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Abstract: We study the flow of jobs on an infinite series of first-come-first-served queues. Jobs are placed in the buffer of the first queue 
and allowed to flow through the infinite tandem of queues. The service times of each job on consecutive queues form a stationary and 
ergodic sequence. We are interested in characterizing the flow of jobs asymptotically, after they have passed through a large number of 
queues. 

It is shown that the job flow reaches asymptotically a stationary state, which can be characterized in terms of the average service times 
of the jobs. They eventually form clusters, such that every two consecutive jobs belonging to the same cluster collide infinitely often, 
while jobs belonging to different clusters eventually cease to interact. 
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1. Introduction 

Consider an infinite series of first-come-first-served (FCFS) queues, indexed by the positive integers 
k s .~+ = {1, 2, 3 , . . .  }, and a set of jobs to be served at the queues. A job leaving the kth queue joins the 
(k + l) st one. There are J s .~+ jobs, which are initially queued up in the buffer, the first (k = 1) queue, while 
all other queues are empty. The jobs are indexed by j s J = { 1, 2, 3 , . . ,  J } and are numbered according to 
their ordering in the buffer, i.e. job 1 starts service first, job 2 second, and so on. At time 0 we start serving the 
jobs, letting them flow from the first buffer through the queues, receiving service at each one of them. The 
buffers of all the queues have capacity at least J, so that no buffer overflows or blocking of jobs occur 
(although such cases can be studied similarly; see Remark 6). All the servers work with service rate 1. Let 
tr~ be the service time requirement of the j th  job on the kth queue. The tr~'s are identified with the elements of 
an infinite sequence 

s= {s~= {o-~,j s j } ,  k s zr}, (1) 

which is defined on some probability space (t2, ~z-, p) and is assumed to be stationary and ergodic with 
respect to the transformation 

O,S = {6 pk-v, k s  ~e}, (2) 

corresponding to k-index shifts. Additionally, we assume that E [ a  °] < oe for everyj s J .  Observe that the 
sequence S contains terms with k ~< 0 too, but only those with k > 0 are given a physical meaning in the 
previous setup. Also let t k be the departure time of the j th  job from the kth queue and define the 
interdeparture times of the jobs exiting the kth queue by 

= ( t j + l  - -  t ~ ) , j s J ' } ,  (3) 
where J '  = { 1, 2, 3 . . . . .  J - 1 }. 
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The jobs moving through the queues constitute a flow which can be mathematically characterized by the 
job interdeparture times. We are interested in the asymptotic statistics of this flow, specifically, whether 
{@k, k e ~e+ } converges in some probabilistic sense as k ~ .  

From a practical point of view, the queueing tandem described here could correspond to a long assembly 
line in flexible manufacturing, a long processing pipeline in a computer architecture, or a packet communica- 
tion link with a large number of hops. Our original motivation for studying this system was to estimate the 
intercompletion times of jobs on long pipelines. 

Addressing the problem of invariant measures of the G/G/1 queueing operator, Bambos and Walrand [2] 
made an observation (discussed in the following section), which is applicable to our situation here, proving 
the existence of the asymptotic flow. However, the basic issue of finiteness (proper distributions) of this flow 
was not resolved, and no such flow characterization was established. Concerning finite queueing tandems, we 
have the seminal work of Loynes [6] on the stability theory of G/G/1 queues and tandem networks of them 
with stationary interarrival and service times (also see [7]). Earlier work of Lindley [5] has provided 
structural and computational results on queues with i.i.d, interarrival and service times. Glynn and Whitt [4] 
have lately studied large queueing tandems with i.i.d, service times, obtaining results of the central- 
limit-theorem type, in the critical case where all jobs have the same service statistics. The static tandem 
network problem, concerned with the computation of the asymptotic average execution time per job on 
a finite queueing tandem, as the number of jobs in the front buffer tends to infinity, has been addressed by 
Bambos and Walrand [1] under stationary service times. 

The objective of this work is to characterize the asymptotic flow in terms of finiteness (proper distributions 
of interdeparture times), contributing to the theory of infinite queueing tandems, which is related to 
smoothing properties and invariant measures of queueing operators. This is done under stationary ergodic 
service times, which are essentially the most general. Theorem 1 provides the necessary characterization in 
terms of the expected service times of jobs. As explained in Remark 2, the jobs eventually form stationary 
clusters, each traveling at constant speed. Each cluster consists of consecutive jobs that collide (catch up) 
infinitely often, while their distances (interdeparture times) asymptotically reach proper distributions. For 
some special cases a dual network structure provides insight into the results (Remark 3). The application of 
the results to invariant measures of queueing operators is also discussed (Remark 4). 

