
pFabric: Minimal Near-Optimal Datacenter Transport

Mohammad Alizadeh†‡, Shuang Yang†, Milad Sharif†, Sachin Katti†,
Nick McKeown†, Balaji Prabhakar†, and Scott Shenker§

†Stanford University ‡Insieme Networks §U.C. Berkeley / ICSI
{alizade, shyang, msharif, skatti, nickm, balaji}@stanford.edu

shenker@icsi.berkeley.edu

June 2, 2013

Abstract

In this paper we present pFabric, a minimalistic datacenter transport design that provides near
theoretically optimal flow completion times even at the 99th percentile for short flows, while still min-
imizing average flow completion time for long flows. Moreover, pFabric delivers this performance with
a very simple design that is based on a key conceptual insight: datacenter transport should decouple
flow scheduling from rate control. For flow scheduling, packets carry a single priority number set in-
dependently by each flow; switches have very small buffers and implement a very simple priority-based
scheduling/dropping mechanism. Rate control is also correspondingly simpler; flows start at line rate
and throttle back only under high and persistent packet loss. We provide theoretical intuition and show
via extensive simulations that the combination of these two simple mechanisms is sufficient to provide
near-optimal performance.

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design
General Terms: Design, Performance
Keywords: Datacenter network, Packet transport, Flow scheduling

1 Introduction

Datacenter workloads impose unique and stringent requirements on the transport fabric. Interactive
soft real-time workloads such as the ones seen in search, social networking, and retail generate a large
number of small requests and responses across the datacenter that are stitched together to perform a
user-requested computation (e.g., delivering search results). These applications demand low latency for
each of the short request/response flows, since user-perceived performance is dictated by how quickly
responses to all (or a large fraction of) the requests are collected and delivered back to the user. However
in currently deployed TCP-based fabrics, the latency for these short flows is poor — flow completion
times (FCT) can be as high as tens of milliseconds while in theory these flows could complete in 10-
20 microseconds. The reason is that these flows often get queued up behind bursts of packets from
large flows of co-existing workloads (such as backup, replication, data mining, etc) which significantly
increases their completion times.

Motivated by this observation, recent research has proposed new datacenter transport designs that,
broadly speaking, use rate control to reduce FCT for short flows. One line of work [3, 4] improves FCT
by keeping queues near empty through a variety of mechanisms (adaptive congestion control, ECN-based
feedback, pacing, etc) so that latency-sensitive flows see small buffers and consequently small latencies.
These implicit techniques generally improve FCT for short flows but they can never precisely determine
the right flow rates to optimally schedule flows. A second line of work [20, 13] explicitly computes and
assigns rates from the network to each flow in order to schedule the flows based on their sizes or deadlines.
This approach can potentially provide very good performance, but it is rather complex and challenging

1

to implement in practice because accurately computing rates requires detailed flow state at switches and
also coordination among switches to identify the bottleneck for each flow and avoid under-utilization
(§2).

Our goal in this paper is to design the simplest possible datacenter transport scheme that provides
near-optimal flow completion times, even at the 99th percentile for latency-sensitive short flows. To this
end, we present pFabric,1 a minimalistic datacenter fabric whose entire design consists of the following:

• End-hosts put a single number in the header of every packet that encodes its priority (e.g., the
flow’s remaining size, deadline). The priority is set independently by each flow and no coordination
is required across flows or hosts to compute it.

• Switches are simple; they have very small buffers (e.g., 36KB per port in our evaluation) and
decide which packets to accept into the buffer and which ones to schedule strictly according to the
packet’s priority number. When a new packet arrives and the buffer is full, if the incoming packet
has lower priority than all buffered packets, it is dropped. Else, the lowest priority packet in the
buffer is dropped and replaced with the incoming packet. When transmitting, the switch sends the
packet with the highest priority. Thus each switch operates independently in a greedy and local
fashion.

• Rate control is minimal; all flows start at line-rate and throttle their sending rate only if they see
high and persistent loss. Thus rate control is lazy and easy to implement.

pFabric thus requires no flow state or complex rate calculations at the switches, no large switch buffers, no
explicit network feedback, and no sophisticated congestion control mechanisms at the end-host. pFabric
is a clean-slate design; it requires modifications both at the switches and the end-hosts. We also present
a preliminary design for deploying pFabric using existing switches, but a full design for incremental
deployment is beyond the scope of this paper.

The key conceptual insight behind our design is the observation that rate control is a poor and
ineffective technique for flow scheduling and the mechanisms for the two should be decoupled and
designed independently. In pFabric, the priority-based packet scheduling and dropping mechanisms at
each switch ensure that it schedules flows in order of their priorities. Further, the local and greedy
decisions made by each switch lead to an approximately optimal flow scheduling decision across the
entire fabric (§4.3). Once flow scheduling is handled, rate control’s only goal is to avoid persistently
high packet drop rates. Hence, the rate control design gets correspondingly simpler: start at line rate
and throttle only if bandwidth is being wasted due to excessive drops.

We evaluate our design with detailed packet-level simulations in ns2 [14] using two widely used
datacenter workloads: one that mimics a web application workload [3] and one that mimics a typical data
mining workload [11]. We compare pFabric with four schemes: an ideal scheme which is theoretically
the best one could do, the state-of-the-art approach for datacenter transport, PDQ [13], as well as
DCTCP [3] and TCP. We find that:

• pFabric achieves near-optimal flow completion times. Further, pFabric delivers this not just at the
mean, but also at the 99th percentile for short flows at loads as high as 80% of the network fabric
capacity. pFabric reduces the FCT for short flows compared to PDQ and DCTCP by more than
40% and 2.5–4× respectively at the mean, and more than 1.5–3× and 3–4× respectively at the
99th percentile.

• With deadline driven workloads, pFabric can support a much larger number of flows with deadlines
as well as much tighter deadlines compared to PDQ. For instance, even for deadlines where the
slack with respect to the lowest possible FCT is only 25%, pFabric meets the deadline for 99% of
the flows (about 2× more than PDQ) at 60% network load.

• If the network designer has detailed knowledge of the flow size distribution in advance and carefully
tunes parameters such as the flow size thresholds for each priority queue, minimum buffer per
priority queue, etc pFabric can be approximated using existing priority queues in commodity
switches. This approach provides good performance too, but we find that it is rather brittle and
sensitive to several parameters that change in a datacenter due to flow and user dynamics.

1pFabric was first introduced in an earlier paper [5] which sketched a preliminary design and initial simulation results.

2

2 Related Work

Motivated by the shortcomings of TCP, a number of new datacenter transport designs have been pro-
posed in recent years. We briefly contrast our work with the most relevant prior work. As discussed
earlier, broadly speaking, the previous efforts all use rate control to reduce flow completion time.

