence over p. If we could bound the total
number of these more urgent cells (taking into account
cells which were already present when p arrived and also
new arrivals), then since Lemma 2 guarantees a minimum
rate at which the more urgent cells are drained, we can
obtain the desired contradiction. The details are as fol-
lows.

Proof of Theorem 2. Suppose ¹ is the "rst time the
thread, S%(¹), of input an I has a cell with urgency
l occupying position l#1. (To be more precise, we must
suppose that at time ¹ a cell with urgency k occupies
position k#1 or greater. However, should a cell with
urgency k occupy position k#m for m'1, then there
must be a cell in the input thread with urgency l4k
occupying position l#1. This is simply a consequence of
cells in an input thread being ordered according to non-
decreasing urgency values, as a moment's re#ection
shows.) Consider the thread S%

&'!
(¹)LS%(¹) consisting of

the "rst l#1 cells of S%(¹). Note that the least urgent cell
of S%

&'!
(¹) has an urgency of l.

(1) Let c be the cell belonging to S%
&'!

(¹) that arrived
earliest, and let u be its urgency at time ¹. It follows
that u4l. It also follows that c arrived at least
l#1 cell times ago.

(2) Suppose c actually arrived at time ¹!A. By (1)
A5l#1, and c's urgency upon arrival equals
u#A precisely.

(3) By Lemma 2, every time slot that c is in the system
on the input side, a totality of S cells belonging to
the input and/or output threads of c must be
sacri"ced in order to prevent c from going to its
output.

(4) Since c arrives at time ¹!A and remains in its
input until time ¹!1, the number of `sacri"ce

cellsa required during this time period equals the
number of phases in [¹!A,¹!1] which equals
S!A.

(5) By assumption of ¹ being the "rst time at which
things go wrong, the maximum number of cells in
c's input thread at time ¹!A is less than or equal
to u#A. These are possible `sacri"ce cellsa.

(6) By de"nition of urgency, the maximum number of
cells in c's output thread at time ¹!A is less than
or equal to u#A. These are also possible `sacri"ce
cellsa.

(7) Putting (5) and (6) together, when c arrives, the
maximum number of sacri"ce cells in its input and
output threads is no more than 2(u#A).

(8) Between ¹!A#1 and ¹!1, the maximum
number of cells that can arrive at input I is less than
or equal to A!1. Of these arrivals l will belong to
S%
&'!

(¹) and hence cannot be `sacri"ce cellsa. This
implies that the maximum number of sacri"ce cells
that can arrive at input I after c is no more than
A!1!l.

(9) A grand total on the maximum possible `sacri"ce
cellsa is (putting (7) and (8) together): 2(u#A)#
A!1!l"3A#u#(u!l)!1. But,

3A#u#(u! l)!143A#u(since u4l )

44A!1(since u4l4A!1).

(10) The number in (9) falls short of the requirement in
(4) if S54. This contradiction proves the the-
orem. "

6. Extension to arbitrary output scheduling policies

So far we have only considered emulating an OQ
switch that employs the FIFO scheduling policy using
a CIOQ switch. We have done this by providing an
algorithm, MUCFA, that uses `urgenciesa to aid its
scheduling. These urgencies were inferred from the refer-
ence OQ switch.

We will now show that MUCFA can be used to mimic
an OQ switch employing a wider range of output sched-
uling policies than just FIFO. Essentially, the extension
to these non-FIFO scheduling policies involves very little
change to the basic structure of MUCFA and to the
theorems of the previous section. We shall "rst need to
develop some notation and specify the class of output
scheduling policies that will be considered.

De5nition 5. An output scheduling policy is a rule operat-
ing independently at each output port and determines the
order in which cells depart from that output.

Thus, if an output employs the FIFO policy, the depar-
ture order of cells is determined by their arrival times
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(and input port numbers, if multiple cells arrive at di!er-
ent inputs for that output in a single cell time).

De5nition 6. An output scheduling policy is said to be
monotone if, once it has been determined, the relative
departure order of any two cells p and q does not change
over time.

A simple way of visualizing this class of policies is to
imagine a single `push-ina queue at the output, where an
arriving cell may be pushed into any location but cells
may depart only from the front. Note that newly arriving
cells may increase the absolute departure time of an
existing cell, but cannot change the position of the exist-
ing cell relative to another.

The importance of the class of monotone policies is
that it includes several policies that are commonly used
to provide quality-of-service (QoS) guarantees. For
example, it includes the Strict Priority Policy (wherein
certain #ows have a strictly higher priority than other
#ows), and Weighted Fair Queueing (WFQ) (in which the
bandwidth at the output port is shared among outgoing
#ows in proportion to their declared weights).