2. The asymptotic flow 

We consider each queue as a random operator that maps its interarrival times to interdeparture ones, 
taking the point of view of Bambos and Walrand [2]. Letting w k be the waiting time of the j th  job at the kth 
queue (between arriving and starting being served there), we get 

k = [ w ~ +  k k-l]+ w j+ 1 trj - z~ , (4) 

([x] ÷ = x l l x  >, o}), where w k = 0 for every k e ~ .  Moreover, since the interdeparture times at the (k - 1)th 
k k k k - 1  k queue are the interarrival times of the kth one, we get z ~ - - t j + l - t i - - t j + ~  + W ~ + l +  

a i +  1 w i + = zy  + [ w  k + a t - z i + a i +  ~ - w i - a i ,  which leads to (by manipulating 
the [ ]+) 

[ ~ - ,  ~ w~]+ z i =  - t r  i -  j +trj+~ (5) 

for everyj e J ' ,  k e ~e+. Therefore, there is a well-defined d e t e r m i n i s t i c  function F: ~ x ~/'.¢' ~ ~/'Y'mapping 
sequences of interarrival and service times of a queue to sequences of interdeparture times, i.e. 

j-k = F(b,~k, ~--k- 1). (6) 

Consequently, for the kth queue, we can define the random mapping F k : ~ "  ---, ~ "  by 

j-~ = Fk(~k-~)  = F ( ~ ,  y ~ - l ) ,  (7) 
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absorbing the stochasticity of the service times ~k  into the functional form. We can then write 

y k  = [ p  o ~ .~ - ,  o ~.~- 2 . . . . .  F 2 o  r ' ]  ( 3  -°  = ()), (8) 

where the symbol o denotes composition of mappings. We are interested in characterizing the asymptotic 
distribution of 9 --k as k --* oo. 

Because of the tandem structure of the queueing network, the departure time of the j th  job from the kth 
queue can be expressed directly as a function of the service times by 

tjk= max a . l +  ~ a ~ +  2 a . + ' " +  ~ a (9) 
1 ~< n i l  ~ ra2  ~< ra3 ~< , • " ~< r e ! k -  1 ~< J I / / =  1 # = m l  / t = m 2  , t l = m k  - 1 

or, equivalently, by 

" ( 1 0 )  tj = max a~ + a~ + a~ + ' ' '  + a i , 
l ~ < n l ~ < n 2 ~ n 3 ~ ' ' '  <~t l j - l<~k  v V = n l  v = n 2  V = / I j -  1 

for every j e J ,  k e ~÷  (this can be proven inductively; see [3] for a proof). Therefore, the interdeparture 
times r k = t~+ i - t k can be analytically expressed using the previous relations. We will use this expression in 
the proof of the theorem later. 

The original tandem of queues can be (conceptually) extended, by appending an additional infinite tandem 
of queues (indexed by k ~< 0) on the left of the original one, creating a sequence of queues in series, ranging 
from - oo to + oo. Again, jobs leaving the kth queue join the (k + 1)st one. The service time of the j th  job 
(j  e ~ )  on the kth queue (k ~ ~ )  is the a~ element of the sequence S, which already provides for the 
above-mentioned extension by including elements with negative k-indices. The set of random mappings F k's 
can also be naturally extended over all integers {F k, k ~ ~ } .  

On the extended queueing structure (doubly infinite tandem) we define pathwise the quantity 
n , ~  • = o .  ] ~ )  ( 1 1 )  (1~ n,m = { ~ j  , J ~  #~ ' }  [ F n o F n - l o F  n - 2  . .  o F m + l o F  m , 

where m < n and m, n e o~ e. Note that ~b~ 'm is the interdeparture time between the (j + 1 )st job and the j th  one 
at the nth queue, given that the interarrival times of all the jobs at the mth queue were all zero (all jobs 
entered concurrently in the buffer of the mth queue). It is easy to see that for every k e ~÷  we have 

~ ' k  = ( l ~ k ,  1 .  (12) 

Working on a related problem, Bambos and Walrand [2] observed that for every j ~ J '  the quantity 
~b] ''~ is increasing as m ~ - oo (j, n fixed); thus the limits 

q ~ =  lim ~ ,m (13) 
m ~ - - o o  

exist pathwise for every n ~ .~, and similarly we define ~" = {~b~, j ~ J ' }  = limm~ -o0 ~,,m. However, it has 
not been possible to prove whether these limits are finite or infinite almost surely, which is a basic issue in our 
study of the asymptotic flow. This matter is settled in the following theorem, which also characterizes the 
asymptotic flow in terms of the expected processing times of the jobs. 
• In preparation for the proof let us define the notion of collision between two jobs. We say that during the 

evolution of the system the (j  + 1)st job collides with the j th  one on the kth queue if the former has to wait 
for the latter to exit the queue before it can start service there, i.e. the (j + 1)st job catches up with the j th  one. 
It is easy to see that, on a given sample path, we have 

z~ = a~+l (14) 
k k always). if the two jobs collide at the kth queue (of course r j />  a j+ 1 