Implicit rate control: DCTCP [3] and HULL [4] try to keep the fabric queues small or empty by
employing an adaptive congestion control algorithm based on ECN and other mechanisms such as oper-
ating the network at slightly less than 100% utilization, packet pacing, etc to appropriately throttle long
elephant flows. Consequently, the latency-sensitive flows see small buffers and latencies. D2TCP [17], a
recently proposed extension to DCTCP, adds deadline-awareness to DCTCP by modulating the window
size based on both deadline information and the extent of congestion. While these schemes generally
improve latency, they are fundamentally constrained because they can never precisely estimate the right
flow rates to use so as to schedule flows to minimize FCT while ensuring that the network is fully uti-
lized. Furthermore, due to the bursty nature of traffic, keeping network queues empty is challenging
and requires carefully designed rate control and hardware packet pacing at the end-hosts and trading
off network utilization [4].

Explicit rate control: Having recognized the above limitations, subsequent work explicitly assigns
a sending rate to each flow in order to schedule flows based on some notion of urgency. The assigned
rates are typically computed in the network based on flow deadlines or their estimated completion time.
D3 [20] first proposed using deadline information in conjunction with explicit rate control to associate
rates to flows. D3 allocates bandwidth on a greedy first-come-first-served basis and does not allow
preemptions and has thus been shown to lead to sub-optimal flow scheduling since a near-deadline flow
can be blocked waiting for a far-deadline flow that arrived earlier [13].

The most closely related work to pFabric and in fact the state-of-the-art approach in this space is
PDQ [13]. PDQ was the first to point out that minimizing FCTs requires preemptive flow scheduling
and attempts to approximate the same ideal flow scheduling algorithm as pFabric to minimize average
FCT or missed deadlines (§3). However, like D3, PDQ’s flow scheduling mechanism is also based on
switches assigning rates to individual flows using explicit rate control. In PDQ, on packet departure,
the sender attaches a scheduling header to the packet that contains several state variables including
the flow’s deadline, its expected transmission time, and its current status such as its sending rate and
round-trip-time. Each switch then maintains this state for some number of outstanding flows and uses
it to decide how much bandwidth to allocate to each flow and which flows to “pause”.

PDQ provides good performance but is quite challenging and complex to implement in practice. Since
the switches on a flow’s path essentially need to agree on the rate that is to be assigned to the flow, PDQ
needs to pass around state regarding a flow’s rate and which switch (if any) has paused the flow. Further,
since switches need to be aware of the active flows passing through them, in PDQ, every flow must begin
with a SYN and terminate with a FIN so that switches can perform the required book-keeping. This
one extra round-trip of latency on every flow may not be acceptable because most latency sensitive flows
in datacenters are small enough to complete in just one RTT.2 Thus, requiring the network to explicitly
and efficiently assign a rate to each flow requires detailed flow state (size, deadline, desired rate, current
rate, round-trip time, etc) at switches and also coordination among switches to identify the bottleneck
for each flow and avoid under-utilization. This is a major burden, both in terms of communication
overhead and requisite state at switches, particularly in the highly dynamic datacenter environment
where flows arrive and depart at high rates and the majority of flows last only a few RTTs [11, 6].

Load balancing: Finally, there are a number of proposals on efficient load balancing techniques for
datacenter fabrics [2, 16, 21, 10]. Better load balancing of course reduces hotspots and thus helps reduce
flow completion time, however the techniques and goals are orthogonal and complementary to pFabric.

3 Conceptual Model

Our conceptual viewpoint in designing our flow scheduling technique is to abstract out the entire fabric
as one giant switch. Specifically, the datacenter fabric typically consists of two or three tiers of switches

2In measurements from a production datacenter of a large cloud provider, more than 50% of the flows were observed to be
less than 1KB [11] — just a single packet.

3

1

2

3

1

2

3

!"#$%&&'()%)%&'
*+$&,'-./'0,'1!2&3'

4#$%&&'()%)%&'
*50&,'-./'0,'678&3'

Figure 1: Conceptual view of flow scheduling over a datacenter fabric.

in a Fat-tree or Clos topology [1, 11]. Instead of focusing on the individual switches, the whole fabric
can be abstracted as one giant switch that interconnects the servers as shown in Figure 1. The ingress
queues into the fabric switch are at the NICs and the egress queues out of the fabric switch are at the
last-hop TOR switches. Each ingress port (source NIC) has some flows destined to various egress ports.
It is convenient to view these as organized in virtual output queues at the ingress as shown in Figure 1.
For example, the red and blue flows at ingress 1 are destined to egress 1, while the green flow is destined
to egress 3.

In this context, transport over the datacenter fabric can essentially be thought of as scheduling flows
over the backplane of a giant switch. The problem is to find the best schedule to minimize the average
FCT (or maximize the number of deadlines met). Since datacenter workloads are dominated by large
numbers of short flows, minimizing average FCT will ensure that the short, high-priority flows see very
low latency.

Optimal flow scheduling: The optimal algorithm for minimizing average FCT when scheduling over
a single link is the Shortest Remaining Processing Time (SRPT) policy which always schedules the
flow that has the least work remaining. However, we are not scheduling over a single link but rather
over an entire fabric with a set of links connecting the ingress and egress queues. Unfortunately, a
simple universally optimal policy does not exist for simultaneously scheduling multiple links. In fact,
even under the simplifying assumption that the fabric core can sustain 100% throughput and that only
the ingress and egress access links are potential bottlenecks, the scheduling problem for minimizing the
average FCT is equivalent to the NP-hard sum-multicoloring problem [8]. Fortunately, a simple greedy
algorithm is theoretically guaranteed to provide near-ideal performance. This Ideal algorithm schedules
flows across the fabric in non-decreasing order of the remaining flow size and in a maximal manner such
that at any time a flow is blocked if and only if either its ingress port or its egress port is busy serving
a different flow with less data remaining. The pseudo code is provided in Algorithm 1. This algorithm
has been theoretically proven to provide at least a 2-approximation to the optimal average FCT [8]. In
practice we find that the actual performance is even closer to optimal (§5). The takeaway is that the
greedy scheduler in Algorithm 1 that prioritizes small flows over large flows end-to-end across the fabric
can provide near-ideal average FCT.

It is important to note that the Ideal algorithm is not plagued by the inefficiencies that inevitably
occur in an actual datacenter transport design. It does not have rate control dynamics, buffering (and
its associate delays), packet drops, retransmissions, or inefficiency due to imperfect load-balancing. It
only captures one thing: the (best-case) delays associated with flows contending for bandwidth at the
ingress and egress fabric ports. Consequently, the performance of this algorithm for a given workload
serves as benchmark to evaluate any scheme that aims to minimize flow completion times. The key
contribution of this paper is to show that a very simple distributed transport design can approximate
the performance of the Ideal algorithm with remarkable fidelity.