De5nition 7. The expected departure time, ED¹
(
(t), of

a cell c at any time t is the time from the present that it
would depart from the switch if no new cells arrived to
the switch after time t.

Thus ED¹
(
(t) is the same as the urgency of c when the

output scheduling policy is FIFO. For FIFO output
scheduling policies ED¹(t) decreases exactly by one every
time slot. This need not be the case in general since new
cells may arrive for an output that take precedence over
an existing cell, causing its ED¹ to increase.

6.1. MUCFA for QoS

We now show how a variant of the algorithm MUCFA
may be used in a CIOQ switch with a speedup of four to
enable it to behave identically to an OQ switch employ-
ing any monotone scheduling policy.

Let MUCFA-E be the algorithm that during any
phase of time slot t schedules the transfer of cells from
inputs to outputs in exactly the same manner as
MUCFA, except for basing its scheduling decisions on
a cell's ED¹(t) instead of its `urgencya.

Corresponding to De"nitions 3 and 4, we have the
following de"nitions.

De5nition 8. At any time t, the output thread, O¹
(
(t), of

a cell c which is queued in <OQ
!"

is the ordered set of all
cells c$ queued in<OQ

!$"
, 14i$4N whose ED¹ is small-

er than the ED¹ of c.

De5nition 9. At any time t, the input thread, I¹
(
(t), of

a cell c queued in <OQ
!"

is the ordered set of all cells c$

which are in <OQ
!"$

, 14j$4N whose ED¹ is smaller
than the ED¹ of c. If two cells p and q at input i have the
same ED¹, then p is placed before q in an input thread if
p's output has a smaller number than q's output.

In light of the above de"nitions, we paraphrase The-
orem 2 in a form that is more suitable for our purpose.
Thus Theorem 2 is equivalent to the following statement:

Theorem 3 (Restatement of Theorem 2). Consider an
N!N CIOQ switch operating under MUCFA with
a speedup of S54. Suppose that the CIOQ switch is
mimicking a FIFO OQ switch. Suppose also that the CIOQ
switch has been operating from time 1, having been empty
before then. At any time t51 and for every cell c,
I¹

(
(t)4ED¹

(
(t), excluding any new arrivals to the switch

at time t.

Proof. Observe that ED¹
(
(t) is the same as the

urgency of c at time t (De"nition 2), since the OQ
switch is employing the FIFO policy. By the conclusion
of Theorem 2, I¹

(
(t)4u

(
(t). Thus Theorem 3 is

veri"ed. "

We are now ready to extend Theorem 2 to monotone
output scheduling policies.

Theorem 4. Consider an N!N CIOQ switch operating
under MUCFA-E with a speedup of S54. Suppose that the
CIOQ switch is aiming to mimic an OQ switch employing
a monotone output scheduling policy. If the CIOQ switch
has been operating from time 1, having been empty before
then, then at any time t51 and for every cell c,
I¹

(
(t)4ED¹

(
(t), excluding any new arrivals to the switch

at time t. If this true at all times, the CIOQ switch will mimic
the OQ switch.

Remark. The crucial di!erence in the case of monotone
output scheduling policies is that new cells arriving to the
switch after a cell c might increase both its input and
output threads. Since only one cell can arrive at an input
per time slot, the input thread of c can only increase by
one. But this increase in input thread by one occurs even
in the setting of Theorem 2 and has been shown to cause
no trouble. However, the output thread of c can increase
by upto n per time slot, where 14n4N. This happens
when cells arrive at n di!erent inputs destined for c's
output and have a higher priority than c.

It is therefore tempting to think that these new arrivals
to c's output thread will become `sacri"ce cellsa and
prevent c from being forwarded to its output on time.
Although the new higher-priority arrivals to c's output
are potential `sacri"ce cellsa, the fortunate situation is
that they will simultaneously increase c's ED¹, making
c less urgent for its output! Hence they also will not cause
any problems. The details follow.
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Proof. The proof involves a minor modi"cation to
the proof of Theorem 2. Aiming for a contradiction, let
us suppose that ¹ is the "rst time the thread, S%(¹),
of input I has a cell with ED¹(¹) equal to l occupying
position l#1. (As a gentle reminder, we recall
that ED¹(¹) is calculated by excluding all cells that
arrive at the switch at the beginning of time ¹.) Consider
the thread S%

&'!
(¹)LS%(¹) consisting of the "rst

l#1 cells of S%(¹). Note that the cell with the largest
expected departure time in S%

&'!
(¹) has an ED¹(¹)

equal to l.

(1) Let c be the cell belonging to S%
&'!

