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Abstract 

In this paper, we consider a critically loaded G/M/1 queue and contrast its transient behaviour with the transient behaviour 
of stable (or unstable) G/M/1 queues. We show that the departure process from a critical G/M/1 queue converges weakly 
to a Poisson process. However, as opposed to the stable (or unstable) case, we show that the departure process of a critical 
GI/M/I queue does not couple in finite time with a Poisson process (even though it converges weakly to one). Thus, as the 
traffic intensity (ratio of arrival to service rates), p, ranges over (0, co), the point p = 1 represents a singularity with regard 
to the convergence mode of the departure process. 

1. Introduction 

The transient and equilibrium behaviour of  stable 
(service rate > arrival rate) queues with Poisson inputs 
has been studied using Markov chain theory and 
reversibility [3, 5, 6, 9]. The method of  Loynes [7] 
provides an understanding of  their behaviour in the 
stationary and ergodic context. 

A key concept in the approach of  Loynes and, 
indeed, in the general stability theory of  queueing sys- 
tems is the notion of  "finite time coupling" between 
processes (see [1, 7]). Briefly, this has the following 
meaning. Suppose that X ° ( t )  is the queue-size of  a 
G/G/1 queue at time t > 0 starting with an empty 
queue at time 0 and that D O is the corresponding 
departure process. Then, provided the queue is stable 
(i.e. arrival rate < service rate), Loynes [7] has shown 
that X°( . )  couples in f inite time with a stationary and 
ergodic process X( . )  and that D O couples in finite 
time with a stationary and ergodic process D. That 
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is, there exists a finite random time z such that a.s. 
for all t > z, X ° ( t )  = X ( t ) ,  and the paths of  D O and 
D coincide. The processes X( . )  and D are thought 
of  as the equilibrium queue-size and departure pro- 
cesses from the G/G/1 queue. As a consequence of  
the finite-time coupling property one then deduces 
that the processes X( . )  and D are unique, i.e. a stable 
G/G/1 queue admits a unique stationary regime. Finite 
time coupling is also used to establish the stability 
of  acyclic networks of  ./G/1 queues and in demon- 
strating the existence and uniqueness of  stationary 
operating regimes for such networks [1, 7]. 

The purpose of  this paper is to investigate the finite 
time coupling property in the context o f  critically sta- 
ble G/M/1 queues. It will be shown that in this case the 
property collapses, leading to a singular behaviour. A 
variation of  Loynes '  argument is first used to show 
that for critical G/M/1 queues: (1) the queue-size 
process, X°( t ) ,  goes to infinity in distribution as 
t ~ oo although it visits every state infinitely often 
(Lemma 2), and (2) the departure process D O con- 
verges weakly (in distribution) to a Poisson process 
(Theorem 1 ). Although these two facts are in keep- 
ing with intuition developed from classical queueing 
analysis, establishing them has proved non-trivial. 
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This is because non-renewal type arrivals make it 
impossible to use elementary Markov chain theory, 
while criticality makes it difficult to use rate-based 
arguments as in the case of  stable or unstable queues. 
This has led to the development of  some non-standard 
techniques (like those in Lemma 1 and Theorem 2) 
which seem to be of interest in their own right. 

The above developments lead to the following inter- 
esting result which sets the critical ./M/1 queue apart 
from the stable and unstable ones: (3) the departure 
process, D °, from a class of critical GI/M/1 queues 
does not couple in finite time with a Poisson process 
even though it converges weakly to one (Theorem 2). 
Hence, the convergence mode of the output from a 
GI/M/1 node changes from strong (finite-time cou- 
pling) to weak convergence, depending on whether 
the value of the traffic intensity (arrival rate/service 
rate) lies in the set (0, 1) U (1, zx~) or equals 1. 

Our study of this special feature was initiated 
during the analysis of  certain types of parallel pro- 
cessing and manufacturing systems: those involving 
synchronizations and pipelining (see [8]). We believe 
that beyond its theoretical interest, a study of this 
singular behaviour will be useful in other practical 
situations, where critically (heavily) loaded queues, 
possibly with finite buffers and blocking, are approx- 
imated by their infinite buffer counterparts for the 
purpose of analysis. 