Remark 1. For simplicity, the above discussion assumed that all the edge links run at the same speed,
though the Ideal algorithm can easily be generalized. See Hong et al. [13] for more details.

4

Algorithm 1 Ideal flow scheduling algorithm.

Input: F = List of active flows with their ingress and egress port and remaining size. The algorithm is
run each time F changes (a flow arrives or departs).

Output: S = Set of flows to schedule (at this time).
1: S ← ∅
2: ingressBusy[1..N]← FALSE
3: egressBusy[1..N]← FALSE
4: for each flow f ∈ F , in increasing order of remaining size do
5: if ingressBusy[f.ingressPort] == FALSE and

egressBusy[f.egressPort] == FALSE then
6: S.insert(f)
7: ingressBusy[f.ingressPort]← TRUE
8: egressBusy[f.egressPort]← TRUE
9: end if

10: end for
11: return S.

4 Design

pFabric’s key design insight is a principled decoupling of flow scheduling from rate control. This leads
to a simple switch-based technique that takes care of flow scheduling and consequently also simplifies
rate control. In this section we describe pFabric’s switch and rate controller designs. We explain why
pFabric’s simple mechanisms are sufficient for near-ideal flow scheduling and discuss some practical
aspects regarding its implementation.

Packet priorities: In pFabric, each packet carries a single number in its header that encodes its priority.
The packet priority can represent different things depending on the scheduling objective. For instance,
to approximate the Ideal algorithm (Algorithm 1) and minimize average FCT (our main focus in this
paper), we would ideally set the priority to be the remaining flow size when the packet is transmitted.
For traffic with deadlines, to maximize the number of deadlines met, we would set the priority to be
the deadline itself quantized in some unit of time. Other simplifications such as using absolute flow size
instead of remaining flow size are also possible (§4.4). Similar to prior work [20, 13], we assume that the
required information (e.g., flow size or deadline) is available at the transport layer which then sets the
packet priorities.

4.1 Switch Design

The pFabric switch uses two simple and local mechanisms:

• Priority scheduling: Whenever a port is idle, the packet with the highest priority buffered at
the port is dequeued and sent out.

• Priority dropping: Whenever a packet arrives to a port with a full buffer, if it has priority less
than or equal to the lowest priority packet in the buffer, it is dropped. Otherwise, the packet with
the lowest priority is dropped to make room for the new packet.

Data structures: The switch maintains two data structures. One is the queue of actual packets
which is maintained in RAM. Second, is another queue that mirrors the packet queue, but only holds
packet metadata: a flow-id (5-tuple or a hash of the 5-tuple) and the packet’s priority number. This is
maintained in flops so that we can get fast simultaneous access. pFabric switches have very small queues;
typically less than two bandwidth-delay products (∼36KB or 24 full-sized packets in our simulations).
Traditionally, datacenter switches use nearly 10–30× more buffering per port.

Dequeue: For dequeueing, we first find the highest priority packet by using a binary tree of comparators
that operate hierarchically on the metadata queue on the priority field. If there are N packets, this
operation takes log2(N) cycles. At this point, we could simply send this highest priority packet out,
however this can lead to starvation for some packets when a flow’s priority increases over time. To see

5

!"#$

!"#$%&'()*%+'

,-.'
/"�-12'

"' 3'

!+-4+-&5'
61#4.%+'

73838'

9' "' #'3' :' ;'<'"'

(-1"+5'
=4>?"+"&4+'

@+%%'

/%&"A."&"'B)%)%'

%&'()%&*(+$ 78838'

Figure 2: For dequeueing, the switch finds the earliest packet from the flow with the highest priority and sends
it out. In the above example, even though the last packet (a,1) has the highest priority, the second packet in
the queue which belongs to the same flow (a) is sent out because it arrived earlier.

how, assume the priority is set to be the remaining flow size and consider the flow to which the highest
priority packet belongs. Since packets that are transmitted earlier have lower priority than packets that
are transmitted later (because they have relatively higher remaining flow sizes in their priority fields), if
the flow has multiple packets waiting in the queue, the highest priority packet among them is likely to
have arrived later than the others. If we send out packets purely in order of their priority, then this can
lead to situations where packets that arrived earlier might never get serviced since more packets from
that flow keep arriving.

To tackle this problem, we implement a technique we christen starvation prevention where we dequeue
the earliest packet from the flow that has the highest priority packet in the queue. Since packets are
queued in the order they arrive, that is simply the earliest packet in the queue that has the same flow-
id as the packet with the highest priority. Hence in the second step we perform a parallelized bitwise
compare on this flow-id for all the packets in the meta-data queue. The output of this compare operation
is a bit-map with a 1 wherever there is a match and 0 otherwise. We pick the packet corresponding to
the earliest 1 in the bit vector by using a priority encoder and transmit it. Figure 2 demonstrates the
dequeuing algorithm as discussed above.

Enqueue: For enqueuing, if the queue is not full, the packet is just added to the end of the queue
and the metadata queue is updated. If the queue is full, we use a similar binary tree of comparators
structure as in the dequeuing operation above, but this time to find the packet with the lowest priority.
That packet is dropped from both the packet and metadata queues and the new packet is added to the
end of the queue.

4.2 Rate Control Design

What about rate control? If the fabric schedules flows as discussed above, the need for rate control is
minimal. In particular, we do not need rate control to prevent spurious packet drops due to bursts, as
can occur for example in Incast [18] scenarios. Such events only impact the lowest priority packets at
the time which can quickly be retransmitted without impacting performance (see §4.3). Further, we do
not need to worry about keeping queue occupancies small to control queueing latency. Since packets are
scheduled based on priority, even if large queues do form in the fabric, there would be no impact on the
latency for high-priority traffic.

However, there is one corner case where a limited form of rate control is necessary. Specifically,
whenever a packet traverses multiple hops only to be dropped at a downstream link some bandwidth is

6

wasted on the upstream links that could have been used to transmit other packets. This is especially
problematic when the load is high and multiple elephant flows collide at a downstream link. For example,
if two elephant flows sending at line rate collide at a last-hop access link, half the bandwidth they consume
on the upstream links is wasted. If such high loss rates persist, it would eventually lead to congestion
collapse in the fabric. Note that packet drops at the ingress (the source NICs) are not an issue since
they do not waste any bandwidth in the fabric.

We use the above insight to design an extremely simple rate control that we implement by taking an
existing TCP implementation and throwing away several mechanisms from it. We describe the design
by walking the reader through the lifetime of a flow:

• Flows start at line rate. Practically, this is accomplished by using an initial window size equal to
the bandwidth-delay product (BDP) of the link (12 packets in our simulations).