Theorem 1. For any O-stationary and ergodic sequence of service times S we have the following: 
(a) For any j ~ J ,  if E [a°+ 1 ] < max Ct ~<, ~ J/{ E [a  °] }, then 

~7 < oo (151 
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almost surely for every n ~ ~ ,  

lim PEz~ ~< x]  = PE~b ° ~< x] (16) 
k~oo  

for every x ~ [0, oo ), and the ( j  + 1 )st job collides (catches up) with the j th  one infinitely often almost surely. 
(b) For any j ~ J ,  /f E[a°+ l] > m a x / 1 . < i ~ /  { E [ a ° ] } ,  then 

c~ n. j = ~  (17) 

almost surely for every n ~ Lr, 

lim V ~ ] = E [ a ° + l ]  - max { E [ a ° ] } > 0 ,  
k-,oo ~_K ] l<~i<~j 

and the (j  4- 1)st job collides with the j t h  one only finitely often almost surely. 

08) 

Proof. (a) We start with some definitions and observations. Given that all jobs are concurrent ly placed in 
n,ra the buffer of the ruth queue (interarrival times there are zero), define ca to be the last queue, before the nth 

one (m < n,e"~ '~" < n), where the (a + 1)th job collides with the a th  one (a e J ' ) .  This implies that  
¢n.m m n ~ba o ' = a,+ 1¢"'" (19) 

by (14), and the (a + 1)st job  never waits on the queues between the (Ca"'m)th and nth ones. Defining D~"'' to 
be the departure  time of the a th  job from the nth queue (given that  the jobs entered concurrent ly at the ruth 
one), we get 

D~+I = D a  + (20) 

Since the (a + 1)st j ob  never waits at queues {ca"'' + 1, ca"" + 2 . . . .  , - 1,n}, we have 

n,.  DC~,",m ~ ~ c'~",m c'd" Da+l ,+a + = + + ~ (21) O'a+  1 D a O'a+ 1 O'a+ 1 
V=Can'm+ 1 V=Can'm+ 1 

for every m < n. Moreover ,  for every m < n, a ~ j '  and b e  {1,2,3 . . . . .  a - 1,a}, we have 

D ] "  - D f i " "  >/ ~ aT, - (D~ " '~ '"  - Dr , """ ) ,  (22) 
v = c ~ , m +  1 

since the bth job has to exit the nth queue before the a th  job does, and the former can exit the nth queue in 
time at least y"=¢,., ,  +1 tr~ + Dg ~ ' ' ' '  (minimum achieved when no collision occurs after the (c~'")th queue). 
Now, by D ~ " " "  ° Dg ~ '" ' "  = ~p=ba-t (Do +~"" -- Do¢~"'') = ~o=ba-x ~bp¢~"'~", we get 

a - - 1  
D~"" - Df i  m'm >~ a~, - ~ ~b~, "'"'m. 

v=cn'm+ I p=b 

Finally, using (20) and (21), we get 

= Da+ l -- Da = Da + 
V~Ca n,m 

and by (23) we have (pathwise, for every m < n, a ~ j ' ,  b ~ {1, 2 . . . . .  a - 1,a}) 

~.,m ~< ~a+lv _ O; + Y~ ~O¢~mm' 
v=c~  'm v = c ~ ' m +  1 o=b 

which is a basic structural relation used in the p roof  below. 

(23) 

..L" 
v _ - D,- • ), (24) . . . .  (D~ . . . . . .  m O ' a + l  - -  Oa = O ' a + l  

(25) 
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Now, since gb~ ' "  increases as m ~ - oo, the Ca ~'m is decreasing as m ---} -- oo pathwise (a, n fixed). Therefore,  
define 

Ca"= lim [ca" 'm] (26) 
m ~ - - c c  

(exists almost  surely, but  may  be finite or - o o )  for every a e j ' .  Finally, define j * =  
max {a ~<j: E[a °] > E[a°+ 1] } to be the index of the job  closest to (but preceding) the ( j  + l)st  one with 
average service time larger than that  of the latter. Therefore,  

E[a ° ] < E [ a ° . ]  for e v e r y b e { j * +  1 . . . . .  j , j +  1}. (27) 