(¹) that arrived
earliest, and let ED¹

(
(¹) be its expected departure

time at the beginning of time ¹. It follows that
ED¹

(
(¹)4l. It also follows that c arrived at least

l#1 cell times ago (since it was the earliest arrival
in S%

&'!
(¹)).

(2) Suppose c actually arrived at time ¹!A. By (1)
A5l#1, and let c's ED¹ upon arrival equal
ED¹

(
(¹!A).

(3) By Lemma 2, every time slot that c is in the system
on the input side, a totality of S cells belonging to
the input and/or output threads of c must be sac-
ri"ced in order to prevent c from going to its
output.

(4) Since c arrives at time ¹!A and remains in its
input until time ¹!1, the number of `sacri"ce
cellsa required during this time period equals the
number of phases in [¹!A, ¹!1] which equals
S!A.

(5) By assumption of ¹ being the "rst time at which
things go wrong, the maximum number of cells in
c's input thread at time ¹!A is less than or equal
to ED¹

(
(¹!A). These are possible `sacri"ce

cellsa.
(6) By de"nition of ED¹, the maximum number of

cells in c's output thread at time ¹!A is less than
or equal to ED¹

(
(¹!A). These are also possible

`sacri"ce cellsa.
(7) Putting (5) and (6) together, when c arrives, the

maximum number of sacri"ce cells in its input and
output threads is no more than 2ED¹

(
(¹!A).

(8) Between ¹!A#1 and ¹!1, the maximum
number of cells that can arrive at input I is less than
or equal to A!1. Of these arrivals l will belong to
S%
&'!

(¹) and hence cannot be `sacri"ce cellsa. This
implies that the maximum number of sacri"ce cells
that can arrive at input I after c is no more than
A!1!l.

(9) For ¹!A#14t4¹!1, let X(t) the number
of cells that arrive for c's output and have a
higher priority than c. These cells will be a part
of the output thread of c and are potential
`sacri"ce cellsa. Their total number is equal to
!)&!

*')&+'!
X(t).

(10) The ED¹'s of the cell c at times ¹!A and ¹!1
are related by the following equation:

ED¹
(
(¹!1)"ED¹

(
(¹!A)

# )&!
!

*')&+'!

X(t)!(A!1),

which merely states that c's ED¹ can increase by
new higher-priority arrivals and decreases exactly
by one due to a departure from its output during
each time slot.

Since at time ¹ we disregard new arrivals to the
switch, ED¹

(
(¹)"ED¹

(
(¹!1)!1. Therefore,

ED¹
(
(¹)"ED¹

(
(¹!A)# )&!

!
*')&+'!

X(t)!A.

(11) A grand total on the maximum possible `sacri"ce
cellsa is (putting (7)}(9) together):

G¹"2ED¹
(
(¹!A)#A!1!l# )&!

!
*')&+

X(t).

Now,

G¹"ED¹
(
(¹!A)#2A!1!l#ED¹

(
(¹)

(using (10))

43A!l!1#2ED¹
(
(¹) (again, using (10))

43A!l!1#2l (since ED¹
(
(¹)4l from (1))

"3A#l!1(4A!1 (since l(A from (2))

(12) The number in (11) falls short of the requirement in
(4) if S54. This contradiction shows that
I¹

(
(t)4ED¹

(
(t) at all times t, excluding any new

arrivals at time t.
To conclude the proof, note if we include new

arrivals to the switch at time t, then there cannot be
more than two cells at any input with ED¹(t)"0.
In fact if there are two cells, then one of them must
necessarily be a new arrival at time t. As a result all
cells with ED¹"0 will be at their respective out-
puts by the end of phase 2, and the CIOQ switch
will not fail to behave identically to the OQ
switch. "

7. Implementational complexity

The previous sections show that it is possible to exactly
emulate a wide range of output scheduling policies with
a CIOQ switch that employs a speedup of four. It ap-
pears that the algorithms we propose for achieving this
exact emulation trade one problem for another: They
overcome the memory bandwidth (or speedup) require-
ment of N but introduce an extra scheduling and process-
ing overhead. However, note that memory bandwidths
are increasing very slowly over time while processing

B. Prabhakar, N. McKeown / Automatica 35 (1999) 1909}1920 1917



speeds double roughly every 18 months (according to the
so-called Moore's Law). Thus the trade-o! is in the
correct direction.

Nevertheless, it is still important to understand the
exact nature of the trade-o! and ask the question: Exact-
ly how hard are MUCFA and MUCFA-E to implement?
We do not have a complete answer to this question yet.
But the following discussion shows some of the issues
that face the implementor of MUCFA and MUCFA-E.