• We use SACKs and for every packet acknowledgement we do additive increase as in standard TCP.
• There are no fast retransmits, dupACKs or any other such mechanisms. Packet drops are only

detected by timeouts, whose value is fixed and small (3× the fabric RTT, which is around 45µs in
our simulations). Upon a timeout, the flow enters into slow start and ssthresh is set to half the
window size before the timeout occurred.

• If a fixed threshold number of consecutive timeouts occur (5 in our current implementation), it
indicates a chronic congestion collapse event. In this case, the flow enters into probe mode where it
periodically retransmits minimum-sized packets with a one byte payload and re-enters slow-start
once it receives an acknowledgement.

This is the entire rate control design. We do not use any sophisticated congestion signals (either
implicit such as 3 dupACKs or explicit such as ECN, XCP etc), no complicated control laws (we use
additive increase most of the time and just restart from a window of 1 if we see a timeout), nor do we
use sophisticated pacing mechanisms at the end host. The only goal is to avoid excessive and persistent
packet drops which this simple design accomplishes.

Remark 2. Our rate control design uses the minimal set of mechanisms that are actually needed for
good performance. One could of course use existing TCP (with all its features) as well and only increase
the initial window size and reduce the minimum retransmission timeout (minRTO).

4.3 Why this Works

Since pFabric dequeues packets according to priority, it achieves ideal flow scheduling as long as at
each switch port and at any time one of the highest priority packets that needs to traverse the port is
available to be scheduled. Maintaining this invariant is complicated by the fact that, sometimes, buffers
overflow and packets must be dropped. However, when a packet is dropped in pFabric, by design, it
has the lowest priority among all buffered packets. Hence, even if it were not dropped, its “turn” to be
scheduled would not be until at least all the other buffered packets have left the switch. (the packet’s
turn may end up even further in the future if higher priority packets arrive while it is waiting in the
queue.) Therefore, a packet can safely be dropped as long as the rate control is aggressive and ensures
that it retransmits the packet (or sends a different packet from that flow) before all the existing packets
depart the switch. This can easily be achieved if the buffer size is at least one bandwidth-delay product
and hence takes more than a RTT to drain, providing the end-host enough time to detect and retransmit
dropped packets. Our rate control design which keeps flows at line-rate most of the time is based on
this intuition.

4.4 Implementation

A prototype implementation of pFabric including the hardware switch and the software end-host stack
is beyond the scope of this paper and is part of our future work. Here, we briefly analyze the feasibility
of its implementation.

4.4.1 Switch implementation

Priority scheduling and dropping are relatively simple to implement using well known and widely used
hardware primitives because pFabric switches have very small buffers — typically about two BDPs worth

7

of packets at each port which is less than ∼36KB for a 10Gbps 2-tier datacenter fabric. With a 36KB
buffer, in the worst-case of minimum size 64B packets, we have 51.2ns to find the highest/lowest of at
most ∼600 numbers, which translate to ∼40 clock cycles for today’s switching ASICs. A straight-forward
implementation of this using the binary comparator tree discussed in §4.1 requires just 10 (log2(600))
clock cycles, which still leaves 30 cycles for the flow-id compare operation. This can be done in parallel
for all 600 packets, but it is preferable to do it sequentially on smaller blocks to reduce the required
gates and power-draw. Assuming a 64 block compare that checks 64 flow-ids at a time (this is easy
and commonly implemented in current switches), we require at most 10 clock cycles for all 600 packets.
Hence we need a total of 20 clock cycles to figure out which packet to dequeue, which is well within the
budget of 40 clock cycles. The analysis for the enqueuing is simpler since the only operation there is the
operation performed by the binary tree of comparators when the queue is full. As discussed above, this
is at most 10 clock cycles.

A number of optimizations can further simplify the pFabric switch implementation. For instance,
we could use a hash of the 5-tuple as the flow-id (instead of the full 5-tuple) to reduce the width of the
bit-wise flow-id comparators. A fairly short hash (e.g., 8–12 bits) should suffice since the total number of
packets is small and occasional hash collisions only marginally impact the scheduling order. Moreover,
if we restrict the priority assignments such that a flow’s priority does not increase over time — for
example by using absolute flow size as the priority instead of remaining flow size — we would not need
the starvation prevention mechanism and could get rid of the flow-id matching logic completely. Our
results indicate that using absolute flow size is almost as good as remaining flow size for realistic flow
size distributions found in practice (§5.4.3).

Note that our switches do not keep any other state, nor are they expected to provide feedback, nor
do they perform rate computations. Further, the significantly smaller buffering requirement lowers the
overall switch design complexity and die area [4].

4.4.2 End-host implementation

pFabric’s priority-based packet scheduling needs to extend all the way to the end-host to be fully effective.
In fact, we think of the fabric as starting at the NIC (§3) and in our simulations we assume that the NIC
queues also implement pFabric’s priority scheduling/dropping mechanisms. An alternative design may
push the contention to software queues by rate-limiting the traffic to the NIC (at line rate). Priority
scheduling can then be implemented in software across active flows. This approach does not require NIC
changes and also avoids dropping packets at the end-host but it requires more sophisticated software
particularly at 10Gbps speeds.

The reader may also wonder about the feasibility of our rate control implementation. Specifically,
our rate control frequently operates at line rate and uses a fixed retransmission timeout value typically
set to 3×RTT which can be quite small (e.g., we use 45µs in our simulations). Such precise timers
may be problematic to implement in current software. However our simulations show that the timeout
can be set to larger values (e.g., 200–300µs for our simulated network) in practice without impacting
performance (see §5.4.3 for details). Prior work has demonstrated the feasibility of such retransmission
timers in software [18].

It is important to note that while our rate control design is based on TCP, we do not require that
the rate control be done by the TCP stack in the kernel. In fact, we expect the near-ideal latency
provided by pFabric to most benefit applications that are optimized to reduce the latency incurred at
the end-host. Such applications (e.g., RAMCloud [15]) typically use techniques like kernel bypass to
avoid the latency of going through the networking stack and implement some form of rate control in
user-space. We believe our simple rate control is a nice fit in these scenarios.