By our  assumption that E [ a ° + l ]  < max{l .< ~.<j} { E [ a ° ] } ,  it is guaranteed that such a j*  ~<j exists. 
We now prove that  ~b~ < ~ ,  using induction on the index set {j*, j*  + 1 . . . .  , j - 1,j}. This is done in two 

steps, each having three key substeps. 
Step 1.1: To  prove ~b~, < ~ ,  we need to show that l i m , , ~  [c~: m] = C~, > - ~  (is finite). Arguing by 

contradict ion suppose that  C~, = - ~ .  F r om the structural relation (25), taking a = b = j * ,  we get 
n , m  n V n , m  n , r a  . . . .  n , m  • 0 ~< q~j, ~< y, ,=~.~ as,+x - Z  . . . . . .  +1 as* , pathwlse. Dividing by n -  cj, , letting m - ,  - o o ,  and using 

• d *  J *  . Blrkhoff 's  ergodlc theorem [8] on the staUonary sequences {try,+1, v e .~} and {a~,,v e .,~e}, we get 
n v n v 

~v=~7*" aj*+l ~=cy;m+ 1 aS* 
0 ~< lim lim = E [ a ° . + l ]  - E[a°.], (28) n , m  n , m  m - * -  oo n - -  C : .  r n ~ -  oo n - -  C , .  

d J 

which is a contradict ion,  because of (27). Therefore,  lim,~. _ oo [c~.; m] = C7, > - ~ (is finite), and taking the 
limits for m ---} - oo, we get 0 ~< ~b 7. = l imm, - o~ ;r,] ~< ~,~=C7" aj,+~ 1 -- ~"v=C7,+ 1 a j, < ~ ,  almost surely, 
for every n e ~ ,  as required. 

Fol lowing the same reasoning as above, we can prove that  at the limit m ---} - oo (where { ~b;, } is attained) 
the ( j*  + 1)st job  collides with the ( j * ) t h  one infinitely often before queue n. Indeed, C~., is the 'collision point '  
(finite) immediately before queue n (arbitrary) in {q~;,, v e ~ } .  Choosing queue C~.,, instead of n, to apply the 
arguments  of the previous paragraph,  we construct  the collision point  preceding C~.,, and so on. Therefore, 
there is a strictly increasing infinite sequence {Cs,(k)} with elements that  are the indices of the queues 
where the above-ment ioned jobs collide in {~b;,, v e~e}.  The k-numbering is so chosen that  
- o o  < - . . C j , ( - 1 ) < C j , ( 0 ) ~ < 0 < C j , ( 1 ) < C j , ( 2 ) . . . < n  and we have l i m k ~ - ~ [ C j , ( k ) ] =  --oo.  
Since the two jobs collide only at the queues Cj,(k), we have "Vj*"hCj'(k) = O'J *+lcj'(k)' while q~j,v > o.3,+1 when 
Cj,(k) < v < Cj,(k + 1). 

Step 1.2: The  second point  of the basic induction step is that  

lim Cj.(k + 1) _ 1 (29) 
k-.- oo Cj*(k) 

almost  surely, which we use later• Indeed, arguing by contradict ion suppose that, on a sample path, we have 
l i m i n f k . _ ~  C r ( k  + 1)/Cj.(k) = 1 - 6 for some positive 6 > 0 (note that  Cj.(k) < Cj,(k + 1) < 0 

rhCj. (k + I )- I as k--* - o o ) .  Arguing for {q~..} as in (25), with a = b = j * ,  we get 0 ~ . r s ,  
~< L-,v=Cj.(k)~7'CJ* (k + 1)-1 O.j,+ i v  - -  /-'v=C.l*(k) + l ~ ' C j * ( k  +1)-1 aS'v for every k e ~', and dividing by - Cj.(k) > 0 and rearranging the 

terms we get 

/ V  0 0 v 
[ L'~v=CJ " (k )  v j "  + l __ 

0 <~ \ -- Cj,(k) 
E°=c'tk+ ) 1) a~'+1 Cj,(k + 1) 

X 
- C j , ( k  + 1) C j . ( k )  

(30) 

/ T O  O.V 0 v 
~ v = C j . ( k  1)O'j* - -  ( / - * v = C j , ( k ) +  l j *  + 

\ - - C r ( k + l )  
Cj,(k + 1)'~ 

x ~ j , ( ~  / (31) 



310 N. Bambos, B. Prabhakar / Infinite queueinq tandems 

for every k < 0. Lett ing k--* - o o  on a subsequence on which the lira inf 1 - f i  is attained, and using 
Birkhoff ' s  ergodic theorem [8], we get 