1.1. Notation 

Consider a first-come-first-served, -/M/1 queueing 
node with mean service time equal to 1. Let the arrival 
process, A, be given by 

A =  ~ 6t,, (1) 
n ~ - -  o<3 

where . . .  < tal < t~ ~<0 < t~ < . . .  < tn a < t~+ 1 < ' ' "  
pathwise, and fix is the point mass at x. t a is the arrival 
time of the nth job or customer to the queueing node. 
We assume that A is a stationary and ergodic process 
with respect to the transformation (time shift) 

OtA = ~ ~(t~--t). 
n : -  o o  

Let Na(to, t] be the number of arrivals to the node 
in (to, t]. We abbreviate Na(0, t] as N~(t). The mean 
arrival rate 2A is then equal to E(Na(1 )). Recall that a 
-/M/1 queueing node with mean service rate equal to 1 

and arrival rate equal to '4A is said to be stable, critical 
or unstable depending on whether 2A < 1, 2A = 1 or 
)~A > 1. In this paper we will be concerned exclusively 
with critical ./M/1 nodes. 

Let S be the 'service process' (or virtual departure 
process) of the ./M/1 queueing node. S is a Poisson 
process of  rate 1 that is independent of A. Let S be 
given by 

S = ~ fits, (2) 

where . . .< t~_ l  < t ~ < 0 < t ~ < . . . < t  s < t ~ +  l < . . -  
pathwise, and t s is the arrival time of the nth service 
token. Let Ns(to, t] be the number of service tokens 
arriving to the node in (to, t], and let Ns(t) = Ns(0, t]. 
Note that E(Ns(1)) = 1. All random quantities are 
assumed to be defined on some common probability 
space (f2, ~ ,  P). 

Given any two realizations of A and S, using 
Loynes' construction (see [1] or [7]), we obtain for 
s < t the queue size process XS(t) which represents 
the number of  unserved customers in the queue at 
time t if the queue started processing arrivals at time 
s, having been empty before that time. Let D s be the 
corresponding departure process. In this letter we are 
interested in studying the transient behaviour of  crit- 
ical -/M/1 nodes and contrasting it with the transient 
behaviour of stable and unstable ./M/1 nodes. The 
issues of interest to us are the characteristics of  the 
queue-size process X°(-) and the associated departure 
process D o . 

2. The output of critical G/M/1 queues 

The main results of  this section are establishing the 
weak convergence of the output of a critical G/M/1 
queue to a Poisson process (Theorem 1) and showing 
that the output of a critical GI/M/1 node does not 
couple in finite time with a Poisson process (The- 
orem 2). Lemma 2 establishes the null-recurrence- 
type behaviour of the queue-size process of a critical 
G/M/1 node, to be used in the proofs of Theorems 1 
and 2. 

Given A and S we construct for s E ~ ,  the depar- 
ture process D s by ignoring all points of  A which are 
less than s. Thus, [Y is the departure process from 
the queue if it were started empty at time s and is 
processing arrivals since that time. The corresponding 
queue-size process XS(t) is a non-negative integer- 
valued process with almost surely right continuous 



B. Prabhakar, N. Bambos/ Systems & Control Letters 28 (1996) 239-245 241 

paths which are constant outside points in A and S 
and varying at points of  A and S as follows: 

0 
X~(t - ) 4- 1 

X S ( t ) =  X~(t - ) - 1  

i f t  < s  
f o r t ~ s ,  t E A  
for t >~s, t E S  

and X~(t - )  > O. 

(3) 

Of  course by the independence of A and S we need 
not consider points in both A and S. The departure 
process D s can then be defined as the points {t>>,s : 
t E S and X~(t - ) > 0}. Specifically, 

D O = Sl {xo(t-)>o}. (4) 

Reasoning in a manner similar to the one in 
Loynes' construction [1] it is not hard to see that 
X~(t) increases as s decreases. Fig. 1 illustrates the 
situation for some fixed but arbitrary realizations of  
A and S. It is seen that for u < s, XU(t) > XS(t). 