Finally, another potential concern is burstiness of traffic and the impact of the very small buffers
in pFabric switches. Specifically, mechanisms like Large Send Offload (LSO) can cause bursts of up to
64KB from a 10Gbps NIC [4]. Since our buffers are small, such bursting could lead to unacceptably high
drop rates. However, such “batching” techniques cause latency spikes in software that would anyway be
undesirable for latency-optimized software stacks. Since pFabric’s rate control is very simple, we may
not need such optimizations to reduce CPU overhead (especially if we bypass the kernel altogether and
implement pFabric’s rate control in user-space) and it may be possible to operate with smaller bursts on
the order of a few KBs. Nevertheless, in §5.4.3, we show that moderately increasing the switch buffer size

8

!"#$%&

'()*"%&

+,&-.%/%& +,&-.%/%& +,&-.%/%& +,&-.%/%&

0&1#23%&

4567(%&
8#79)2&!)*3%&

+567(%&
:;<"&!)*3%&

Figure 3: Baseline topology used in simulations.

has no negative impact on performance (which is expected since larger buffers do not hurt the technique
in any way) and we could use this to increase tolerance to bursts. Further, the switch complexity is
also not impacted too much. Following our switch implementation feasibility analysis in the previous
section, with a buffer that is twice as large as before, the complexity of dequeueing a packet increases
to 31 clock cycles (11 for finding the highest priority flow-id and 20 for doing the compare to find the
earliest packet from that flow-id), which is well within the budget of 40 clock cycles that we have for
dequeueing the packet.

5 Evaluation

In this section we evaluate pFabric’s performance using extensive packet-level simulations in the ns2 [14]
simulator. Our evaluation consists of three parts. First, using carefully constructed micro-benchmarks,
we evaluate pFabric’s basic performance such as its loss characteristics, its ability to efficiently switch
between flows that are scheduled one-by-one, and how it handles Incast [18] scenarios. Building on these,
we show how pFabric achieves near-optimal end-to-end performance in realistic datacenter networks
running workloads that have been observed in deployed datacenters [11, 3]. Finally, we deconstruct the
overall results and demonstrate the factors that contribute to the performance.

5.1 Simulation Methodology

Fabric Topology: We use the leaf-spine topology shown in Figure 3. This is a commonly used dat-
acenter topology [1, 11]. The fabric interconnects 144 hosts through 9 leaf (or top-of-rack) switches
connected to 4 spine switches in a full mesh. Each leaf switch has 16 10Gbps downlinks (to the hosts)
and 4 40Gbps uplinks (to the spine) resulting in a non-oversubscribed (full bisection bandwidth) fabric.
The end-to-end round-trip latency across the spine (4 hops) is ∼14.6µs of which 10µs is spent in the
hosts (the round-trip latency across 2 hops under a Leaf is ∼13.3µs).

Fabric load-balancing: We use packet spraying [10], where each switch sprays packets among all
shortest-path next hops in round-robin fashion. We have also experimented with Equal Cost Multi-
pathing (ECMP) which hashes entire flows to different paths to avoid packet reordering. Overall, we
found that for all schemes, the best results are obtained with packet-spraying after fast retransmissions
are disabled to cope with packet reordering (in fact, this is the reason we disabled 3 dupACKs in our
rate control). Hence, we use packet spraying by default for all schemes.

Benchmark workloads: We simulate empirical workloads modeled after traffic patterns that have
been observed in production datacenters. We consider two flow size distributions shown in Figure 4.
The first distribution is from a datacenter supporting web search [3]. The second distribution is from a
cluster running large data mining jobs [11]. Flows arrive according to a Poisson process and the source
and destination for each flow is chosen uniformly at random. The flow arrival rate is varied to obtain
a desired level of load in the fabric. Both workloads have a diverse mix of small and large flows with
heavy-tailed characteristics. In the web search workload, over 95% of all bytes are from the 30% of the

9

103 104 105 106 107 1080

0.2

0.4

0.6

0.8

1

Flow Size (Bytes)

C
D

F

Flow Size
Total Bytes

(a) Web search workload

102 104 106 108 10100

0.2

0.4

0.6

0.8

1

Flow Size (Bytes)

C
D

F

Flow Size
Total Bytes

(b) Data mining workload

Figure 4: Empirical traffic distributions used for benchmarks. The distributions are based on measurements
from real production datacenters [3, 11].

flows that are 1–20MB. The data mining workload is much more extremely skewed: more than 80% of
the flows are less than 10KB and 95% of all bytes are in the ∼3.6% flows that are larger than 35MB.
As we demonstrate in §5.4, this actually makes the data mining workload easier to handle because it is
less likely that multiple large flows are concurrently active from/to one fabric port — reducing network
contention. Hence, for most of our simulations, we focus on the more challenging web search workload.

Performance metrics: Similar to prior work [13, 20, 3] we consider two main performance metrics.
For deadline-constrained traffic, we use the application throughput defined as the fraction of flows that
meet their deadline. For traffic without deadlines, we use the flow completion time (FCT). We consider
the average FCT across all flows, and separately for small and large flows. We also consider the 99th
percentile flow completion time for the small flows. We normalize all flow completion times to the best
possible completion time for that flow — the value achieved if that one flow is transmitted over the
fabric at 10Gbps without any interference from competing traffic.

5.2 Schemes compared

TCP-DropTail: A standard TCP-New Reno with Sack and DropTail queues.

DCTCP: The DCTCP [3] congestion control algorithm with ECN marking at the fabric queues.

pFabric: The design described in this paper including both the switch and the minimal rate control.
Unless otherwise specified, the remaining flow size is used as the priority for each packet.

PDQ: This is the best known prior approach for minimizing flow completion times or missed deadlines.
Our implementation follows the design faithfully as described in [13] including the Early Start and Early
Termination enhancements and is based on a copy of the source code we obtained from the authors of
the PDQ paper.

Ideal: The Ideal scheduling algorithm described in §3. A central scheduler with a complete view of all
flows preemptively schedules existing flows in nondecreasing order of size and in a maximal manner (see
Algorithm 1). For this scheme, we conduct flow-level simulations (not packet-level) in Matlab according
to the same exact sequence of flow arrivals used in our ns2 benchmarks.

10

0 20 40 60 800

2

4

6

8

10

12

Time (ms)

Th
ro

ug
hp

ut
 (G

bp
s)

flow1
flow2
flow3
flow4
flow5

(a) Flow switching

0 10 20 30 40 500

10

20

30

40

#Flows

D
ro

p
ra

te
 (%

)

w/o probe mode
with probe mode

(b) Loss rate

Figure 5: (a) Per-flow throughput when 5 large flows are initiated simultaneously to one destination port. (b)
Loss rate vs number of long-lived flows congesting a bottleneck link.

We experimentally determine the best settings for the relevant parameters for all schemes (summa-
rized in Table 1). Note that the larger retransmission timeout for the other schemes compared to pFabric
is because they have larger queues. In fact, the difference in retransmission timeout (200µs versus 45µs)
is in proportion to the queue size difference (225KB− 36KB = 189KB ∼ 150µs at 10Gbps). Without
this, spurious retransmissions would hurt the performance of these schemes. We evaluate the impact of
pFabric’s RTO in depth in §5.4.3.