0 ~< (E{tr°,+ 1] E [ a ° , + l ]  (1 6)) -- (E[a°,] E[cr°,] (1 6)) = (E o - . - - - [ a j , + l ]  - (E[cr° , ] )x  6 < 0, (32) 

which leads to a contradic t ion for every positive 6, because of (27), proving (29). 
Step 1.3: The final point  is that,  using (29), we can now show that  

lim - -  q~y" = 0 (33) 

n g - C i , ( k ~ +  1) v almost  surely. Indeed, let k. = {k e ~f: Cj,(k) < n <<. C;,(k + 1)} and observe that  0 ~< thj, ~< ~-~=cj, tk,.~ a;*+l 
pathwise. For  negative n's, dividing by - n > 0, noting that  - C;,(k,  + 1) ~< - n and rearranging the 
terms, we get 

r c 2.1 , zo  
0 ~< 4~'* .... ~< 7 a~*+l <~ ~'cj*~k"~aJ*+~ X C~.(k,) ,.=C~,~k.+~)+I ~*+1 (34) 

- -  rl - -  C j , ( k  n d- 1) - -  C j , ( k n )  Cj,(k n + 1) - C j , ( k  n q- 1) 

Taking  the limits as n--* - ~ ,  and using (29) and Birkhoff 's  ergodic theorem, we get 
0 <~ l i r a . . _  ~ q ~ . , / -  n ~< E[tr° ,]  x 1 - E [ a ° . ]  = 0 a lmost  surely, and (33) is proven.  

Step 2. Having  proven  (29) and (33), which form the first step of our  inductive proof,  we now assume that  
the following are true: 

,~ < oo (35) 

and 

lira - -  q~; = 0 
n ~ - ~  H 

for every p ~ { j * , j *  + 1, 
p = a, in order  to establish the validity of  q~7 < ~ by induction. 

Using the basic structural  relation (25) with b = "* j , we get 

(36) 

• . ,  a - 1 }, where a < j. It  is then enough to prove  that  (35) and (36) are true for 

~ a--1 
0~<~.",'~< o.+1 4 ' r +  Y c.-~,.. 

v=c~ 'm v=c~'rn+ 1 p = j *  

n n ,m Arguing as in step 1.1, we see that  if C,  = liming_® I-c. "'m] = - ~ ,  then, dividing (37) by n - c ,  , 
letting m ~  - o o ,  and using (35) and (36), we get 0 ~< E [ a ° + l  -] - E [ a ° . ]  < 0, which is a contradict ion 
because of (27). Therefore,  C~ > - o o  (step 2.l) and, letting m ~  - o o  in (37), we get 

" - 2 "  ~ o- 1 ac~" < oo, as required. 
We still have to prove  that  l i m , . _  ~ O'~/n = 0 (step 2,3). The p roof  is analogous  to that  of (33). First, we 

prove  that  lim,~_o~ Ca(k + 1) /C, (k )= 1 (step 2.2), where C,(k) are the consecutive queues on which 
the ( a + l ) s t  job  collides with the a th  job. Reasoning on {~b."} as in (37), we get 

~ . C a ( k +  1}-1  v - - ~ , C a ( k +  1 ) - 1  v a - 1  ,6cork). the new aspect here, compared  to the 0~<~b c°(~÷~-~ ~<~=c°(k~ a , + l  ~-~=co(k~+~ c r j ,+  Zp=j*-~p , 
a -  1 d~Ca(k) proof  of  (29), is that  the r ightmost  par t  of the previous expression includes the addit ional  term ~ = i .  ,~p • 

However ,  due to (36), when we divide by C a ( k )  and let k ~ - oo, this term is squeezed to zero (that is why we 
had to go through (33), (35) and (36) before) and the si tuation becomes completely analogous  to (30), (31). 
This completes  the induction argument ,  which can then be directly applied for a = j to prove ~b7 < oo for all 
h e r e .  

To prove (16), note that  pathwise r~ (S )=4)~ '~ (S )=4)°" -a (OaS)  for every k ~ Y + .  Due to the 
0-stat ionari ty of  S, we get P [ r k(S)  ~< x]  = P [ q~o,l -k (0~ S)  ~< x]  = P [ ~b °'~ - k(S) ~< X]. Lett ing k --, oo and 
observing that  l i m k ~  t h ° ' l - k ( S ) =  ~b°(S)< co a lmost  surely (which implies convergence in distr ibution 
too), we get the result (16). 
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To see why the ( j  + 1)st job collides with the j th  one infinitely often, we argue by contradiction. If this is 
not true, the two jobs should never collide after some finite index queue ko (almost surely). Thus, for k > ko, 
we should have k ko k v k k k o k v k t j + l  = t j + l  + ' ~ v = k o + l  O ' j + l ,  SO 0 ~< t j +  1 - -  t j  = t j +  1 q-  ~-~,v=ko+l O'J +1 - -  t j  pathwise. Divid- 
ing by k and letting k ~ oo, we get (see (39) and relevant remarks below) 