A quick explanation for this can be formulated 
along the following lines. Notice that XU(s)>>.O = 
X~(s). All upward jumps of XU(t) and X~(t) coincide 
for t > s (same arrivals); and a downward jump of 
X~(.) at some time t implies a downward jump of 
X~(.) at t, unless X~(t - ) = 0. These facts ensure that 
XU(t) is bigger than or equal to X~(t) for all t > s. 
Thus, lim~_-._o~ X~(t) = X ( t )  exists pathwise, what- 
ever the value of the arrival rate is. We also recall the 
following additional details of  Loynes' construction, 
to be used below. 

Fact 1. XS(t) ~ XS+p(t 4- p)  for all p E ~;  in 
particular, X-t(O) ~-~ X°(t).  This follows from the 
joint stationarity o f  the processes A and S. 

Fact 2. I f  l ims__,_~X~(t)= X( t )  < oo a.s., then 
X ( t )  is a stationary and ergodic process. 

Before we proceed to our first lemma, we recall 
the following standard notation from [ 1 ] regarding the 
structure of  the canonical space of point processes (the 
space of realizations). Let M be the set of  all counting 
measures, m, on ~ .  Endow M with the sigma field J¢  
generated by functions m ~ re(C), where C is a Borel 
subset o f ~ .  The pair (M, Jr ' )  is known as the canon- 
ical space of  point processes; and a point process is 
thought of  as a measurable mapping from (t2, ~ - ,P )  
to (M, J¢'). For issues regarding the joint behaviour of  
a pair of  point processes, one works with the product 
space (M × M, de' × J¢ )  and the corresponding time 
shift 0 2 = O~ × 0~. 

Lenuna 1. Let A and S be two jointly stationary 
and ergodic point processes of  rate 1. Let the process 
B(co) C A(co) be the set o f  those points tb E A(co) 
such that Na(tb, t] >~N~(tb, t] + 1 Vt > tb. Then B 
is a stationary and ergodic process with mean 
rate 2B = E(Nb(1)) = O. In particular, the event 
{o~: B(co)(~) > 0} has zero probability. 

Proof. Note that B is the process that consists of  
the bad points of  A - starting from any of these 
points tb we have at least one more point of  A 
than of S for all time bigger than tb. Given the 
joint stationarity and ergodicity of A and S, it is 
easy to see that B is stationary and ergodic with 
respect to Os. Indeed, if  G E ~ and H E dr' × 
are such that 

B((o) E G ¢:~ (A(o)),S(og)) E H, 

then 

P(B E G) = P( (A,S)  E H )  = P(~gs2(A,S) E H )  

=P(Os(B)  E G) 

0 0 0 Arrival Pnx=.  
• • • $~rvice Process 

I I I 
I I__: 

I . . . . . . . .  . i  
I | 

I I 

6 _" - - o  . . . . . .  6 c 

. . . .  X ' ( t )  I 
I 
. . . . .  X ' ( t )  

Fig. 1. Loynes' construction. 
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verifies stationarity of  B. Ergodicity follows from the 
fact that if G is an invariant event for the process B 
under Os then H is an invariant event for (A, S) under 
02. The Os 2 ergodicity of  (A, S) implies that P(H) = 
0 or 1; and this implies P(G) = 0 or 1. 

The process B thus has a well-defined average rate 
function which is almost surely equal to the constant 
)~B = E(Nb(1)). Let B have the representation B = 
~ , ~ _ ~ r t ~  ., where . . .  < tb_l < to b~<0 < tl b < - . .  < 
t. <tL  < 

By definition o f  the process B, Na(tbl, t] >~N~(tbl, t] 
+ 1 Vt > tl b. But, more importantly, notice that 
N~(tbl, t] >~N~(tbl, t] +n ift~ E (t~, t]. That is, the differ- 
ence between N~(t~, t] and N~(t~, t] grows by 1 as soon 
as the time variable t encounters (and exceeds) a point 
of  the process B. Thus, N~(t b, t] >~N~(t b, t] + Nb(t b, t] 
with probability one. Dividing by t and taking the 
limit as t ~ ~ and appealing to the ergodic theo- 
rem, we get 1 ~> 1 + AB. This implies that 2R = 0. 
Hence, almost surely the process B does not exist. 
This implies that the event {o9: B(og)(~) > 0} has 
zero probability. [] 

Our next lemma establishes the null-recurrent type 
behaviour o f  the queue-size process of  a critical G/M/1 
queue. Indeed, this fact would be immediate if we 
were looking at critical GI/M/1 queues (and not the 
bigger class of  G/M/1 queues); for, then the embedded 
Markov chain obtained by looking at the queue-size at 
the instant of  an arrival is a null-recurrent one. In the 
following lemma and throughout the rest of  the paper 
we set Q(t) = X°(t). 