Scheme Parameters

TCP-DropTail
qSize = 225KB

initCwnd = 12 pkts
minRTO = 200µs

DCTCP

qSize = 225KB
markingThresh = 22.5KB

initCwnd = 12 pkts
minRTO = 200µs

pFabric
qSize = 36KB

initCwnd = 12 pkts
RTO = 45µs

PDQ

qSize = 225KB
RTO = 200µs,

K = 2 (for Early Start)
probingInterval = 15µs

Table 1: Default parameter settings in simulations.

5.3 Basic Performance Measures

Seamless switching between flows: Can pFabric seamlessly switch between flows that need to be
scheduled serially? To test this, we simultaneously generate 5 large transfers of size 20MB to a single
destination host. Figure 5(a) shows the throughput achieved by each flow over time. We observe that the
flows are indeed scheduled one-by-one and at each time, one flow grabs all the bottleneck’s bandwidth
(10Gbps). Note that this is the optimal flow scheduling in order to minimize the average flow completion
time in this scenario. pFabric uses this scheduling even though the flows are all exactly the same size
because the packet priorities are based on the remaining flow size. Hence, a flow that is initially lucky
and gets more packets through gets the highest priority and dominates the other flows. The last of the

11

0 10 20 30 40 5060

65

70

75

80

85

of Senders

To
ta

l R
eq

ue
st

 C
om

pl
et

io
n

Ti
m

e
(m

s)

TCP−DropTail
DCTCP
PDQ
pFabric

(a) Total Request

0 10 20 30 40 5040

50

60

70

80

of Senders

In
di

vi
du

al
 F

lo
w

 C
om

pl
et

io
n

Ti
m

e
(m

s)

(b) Individual Flows

Figure 6: Total request and individual flow completion times in Incast scenario. Note that the range of the
y-axis is different for the two plots.

5 flows completes after ∼80.15ms. This is only 150µs larger then the best possible completion time of
80ms for a 100MB transfer at 10Gbps. Hence, pFabric is able to seamlessly schedule one flow after the
other with very little loss of throughput efficiency.

Loss rate: The previous simulation showed that pFabric can seamlessly switch between flows without
loss of throughput, but what about loss rates? We repeat the previous simulation but stress the network
by using up to 50 concurrent large flows to a single destination port, and measure the overall loss rate.
We conduct the simulation both with and without pFabric’s probe mode (discussed in §4.2). The results
are shown in Figure 5(b). We observe that without probe mode, the loss rate rises sharply from ∼4.8%
to ∼38.5% as the number of flows increases. This is because except for the high-priority flow, the
packets of the other flows are all dropped at the bottleneck. Hence, each low-priority flow retransmits
a full-sized (1500B) packet every RTO = 45µs which is eventually dropped. As expected, the probe
mode significantly lowers the loss rate (to under 5.5% with 50 flows) since the low priority flows only
periodically send a small probe packet (with a one byte payload) while waiting for the high priority flow
to complete.

Incast: We now show pFabric’s performance for Incast traffic patterns which occur in many large-scale
web applications and storage systems and have been shown to result in throughput degradation for
TCP [18, 3]. The incast pattern exhibits similar characteristics as the previous experiment where a
large number of flows simultaneously transmit to a single destination. Similar to prior work [18], we
create Incast by having a receiver node request a 100MB file that is striped across N sender nodes. The
senders respond with 100MB/N of data simultaneously. The request completes when all the individual
flows have finished. Once a request is complete, the client immediately initiates the next request. The
simulation is run for 10,000 requests and we compute the average total request completion time and the
average individual flow completion times.

The results for TCP-DropTail, DCTCP, PDQ and pFabric are shown in Figure 6. Note that all
schemes use a small minRTO which has been shown to greatly mitigate the Incast problem [18] (DCTCP
additionally benefits from aggressive ECN marking [3]). Hence, considering the total request completion
time, all schemes handle Incast fairly well. DCTCP does the best and achieves a near-ideal request
complete time of 80ms across all number of senders. pFabric is almost as good achieving a total request
completion time of 81.1ms at 50 senders. The small increase is due to the slight overhead of serially
scheduling flows with pFabric. However, as expected, serial flow scheduling significantly improves the
average individual flow completion times (Figure 6(b)) for pFabric compared to DCTCP and TCP-
DropTail which are more fair across flows. PDQ also exhibits a similar behavior as pFabric since it aims
to mimic the same kind of flow scheduling, however it has slightly higher overhead in flow switching and
consequently shows slightly worse performance as the number of flows increases.

12

0.2 0.4 0.6 0.80

2

4

6

8

10

Load

N
or

m
al

iz
ed

 F
C

T

TCP−DropTail
DCTCP
PDQ
pFabric
Ideal

(a) Web search workload

0.2 0.4 0.6 0.80

2

4

6

8

10

Load

N
or

m
al

iz
ed

 F
C

T

(b) Data mining workload

Figure 7: Overall average normalized flow completion time for the two workloads at various loads.

5.4 Overall Performance

In this section we show pFabric’s overall performance in large scale datacenter topologies with realistic
workloads. We show that pFabric’s ability to efficiently schedule flows in the order of their priorities
(remaining flow size or deadline) enables it to achieve near-optimal performance for traffic scenarios with
no deadlines as well as scenarios where there is a mix of deadline and no-deadline traffic. In the interest
of space, after the overall performance results, we only show results for the deadline-unconstrained traffic
for targeted experiments that highlight different aspects of pFabric’s design and their impact on overall
performance.

5.4.1 Deadline-unconstrained traffic

pFabric achieves near-optimal flow completion times for all flow sizes, loads and for both workloads in our
simulations. Figure 7 shows the overall average flow completion times for the web search and data mining
benchmarks as we vary the load from 10% to 80%. Recall that each flow’s completion time is normalized
to the best possible value that is achievable in an idle fabric for that flow. We observe that for both
workloads the average FCT with pFabric is very close to that of the Ideal flow scheduling scheme and is
significantly better than for the other schemes. pFabric’s performance is within ∼0.7-17.8% of the Ideal
scheme for the web search workload and within ∼1.7–10.6% for the data mining workload. Compared to
PDQ, the average FCT with pFabric is ∼19-39% lower in the web search workload and ∼40-50% lower
in the data mining workload. All schemes generally do better for the data mining workload, particularly
at high load. This is because in the data mining workload, the largest ∼3.6% of flows contribute over
95% of all bytes (Figure 4(b)). These flows, though very large, arrive infrequently and thus it is rare
that multiple of them are concurrently active at a particular fabric port and cause sustained congestion.