0 ~<~ 0 "[- E [ o ' ° + l l  - -  max {E[a° ]}  < 0, (38 )  

which is a contradiction. Thus, the jobs must collide infinitely often almost surely. 
0 To get (38), we use Birkhoff's ergodic theorem [-8] to get the term E[-~j+ i], and for the other one we use 

the formula 
k 

lim tj max {E[a° ]}  (39) 
k ~ o o  k ~ l <~i<~j 

(almost surely) for every j e J ,  which can be proven using (9). To see this intuitively, observe that as k ~ ~ ,  
the term that gives the dominant contribution in (9) (out of the j terms) is the one which converges to the 
maximum of all the E[tr°] 's .  For  a rigorous proof, see [-1], where the result is proven in a related dual 
context, which is elaborated in Remark 3. This completes the proof of part (a). 

(b) To prove (17), observe that analogously to (9) we can write 

ra m + l  m+2  D~""= max trp + ap + ap + . . .  + (r (40) 
I ~ ~ 1  ~ ~ 2  ~ ~ 3  ~ " " " ~ ~ n - - r a  -~< a ~ p m  1 p = ' / t l  P = ~ 2  P = ~ n - m  

for every m < n and a e ~e+. Arguing as in (39), we get lim.,~ _~ D~"/n - m = maxl ~< i~<, {E[cr°]} almost 
surely, and because of the assumption in part (b) we get 

max {E[a° ]}  o = E [ a j + l ] ,  (41) 
1 <~i<~j+l  

SO 
~)n,m n,m n,m 

lim J = lim Di+l - D1 = E [ a °+ l ]  -- max {E[a° ]}  > 0 (42) 
m ~ - oo ]'l - -  m m -~ -- o3 lq - -  ~ l  l <~ i <<. j 

almost surely, which implies that ~b] = limm-~ -o~ [~b] 'm ] = lims~ _ ~ [D~.¥~ - D~ 'm] = oo, proving relation (17). 
k k k and using (39) (for ( j  + 1) and j) and We can easily get relation (18) by recalling that rj = tj+ 1 - tj 

also (41). 
Finally, arguing by contradiction, suppose that the ( j  + 1)st job collides with thej th  infinitely often and let 

{ kp, p E .~+ } be the (increasing) sequence of indices of the queues where these two jobs collide. Then, we have 
rjks = (rj+kP 1 for every p ~ ~ +  . However, using Birkhoff's ergodic theorem, we get 

g-ko-- 1 v 
lim - -  O'k~'l -~- lim )'~kvp=l °3+1 / - . - v = l  trJ +1 = E [ t r ° + l ]  - -  E[a°+a]  = 0 (43) 
,-. oo k, , ~ ® k, k, 

almost surely, which implies that l i m p ~  zk"/kp = 0 almost surely, contradicting (18). Therefore, the jobs 
collide only finitely often. This completes the proof of the theorem. [] 

It should be noted that in part (a) of the theorem, the jobs colliding infinitely often is not enough to 
guarantee that the interdeparture times asymptotically have proper distributions. Indeed, given the station- 
ary ergodic nature of the service times, it is possible that the jobs collide infinitely often, yet 
limkooo P[r~ < oo] = P[~b ° < oo] = 0. This is exactly what happens in the simple special case where all jobs 
have the same i.i.d, service times (see Remark 3, last paragraph), due to the null recurrence of the 
interdeparture times processes in this case. Therefore, to show the finiteness part of the theorem we need to 
start from first principles, as is done in the proof. 

We continue with a few interesting remarks on the previous analysis. 
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Remark 1 (The critical case). Theorem 1 does not discuss the case where E[o°+ 1] = max1 ~<i.< j {E[a  °] }; 
we call such a job j + 1 e J  a critical one. The proof first collapses at relations (27) and (28), 
since no contradiction is now encountered. In such a case we cannot say anything about the finiteness 
of ~b7 or whether the (j + 1)st job collides with the j th  one infinitely often, based only on the average 
service times; more information on the distributions is actually needed. As mentioned above, the 
problem is settled if all service times are i.i.d. (see Remark 3, last paragraph). In the general stationary 
ergodic case, if there are critical jobs, we can only characterize the noncritical ones by applying the theorem 
individually on them. 