A comparison of the operation of a CIOQ switch
employing MUCFA-E to the operation of an OQ switch
shows that there are two important additional functions
for the CIOQ switch to perform. These are (i) Determin-
ing the urgency/expected departure time of an arriving
cell, and (ii) The process of matching inputs and outputs
for transferring cells. We consider each of these two
additional functions in turn. An important third function
is to constantly update ED¹ values of each cell given
new, higher-priority arrivals. We comment on this aspect
in conjunction with (i).

7.1. Determining urgency/EDT

We approach this issue by examining the di$culty of
determining the EDT corresponding to a "xed output
scheduling policy. We shall "nd, not surprisingly, that the
di$culty of inferring the EDT di!ers with output sched-
uling policies. For the sake of concreteness and to get
a reasonable sense of the di$culty involved, we consider
the following output scheduling policies: FIFO, Strict
Priority and WFQ.

The FIFO output scheduling policy: To perform the
matching process in MUCFA, the CIOQ switch needs to
know the `urgencya of each cell at each time slot. It
su$ces to determine the urgency of an arriving cell; since
under the FIFO output scheduling policy, the urgency of
a cell decreases exactly by one each time slot. By simply
decrementing the urgency value by one in each time
slot, the CIOQ switch knows the urgency of any cell at
any time. (Of course, having to decrement the urgency
of every cell in every time slot is a nuisance which can
easily be avoided by marking the arrival time ¹

(
and the urgency upon arrival ;

(
for each cell. Then the

urgency at a future time ¹'¹
(

is given by
;

)
";

(
!(¹!¹

(
).)

So, how can the CIOQ switch infer the urgency of an
arriving cell? Suppose each output in the CIOQ switch
maintains a pointer that indicates the value of the ur-
gency to be assigned to the next arriving cell destined for
that output. Say that at the beginning of time t, a cell
arrives at input i destined for output j. If this is the only
arriving cell destined for output j, then input i assigns the
urgency value maintained by the pointer at output j to
the cell and output j increases the value of the pointer by
1. If n cells arrive at di!erent inputs destined for output j,
then they each receive the same urgency value from the

pointer at output j and the pointer is increased by n. Ties
in urgency values among cells at di!erent inputs destined
for the same output are broken by using input port
numbers. At the end of each time slot the pointer is
decremented by one so long as it is positive. Of course,
the pointer is not decremented if its value is zero at the
end of a time slot.

The above scheme points out that it is not necessary
for the CIOQ switch to refer to the OQ switch to deter-
mine the urgency of cells. Indeed, it also points out that
there is no need for an elaborate communication mecha-
nism between various inputs and outputs to determine
urgencies* a single query from an input to the pointer
of an output at the beginning of the time slot is su$cient.

The Strict Priority output scheduling policy: Recall that
an output is said to employ the Strict Priority policy if
the tra$c leaving that output is divided into C classes,
say, and cells belonging to Class m will not be allowed to
leave the switch so long as there is a cell in the switch
belonging to Class n for n(m. Within each class cells are
ordered FIFO for departure. As may be readily veri"ed,
the Strict Priority policy is a monotone output schedul-
ing policy.

Under this scheme each output pointer is a vector
(ED¹

!
,2, ED¹

,
) denoting the ED¹ values to be as-

signed to cells that arrive for that output in each of the
C classes. If at the beginning of time t a cell belonging to
Class n has an ED¹ value E

-
, then its actual departure

time if no new cells arrived to the switch during times t or
greater is exactly equal to t#E

-
#!

!$-&!
ED¹

!
.

To determine the ED¹ of an arriving Class n cell, the
corresponding input queries the appropriate output
pointer for Class n's current ED¹ value. The pointer is
then incremented by 1. (In case of multiple Class n arri-
vals we proceed as in the FIFO scheme and assign them
all the same ED¹ value and suitably update the pointer.)
Once the EDT values are assigned, cells in an in-
put/output thread are ordered according to classes and
within each class they are ordered according to ED¹
values.

Again note that there is no need for a reference OQ
switch or for any communication between various inputs
and outputs. Thus, so far as determining ED¹s, the Strict
Priority is just a little more complex than the FIFO policy.

The WFQ output scheduling policy : We believe this is
a much more complex case. In the previous case of Strict
Priority we have exploited the FIFO nature of ordering
cells within each class and the strict ordering between
cells of di!erent classes. If under WFQ we let the number
of classes for each output equal the number of #ows
leaving the switch through that output, it is still true that
the cells belonging to each class can be ordered FIFO for
departure. However, in general, there will not be strict
ordering between each of the classes. Thus there is a need
to know the precise ED¹ of each cell in relation to all the
cells destined for the same output at each time. Perhaps
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there is a way of simplifying this as well but at the
moment we do not expect a substantial simpli"cation.