It is important to note that PDQ always requires one extra RTT of overhead for flow initiation
(SYN/SYN-ACK exchange) before a flow can transmit. Because of this, PDQ’s normalized FCT is
at-least two for very small flows that can ideally complete in one RTT. For example, in the data min-
ing workload where about 50% of all flows are one packet, it is not surprising that pFabric’s average
normalized FCT s 50% lower than PDQ.

FCT breakdown based on size: We now breakdown the FCT stats across small (0, 100KB], medium
(100KB, 10MB], and large (10MB, ∞) flows. The results are shown in Figures 8 and 9 for the two
workloads. We plot the average (normalized) FCT in each bin and also the 99th percentile for the small
flows (whose tail-latency is often critical in practice). The results show that for both workloads, pFabric
achieves near-optimal average and 99th percentile FCT for the small flows: it is within ∼1.3–13.4%
of the ideal average FCT and within ∼3.3–29% of the ideal 99th percentile FCT (depending on load).
Compared to PDQ, the average FCT for the small flows with pFabric is ∼30-50% lower for the web
search workload and ∼45-55% lower for the data mining workload with even larger improvements at the
99th percentile. Similarly, the average FCT for the medium flows with pFabric is very close to ideal for
both workloads.

13

0.2 0.4 0.6 0.80

2

4

6

8

10

Load

N
or

m
al

iz
ed

 F
C

T

TCP−DropTail
DCTCP
PDQ
pFabric
Ideal

(a) (0, 100KB]: Avg

0.2 0.4 0.6 0.80

2

4

6

8

10

Load

N
or

m
al

iz
ed

 F
C

T

(b) (0, 100KB]: 99th prctile

0.2 0.4 0.6 0.80

2

4

6

8

10

Load

N
or

m
al

iz
ed

 F
C

T

(c) (100KB, 10MB]: Avg

0.2 0.4 0.6 0.80

5

10

15

20

25

Load
N

or
m

al
iz

ed
 F

C
T

(d) (10MB, ∞): Avg

Figure 8: Web search workload: Normalized FCT statistics across different flow sizes. Note that TCP-DropTail
does not appear in part (b) because its performance is outside the plotted range and the y-axis for part (d) has
a different range than the other plots.

0.2 0.4 0.6 0.80

2

4

6

8

10

Load

N
or

m
al

iz
ed

 F
C

T

TCP−DropTail
DCTCP
PDQ
pFabric
Ideal

(a) (0, 100KB]: Avg

0.2 0.4 0.6 0.80

2

4

6

8

10

Load

N
or

m
al

iz
ed

 F
C

T

(b) (0, 100KB]: 99th prctile

0.2 0.4 0.6 0.80

2

4

6

8

10

Load

N
or

m
al

iz
ed

 F
C

T

(c) (100KB, 10MB]: Avg

0.2 0.4 0.6 0.80

2

4

6

8

10

Load

N
or

m
al

iz
ed

 F
C

T

(d) (10MB, ∞): Avg

Figure 9: Data mining workload: Normalized FCT statistics across different flow sizes. Note that TCP-DropTail
does not appear in part (b) because its performance is outside the plotted range.

14

102 103 1040

20

40

60

80

100

Average Deadline (us)

Ap
pl

ic
at

io
n

Th
ro

ug
hp

ut
 (%

)

TCP−DropTail
DCTCP
pFabric−EDF
pFabric
PDQ

(a) Web search workload

102 103 1040

20

40

60

80

100

Average Deadline (us)

Ap
pl

ic
at

io
n

Th
ro

ug
hp

ut
 (%

)

TCP−DropTail
DCTCP
pFabric−EDF
pFabric
PDQ

(b) Data mining workload

Figure 10: Application Throughput for deadline traffic with various deadline settings at 60% load.

pFabric also achieves very good performance for the average FCT of the large flows, across all but
the highest loads in the web search workload. pFabric is roughly the same as TCP and ∼30% worse
than Ideal at 80% load for the large flows in the web search workload (for the data mining workload, it
is within ∼3.3% of Ideal across all flows). This gap is mainly due to the relatively high loss rate at high
load for this workload which wastes bandwidth on the upstream links (§4.2). Despite the rate control,
at 80% load, the high initial flow rates and aggressive retransmissions cause a ∼4.3% packet drop rate in
the fabric (excluding drops at the source NICs which do not waste bandwidth), almost all of which occur
at the last hop (the destination’s access link). However, at such high load, a small amount of wasted
bandwidth can cause a disproportionate slowdown for the large flows [4]. Note that this performance
loss occurs only in extreme conditions — with a challenging workload with lots of elephant flows and
at very high load. As Figure 8(d) shows, under these conditions, PDQ’s performance is more than 75%
worse than pFabric.

5.4.2 Mix of deadline-constrained and deadline-unconstrained traffic

We now show that pFabric maximizes the number of flows that meet their deadlines while still minimizing
the flow completion time for flows without deadlines. To perform this experiment, we assign deadlines
for the flows that are smaller than 200KB in the web search and data mining workloads. The deadlines
are assumed to be exponentially distributed similar to prior work [20, 13, 17]. We vary the mean of the
exponential distribution (in different simulations) from 100µs to 100ms to explore the behavior under
tight and loose deadlines and measure the Application Throughput (the fraction of flows that meet their
deadline) and the average normalized FCT for the flows that do not have deadlines. We lower bound
the deadlines to be at least 25% larger than the minimum FCT possible for each flow to avoid deadlines
that are impossible to meet.

In addition to the schemes used for the baseline simulations with deadline-unconstrained traffic, we
present the results for pFabric with Earliest-Deadline-First (EDF) scheduling. pFabric-EDF assigns the
packet priorities for the deadline-constrained flows to be the flow’s deadline quantized to microseconds;
the packets of flows without deadlines are assigned priority based on remaining flow size. Separate
queues are used at each fabric port for the deadline-constrained and deadline-unconstrained traffic with
strict priority given to the deadline-constrained queue. Within each queue, the pFabric scheduling and
dropping mechanisms determine which packets to schedule or drop. Each queue has 36KB of buffer.

Figure 10 shows the application throughout for the two workloads at 60% load. We picked this
moderately high load to test pFabric’s deadline performance under relatively stressful conditions. We
find that for both workloads, both pFabric-EDF and pFabric achieve almost 100% application throughput
even at the tightest deadlines and perform significantly better than the other schemes. For the web search
workload, pFabric-EDF achieves an Application Throughput of 98.9% for average deadline of 100µs;
pFabric (which is deadline-agnostic and just uses the remaining flow size as the priority) is only slightly
worse at 98.4% (the numbers are even higher in the data mining workload). This is not surprising; since
pFabric achieves a near-ideal FCT for the small flows, it can meet even the tightest deadlines for them.