Remark 2 (Clustering of jobs). Interpreting the results of our analysis, we see that, as the jobs move through 
the queues, they asymptotically form clusters of colliding consecutive jobs; distinct clusters cease to interact 
eventually. Two consecutive jobs j and j + 1 belong to the same cluster if E [a°+ 1 ] < max1 .< i .< j { E [a° ]  }, in 
which case ~b~ < oc and the two jobs collide infinitely often. If E [ao+ 1] > max1 .< i ,< j { E [ai °] }, then j + 1 is 
the first job of a new cluster, j is the last job of the previous one, and qS~ = oe and the two jobs cease to collide 
eventually (that is what separates the clusters). Therefore, a cluster is characterized by a front job jr, such that 

0 0 E[aj,] > max~o ~ i,< Jb-1} {E[ai ] }, and a back (last)job Jb, such that E[a °] < E[a°,] for every jf < i ~<jb 
and E[a°b+l]  > E [ a ° ]  (assuming there are no critical jobs; the critical case is discussed later). All jobs 
i s {jr, jf + 1 , . . . ,  Jb - 1, Jb} belong to the same cluster. 

As the jobs move along the tandem, eventually the clusters become clearly formed and separated, while 
the distances between the jobs in the same cluster (interdeparture times) reach proper stationary 
distributions and the jobs collide repeatedly. Actually, all jobs within the same cluster move 
asymptotically with the same average speed (number of queues crossed per time unit), which we call cluster 
speed. On the contrary, consecutive clusters move at different speeds, the front one always traveling faster 
than the one following it. Therefore, the relative distance between consecutive clusters grows linearly with 
time. If job j is left to move along the tandem alone (without interacting with the others), then its (average) 
speed is 1/E [ao] ,  which we call free speed. Note that the speed of a cluster is equal to the free speed of its front 
job, while all the other jobs in it have higher free speeds. This is consistent with intuition about the cluster 
formation. 

A problem arises with respect to critical jobs, defined in Remark 1. We cannot say whether a critical job 
starts a new cluster or is merged into the one preceding it. An intuitive view is to consider the critical job as 
loosely coupled to the cluster preceding it, since it does move with the same speed as the cluster, but still it 
may never collide with it, or its distance from it may grow to infinity asymptotically. 

Remark 3 (A dual queueing network. The i.i.d, service times case). An interesting observation is that 
the dynamics of the infinite queueing tandem can be equivalently described by a dual tandem network [4], 
i.e. one having a finite number of queues and an infinite number of jobs, taking the equivalent point of 
view of the servers being queued up waiting to access the jobs and keep them for a random holding time. 
The dual network is constructed as follows. Each job in the original tandem is associated with a FCFS 
queue (with infinite buffer) in the dual network, and each queue with a token. Therefore, the queues 
in the dual network are indexed by j e J = {1, 2, 3 . . . . .  J} and the tokens by k ~ ~o+ = {1, 2, 3 . . . .  }, 
which is the reverse of the original situation. These J queues are connected in tandem, so that a token 
leaving the j th  queue joins the (j + 1)st one. The holding time (staying time) of the kth token on the 
server of the j th  queue is a k. Originally all the tokens are placed in the (infinite) buffer of the first queue 
(j = 1), while all other queues are empty. At time 0 we let the tokens start flowing on the dual network of the 
J queues. The time when the kth token exits the j th  queue of the dual network is actually the departure time 

k k k k Therefore, the quantity Tj - tj of the j th  job from the kth queue of the original tandem, which is tj. = t j+ 1 is 
actually the delay that the kth token will experience in the (j + 1)st queue while traveling through the dual 
network. 

Observing the output of the first queue of the dual network, we see that the interdeparture times of the 
tokens are just a ] , forming a stationary and ergodic arrival process for the rest of the network. Such tandem 
networks of G/G/1 queues have been studied by Loynes [5], extending his stability theory of the G/G/1  
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queue. If E[tr °] > maxx <i~s {E[a°]} ,  the dual network is stable, and Loynes's approach immediately 
gives the same results as those of Theorem 1. However, if E[a°+ 1] > max1 < i~<j {E[a  °] } for some j ~ J ' ,  
then the dual network is unstable and Loynes approach cannot be applied directly to yield the results. In case 
we have no critical jobs (defined in Remark 1) in the original tandem, a simple extension of Loynes' 
arguments suffices to produce the results, using the dual network. 