7.2. Complexity of the matching process

Since MUCFA and MUCFA-E can be implemented
as variants of the stable marriage problem using ED¹s
to draw up the preference lists for inputs and outputs, by
the well-known Gale}Shapley algorithm the worst-case
number of iterations required to obtain a match is N".
However, due to the manner in which preference lists are
drawn using ED¹s it turns out that worst-case number of
iterations required in the switching context is only N. We
establish this fact below.

Let I and O be two non-empty subsets of the set of all
inputs and outputs, respectively. For an input i3I let
I¹!)O be the thread at input i consisting only of cells
destined for outputs o3O. That is, I¹!)O is obtained from
the thread at input i by removing all cells that are not
destined for one of the outputs in O. Similarly, de"ne
O¹.)I to be the thread for output o consisting of cells at
some input i3I.

Lemma 3. Consider the set C of all cells at some input i3I
destined for some output o3O. Let I¹!)O and O¹.)I be as
described above. There is a cell c3C at an input i3I
destined for an output o3O which is at the head of I¹!)O and
O¹.)I.

Proof. Choose cell c
!
3C at some input i

!
3I such that it

is at the head of I¹!!)O. Suppose that c
!

is destined for
output o

!
. If c

!
is at the head of O¹.!)I, then we are done.

If not, then let c
"

be the cell at the head of O¹.!)I.
Observe that due to strict ordering of ED¹s on an output
thread, ED¹

(!
'ED¹

("
. Let c

"
be at input i

"
. If c

"
is at

the head of I¹!")O, then we are done. If not, then let c
#

be
at the head of I¹!")O. Since ED¹s are in non-decreasing
order on input threads, it follows that ED¹

("
5ED¹

(#
.

Proceeding thus, we obtain a series of cells c
-
such that

ED¹
(!
'ED¹

("
5ED¹

(#
'ED¹

(*
5ED¹

(+2 . (1)

Since the cardinality of I and O is at most N and each of
the c

-
's is either at the head of an input thread or an

output thread, the total number of c
-
's is at most 2N.

Given this and the non-negativity of ED¹s, Eq. (1) im-
plies that there must be a cell c which is both at the head
of its input thread and its output thread. This proves the
lemma. "

Theorem 5. For an N!N CIOQ switch employing either
MUCFA or MUCFA-E and an internal speedup of at least 4,
the number of iterations required to match inputs and
outputs in each phase is never more than N.

Proof. Let I
!
and O

!
be the sets of inputs and outputs,

respectively, involved in the ith iteration of the matching

process in some phase. Consider I
!

and O
!
. As a conse-

quence of Lemma 3, there is a cell d
!
, say, at input k

!
3I

!
destined for output l

!
3O

!
which is at the head of both

I¹/!)O! and O¹&!)I!. This causes output l
!
to request input

k
!

in the "rst iteration and for input k
!

to accept output
l
!
. Thus input l

!
and output k

!
will be matched and not

participate in iterations 2 or higher, and the cardinality of
I

"
will be less than the cardinality of I

!
by at least 1.

Similarly, the cardinality of O
"

will be less than the
cardinality of O

!
by at least 1.

Repeated application of Lemma 3 guarantees that the
cardinality of I

-
decreases by at least one in each iter-

ation. Since the cardinality of I
!

is at most N, we get the
desired result. "

8. Conclusion

With the continued demand for faster and faster
switches, it is increasingly di$cult to implement switches
that use output queueing or centralized shared memory.
Before long, it may become impractical to build the highest
performance switches and routers using these techniques.

It has been argued for some time that most of the
advantages of output-queuing (OQ) can be achieved us-
ing combined input and output queueing (CIOQ). While
this has been argued for very speci"c, benign tra$c
patterns there has always been a suspicion that the ad-
vantages would diminish in a more realistic operating
environment.

Our result proves that a CIOQ switch can behave
identically to an OQ switch that employs a variety of
`monotonea scheduling policies, including Weighted
Fair Queueing (WFQ). Perhaps more importantly, we
show this is true for any sized switch, or for any tra$c
arrival pattern. The three su$cient conditions for this
result to hold are: (i) virtual output queues are main-
tained at each input, (ii) at the end of each cell time,
a novel scheduling algorithm, which we call most urgent
cell xrst be used to con"gure the non-blocking switch
fabric, and (iii) the switch fabric and memory run four
times as fast as the external line rate; i.e. at a speedup of
four.
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