Lemma 2. For a critical G/M/1 node with stationary 
and ergodic arrival process A, the followin 9 state- 
ments are true: 

(1) The queue-size process X( t )  9iven by X( t )  = 
l ims~_~X~( t )  = ~ a.s. 

(2) With Q(t) = X°(t), l i m t ~  P(Q(t) < i) = 0 
for every i E ~r+. 

(3) Q( t ) visits state i infinitely often ( i.o. ) almost 
surely. 

Proof. ( 1 ) T h e  event {X( t )=cx~}  is invariant 
with respect to the transformation 69s. Thus it has 
probability 0 or 1. Suppose P(X(t)  < ~x~) = 1. Then, 
by Fact 1, X(t )  is a stationary and ergodic process. 
Since A is a process o f  rate 1, E(Na(O, 6]) = 6 for 
any 6 C ~ .  Moreover, if 0 < 6 < 1, then clearly this 
implies that P(Na(O, 6] = 0) > 0. Taking 6 = 0.5, 
we therefore get that P(Na(0,0.5] = 0 ) >  0. Let 

Bi = {S(0)  = i, Na(0,0.5] = 0}. Then P(Bi) > 0 for 
some i. The event Bi N {Ns(0, 0.5] > i} is contained 
in the event {X(0.5) = 0} and so 

P(X(0.5) = 0 ) />  P(Bi fq {Ns(0,0.5] > i}) 

= P(Bi)P(Ns(O,O.5] > i) 

> P(Bi)e -0"5(0"5)i > 0, 
i! 

where the second equality follows from the indepen- 
dence of  S, for t > 0, with X(0)  and A. And because 
the process X(t )  is stationary, P(X(t)  = 0) > 0 for 
all t. In particular, P(X(O) = 0) > 0. Thus, P(X(t)  < 
oc) = 1 implies P(X(O) = 0) > 0. It now follows 
from [1, Lemma 2.3.1, p. 78] that this is impossible 
since for a critically loaded, queue, P(X(O) = O) = 0 
and (1) is proved. 

(2) Next, since Q(t) = X°(t)  ~ X-t(O), P(Q(t) 
< i )=P(X- t (O)  < i). A n d Y - t ( O ) T X ( O )  = c~ as 
t ~ c~. Therefore, limt__,~ P(Q(t) < i) ~ 0 for every 
i E ~  e+. 

(3) Since Q(t) ~ c~, it is enough to show that 
P(Q(t) visits 0 i.o.) = 1, for then this implies P(Q(t) 
visits i i.o.) = 1 for each i E ~e+. The event {Q(t) = 
0 i.o.} is ~gs-invariant =~ P(Q(t) = 0 i.o.) = 0 or 1. 
I f  P(Q(t) = 0 i.o.) = 0, then Q(t) > 0 eventually 
with probability 1. Let T < cc be the last time that 
Q(.) transits from state 0 to state 1, never to return 
to 0 again. Then obviously T must coincide with an 
arrival of  A, and we emphasize this by setting T = TA. 
Since N~(TA,t]>~Ns(TA,t] + 1 Vt > TA almost surely 
(because Q(t) > 0 Vt > TA), it must be the case that 
the point TA belongs to the process B where B is as 
defined in Lemma 1. Therefore, the process B has 
at least one point per sample path almost surely, i.e. 
the event {co : B(O9)C~) > 0} has probability 1. This 
contradicts the conclusion of  Lemma 1 and Lemma 2 
is proved. [] 