Serious problems arise, however, when there are critical jobs, making the dual network approach fail and 
rendering the direct proof presented above necessary. The source of the problems is that in a critically loaded 
G/G/1 queue the delay process may never merge (pathwise) with a stationary operational regime in finite 
time (contrary to what happens in subcritical queues) and the output (interdeparture times) may never 
become stationary (it can actually retain the memory of its initial conditions forever). As a result, when we try 
to apply Loynes' procedure (which is inductive on the set of queues) to the dual network, we can duplicate the 
results of the theorem until we reach a critical queue (corresponding to a critical job in the original network). 
At that point the procedure fails, and nothing can be said about the noncritical queues (jobs) that may follow. 
This is way we need to take a global approach in the proof of the theorem, and work backwards from j, 
defining the j*. This proof allows us to characterize all the noncritical jobs on the tandem. 

k If the service times a j, j e J ,  k e ~ are mutually independent random variables, we can use the dual 
network approach to get the results. Indeed, as Lindley [-5] and Loynes [6] have proven, a critically loaded 
queue is always unstable (so in the original infinite tandem the corresponding ~b7 = ~ almost surely), but 
becomes empty infinitely often (so the corresponding jobs collide infinitely often), due to the fact that its 
workload process is null recurrent. The problems discussed above do not appear, since no ambiguity arises, 
even at critical jobs (the system does not retain memory). Also, using the dual network and Lindlay's and 
Loynes' results (for the i.i.d, case), we can immediately see that the distances of jobs belonging to the same 
cluster are positive recurrent, while for different clusters they are transient processes. Such characterizations 
cannot be established for the general case of stationary ergodic service times, which is the focus of this paper. 

An interesting case is when all jobs have independent and identically distributed service times; thus, they 
are all critical. Then, all distances between the jobs (interdeparture times) are null-recurrent processes, and 
a single cluster of loosely coupled jobs is formed, according to the discussions in Remarks 1 and 2. Using the 
dual network and Loynes' results, we get that all jobs collide infinitely often; however, all ~b~'s are infinite, and 
limk-,~ P[T k < ~ ]  = 0. Glynn and Whitt [4] have further studied the asymptotics of the single cluster 
formed in that special case, with respect to central limit theorems. 

Remark 5 (Invariant measures of queuein9 operators). From (11) we get {4~1'', j ~ f , }  __ Fl({q~o.m, 
j ~  J ' } ) =  F({a), j ~  J } ,  { o,,, ~bj , j~o.¢'}), and taking the limits when m - - + - ~ ,  we get {q~), 
j ~ j , }  r ( { a j , j ~ j } , { d p o , j ~ j , } ) = F a (  o . = { ~bj, j ~ o.¢'}), due to the continuity of the queueing operations 
involved in F. Since { q~) } is identically distributed as { q~O }, we see that { ~b ° } is an invariant measure of the 
queueing operator F 1. From a practical point of view, given the distribution of service times {a t, j ~ J } of 
a queue, {~b °, j ~ J ' }  is the distribution of interarrival times that induces an identical distribution of 
interdeparture times. The existence of such a distribution was proven by Bambos and Walrand [2]. The 
analysis here can additionally characterize this invariant distribution with respect to finiteness of its 
components. 

Remark 6 (Limited buffer space. Blocking). If each queue has B buffer places, which are less than the total 
number of jobs J, then the possibility of blocking arises, where a job finishing execution at some queue 
cannot jump to the next one because that is full. The job has to wait until an empty space appears in the 
following buffer, before it can jump. While waiting, it blocks the server, which resumes service only when the 
blocked job leaves and the next one enters the service area (like in certain manufacturing systems, where 
products circulate on pallets). Theorem 1 is still valid here. Specifically, basic relation (13) still holds, and the 
key arguments (25), (26), (28), (29), (33), (37) are actually amplified by the added restriction of blocking. 
Instead of using, however, the compact relations (39) and (42), which are valid for infinite buffers, we have to 
argue (38) and (42) from first principles as in steps (1) and (2) in the theorem; the result is again the same 
though. Intuitively, we can see that blocking will potentially spread out each cluster, but cannot cause 
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merging of any two of them. The reason is that the average cluster speed is determined by the free speed of its 
front job, which eventually ceases to collide with the tail of the preceding cluster, and thus ceases being 
blocked and attains its free speed. 

3. Conclusions and final remarks 

The asymptotic flow of jobs on an infinite queueing tandem has been studied under stationary and ergodic 
service times, given that the jobs are simultaneously released at the first queue. It has been shown that 
stationary clusters are eventually formed of consecutive jobs colliding infinitely often. 

Of special interest is a version of the problem where the service times are i.i.d, and the jobs arrive at the first 
buffer with i.i.d, interarrival times. Again, we want to characterize the asymptotic flow. Although the analysis 
here provides considerable insight into this modified problem (especially on its sample path structure), 
serious technical issues remain to be resolved before analogous results can be established. We are working in 
this direction. 
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