We are now ready to show that the output o f  a 
critical G/M/1 queue converges weakly to a rate 1 
Poisson process. Specifically, we start processing 
arrivals at time 0, the arrival buffer having been empty 
before then. Suppose that the departure process is 
DO = ~,~=1 6t~ and look at D o = Ot (D°l{td~>t}). D o 
is D o viewed from time t onwards and to obtain it 
from D °, we first ignore all points o f D  ° that are less 
than t and then shift D o by t units to the left. We will 
show that D o goes weakly to a Poisson process as 
t ~ ~ .  In a sense, this is expected because Lemma 



B. Prabhakar, N. Bambos l Systems & Control Letters 28 (1996) 239-245 243 

2 shows that eventually the chance that the arrival 
buffer is empty is going to zero and whenever the 
arrival buffer is non-empty, the departure process is 
simply the service process S, and this is Poisson. 

We first recall the definition and some facts concern- 
ing the stochastic intensity of  point processes which 
are of relevance to us in the sequel. Our main refer- 
ence is [2]. 

Definition. Let Z be a point process adapted to some 
history fit, and let At be a non-negative f#t-progressive 
process such that for all t ~>0, fo 2s ds < ~ a.s. I f  
for all non-negative q-predictable processes Ct, the 
equality 

holds, then Z admits the q-intensity 2 ,  

Fact 3 (Chapter II, Brrmaud [2]). Let  Z have ~ t -  
&tensity 2t and let f#t be some history such that f ~  
is independent o f  ~ t  for  all t >~O. Then 2t is also the 
~ t  V ~t-intensity o f  Z,  where ~ t  V f#t is the smallest 
a-algebra containing both ~ t  and f#t. 

Now, for a G/M/1 queue, the stochastic intensity of  
the service process S with respect to its own history 
~ s  = a(t~;O<~t~<~t) is constant and is equal to 1 
(because S is a Poisson process). But, by Fact 3 and 
the independence of S with A for all t i> 0, the intensity 
of  S with respect to the combined history ~ t  A's = 
a( t a, ts; 0 <~ t a <~ t, 0 <~ t a <~ t) is also 1. Since the process 

AS 1 {Q(s-)=o} is ~ i  ' -predictable (being left continuous 
and ~,A'S-adapted, this implies that 

= E [ f o ~ l { Q ( s - ) = o } d s l  • 

(5) 

We now recall the definition of weak convergence 
of point processes [4, Chapter 9]. The sequence of 
point processes {D °} converges weakly to the point 
process P as t ~ cc iff for every bounded continuous 
function f with compact support, the random variable 

o ~ f ( s )  dD ° 

fo ~ f ( s )  dP 

converges in distribution to 

a s  t --~ ~ .  

T h e o r e m  1. The departure process o f  a critical 
G/M/1 queue, D g, converges weakly to a Poisson 
process as t ~ c~. 

Proofl Let f be bounded and continuous with sup- 
port in [0,N]. By a change of variable rewrite xt = 
f ~  f ( s )  dD ° as ft ~ f ( s  - t) dD °. Now consider the 
term y = f~'~ f ( s ) d S .  Since the process S is Poisson, 
we are done if we can show that xt converges in distri- 
bution to y. Since f0 ~ f ( s ) d S  = ft ~ f ( s  - t )dS  = 
yt, say, this is equivalent to showing that, as t ~ c~, 
Yt - xt goes to zero in distribution. 

Now 

Yt - xt = f ( s  - t) d(S - D °) 

f t+N 
= f ( s  - t)d(Sl{Q(s-)=o}), 

dl 

since D O = Sl{o(s-)=0} (this follows from Eq. (4)) 
and the support o f f  is in [0,N]. Therefore, 

Ef ] Elyt - xtl <~ E I f ( s  - t)l d(S1 (a(,-)=o}) 

<~ ]flmaxE (ftt+N d(Sl{Q(s-)=O})" 

[ f t + N  dS] 
= Iflmax E 1 {Q(s-)=0} 

U as] = [flmax 1E l{Q(s-)=0} 

f t+N 
= [/Imax e ( Q ( s - )  = 0)ds, (6) 

.,'t 

where the second last equality follows from Eq. (5). 
The last equality follows from Fubini's theorem. All 
other relations are obvious. By Lemma 2, 

lim P ( Q ( s -  ) = O) = O. S--+ OO 
Hence, by dominated convergence the right most term 
in (6) goes to zero as t ~ c~. This implies that yt - -  

xt --* 0 in probability and hence in distribution, as was 
required. [] 

From the proof, it is apparent that the advantage 
in viewing the departure process of  a ./M/1 node 
as given by equation (4) is that we have a bona 
fide Poisson process to which the departure pro- 
cess converges weakly, namely the service process 
S. Since weak convergence of point processes is 
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a distributional-type convergence, one wonders 
whether the stronger mode of  convergence (finite time 
coupling) is possible. Indeed, as already mentioned, i f  
the ./M/1 node were stable this does happen. In The- 
orem 2 we use the Central Limit Theorem and show 
that for critical GI/M/1 queues with i.i.d, inter-arrival 
times having mean 1 and variance a2, the departure 
process does not couple in finite time with a Poisson 
process although it converges weakly to one. 

Before we proceed to Theorem 2, we state the defi- 
nition of  finite time coupling for point processes as it 
applies to our problem (see also [1, Section 4.2]). As 
before, let D O be given by D O = ~,~l ltd," Also sup- 
pose that Z = ~n~l  6t~ is a rate 1 Poisson process. 
Then D o is said to couple infinite time with Z if there 
is a random N E ~ +  such that t~ = t z for all n > N. 
That is, the departures coincide with the occurrences 
of  a rate 1 Poisson process eventually. We now pro- 
ceed to show that such a coupling is impossible. 

Theorem 2. Consider a critical GI/MI1 queue with 
i.i.d, mean 1, variance az~, inter-arrival times. The 
departure process from this queue does not couple in 
finite time with a rate 1 Poisson process. Hence for  
such critical GI/M/1 queues, only weak convergence 
o f  departures is possible. 

Proof. We will argue by contradiction. Suppose 
D o couples with a (rate 1) Poisson process Z, i.e. 
3N(~o) < cx~ such that t~ = t~ for all n > N. Since 
the inter-occurrence times of  Z are i.i.d, exponentials 
with parameter 1, t~ is the sum o fn  i.i.d, exponentials. 
By the Central Limit Theorem we then get that 

t~ - n _~ sV'(0, 1). 

Taking T ----- n ÷ ex/~ in the above equation and us- 
ing the fact that the arrival and service processes are 
independent, we get that 

P(tdn <.n + ex/n) <~P(tan <.n ÷  ex/n)P(t s <~n + ~v~).  

(8) 
n Now t] = t~ + ~-~'~i=2 t~ - t~_ 1 . By the i.i.d, assump- 

tion of  the inter-arrival times, t a is a delayed renewal 
process (because t~ is not necessarily a mean 1, vari- 
ance a]  random variable). Thus, by the Central Limit 
Theorem, 

p(ta <"n + ev~)  =- P t aaV'n (ra ) -* ~ -~a " 

Using this in (8) and remembering that t s is the sum 
of  n i.i.d., mean 1, exponentials, we get 

lim sup P(tn..~n + ex/~)<~ ~ 
n "--* O O  

This contradicts (7) and hence no such coupling exists. 
[] 

3. Conclusions and final remarks 

In this letter, we have identified and studied a sin- 
gular feature exhibited by queues in criticality. A shift  
is observed in the convergence mode of  the departure ~ 
process from strong (pathwise coupling) to weak at 
the point o f  critical loading. Although Theorem 2 
has been shown to hold under renewal arrival 
processes, we believe that it is true under general sta- 
tionary and ergodic arrivals. However, some technical 
difficulties need to be resolved before such a result 
can be obtained. 

But because of  the supposed coupling of  D O with 
Z, (t~ - n)/x/-n = (t z - n)/x/n for n > N and so 

tdn - n  ~ sV(O, 1) ~ P(tdn <~n+ ax/~) ~ ~(a), (7) 

l ~ e-X2~2 where ~(~) = ~ f ~  dx. 
On the other hand, given T ¢ ~ + ,  the fact that there 

have been n departures in (0, T] implies that there 
have been at least n arrivals and n services in (0, T]. 
In other words, for every T 

{t. v} c{t .  v} n {t s T}. 
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