15

!"#$
%&'(!)*+,

%"!"#,

(-).&*/$
0%-,

(-).&*/, #%1,

2,

3,

4,

5,

6,

72,

!
"#
$
%&
'(
)*

+,
-.

+

(a) Web search workload

!"#$
%&'(!)*+,

%"!"#,
(-).&*/$
0%-, (-).&*/, #%1,

2,

3,

4,

5,

6,

72,

!
"#
$
%&
'(
)*

+,
-.

+

(b) Data mining workload

Figure 11: Average normalized FCT for non-deadline traffic at 60% load.

0 1 2 3 4 50

2

4

6

8

10

qSize (BDP)

N
or

m
al

iz
ed

 F
C

T

RTO = 2RTT
RTO = 3RTT
RTO = 6RTT
RTO = 10RTT
RTO = 20RTT

(a) Overall: Avg

0 1 2 3 4 50

2

4

6

8

10

qSize (BDP)

N
or

m
al

iz
ed

 F
C

T

(b) (0, 100KB]: 99th prctile

0 1 2 3 4 50

5

10

15

20

25

30

qSize (BDP)

N
or

m
al

iz
ed

 F
C

T

(c) (10MB, ∞): Avg

Figure 12: Web search workload at 80% load using a variety of queue size and retransmission timeout settings.
qSize is normalized to BDP = 18KB and the RTO is normalized to RTT = 14.6µs.

As expected, PDQ achieves a higher application throughput than the other schemes. But it misses a
lot more deadlines than pFabric, especially at the tightest settings. This is partly because of the one
extra RTT of flow-initiation overhead that PDQ adds to every flow. Because of this, PDQ cannot meet
some of the tighter deadlines for the small flows (that can ideally complete in 1 RTT). We verified that
when the average deadline was 100µs, due to its fixed one RTT overhead, PDQ could not have met the
deadline for 22.7% of the deadline-constrained flows (this number was 5.0% for the 500µs and 2.5% for
the 1ms average deadline settings).

We also find that pFabric achieves the lowest average FCT for the flows without deadlines (Figure 11).
pFabric-EDF is slightly worse as expected because it gives strict priority to the deadline-constrained
traffic.

5.4.3 pFabric deep dive

In this section we dig deeper into pFabric’s design in a series of targeted simulations. For brevity, the
majority of simulations in this section use the web search workload since it is more challenging and
allows for clearer contrasts. Also, we only show the results for the overall average FCT, the 99th
percentile FCT for the small flows, and the average FCT for the large flows. These plots cover the range
of behaviors we observe for different flows.

Impact of qSize and RTO: We repeat the web search workload at 80% load for different pFabric switch
buffer size (qSize) and retransmission timeout (RTO) settings. qSize is varied between 0.5×BDP and
5×BDP (recall that the BDP is 18KB for our topology). RTO is varied between 2×RTT and 20×RTT
where RTT is the baseline round-trip latency of the fabric (14.6µs). The results are shown in Figure 12.
We observe a loss in performance for buffers smaller than one BDP. At the same time, increasing the
buffer size beyond 2 × BDP yields very little gains. This is intuitive since we need at least one BDP
to allow enough time for retransmitting dropped packets without under-utilization (§4.3), but having
just one BDP provides zero margin for error and requires perfect RTO estimation to avoid performance
loss. As the plots show, making the buffer size slightly larger than one BDP gives more margin and
allows the use of a simple, fixed RTO without performance loss. We recommend qSize = 2×BDP and

16

!"

#!"

$!"

%!"

&!"

'!("#!)" '#!("#!!)" '#!!("#*)" '#*("%*)" '%*("+*)" '+*("#!*)" '#!*("$!*)"
!"
##
$%
&'
($
)*

+$
,-."-.'/0).1$23'#+$

,-./01234"
56/01234"

Figure 13: Packet loss rate at the first-hop (source NIC) and last-hop (destination access link) versus priority
number for the web search workload at 80% load. The loss rate in the fabric’s core is negligible.

RTO = 3 × RTT for pFabric based on these results. An RTO of 3 × RTT is appropriate since with
a buffer of 2 × BDP , the total round-trip delay when a packet is dropped (and the buffer is full) is
3×RTT . The values we use in our simulations (qSize = 36KB, RTO = 45µs) follow this guideline.

While the above guideline guarantees good performance in all cases, interestingly, Figure 12 sug-
gests that for realistic workloads we can use a much larger RTO with almost no performance penalty.
For instance, RTO = 20 × RTT (∼290µs for our fabric) achieves nearly the same performance as
RTO = 3×RTT when qSize = 2×BDP . Relaxing the required retransmission timeout could be very
useful in practice and simplify the pFabric host’s implementation; as prior work has demonstrated [18],
retransmission timers with a granularity of 200µs are easy to achieve in software.

The reason such large RTOs do not have significant impact (despite the small buffers) is that almost
all packet drops in pFabric occur for the large flows which anyway have fairly high FCTs. To see this,
we plot the packet loss rate versus the packet priority number for the baseline web search workload at
80% load in Figure 13. The plot shows that almost all losses are for flows larger than 3000 packets. But
these flows are bandwidth-limited and necessarily take a long time to complete. For example, a 3000
packet flow (1500 bytes per packet) needs at least 3.6ms to complete at 10Gbps and thus is not severely
impacted if the RTO is not very tight and adds ∼200µs of additional delay.

Different priority assignment schemes: Next, we compare three different schemes for assigning
packet priorities with increasing degrees of complexity. For each packet transmitted, the priority field
is set to be: (i) the number of bytes thus far sent from the flow; (ii) the flow size in bytes; or (iii) the
remaining flow size in bytes (the default scheme in this paper). The first scheme is the simplest as it does
not require knowledge of flow size. The second and third schemes both require flow size information, but
the second is simpler since the priority number is decided once and remains constant for all the packets
of a flow. As explained in §4.1, this scheme simplifies the pFabric switch implementation since we don’t
need the starvation prevention mechanism.

Figures 14 and 15 show a comparison of the three schemes and also PDQ. We find that using the
flow size and remaining flow size as the packet priority achieve nearly indistinguishable overall average
FCT for both workloads. This is not surprising; even though remaining flow size is conceptually closer
to ideal (§3), for realistic workloads with a diverse range of flow sizes, most of the benefit is in scheduling
the small flows before the large flows which both schemes achieve. The breakdowns for the small and
large flows are also consistent with this finding. We do find that for the large flows (> 10MB), the
remaining flow size scheme achieves up to ∼15% lower average FCT than absolute flow size for the web
search workload (Figure 14(c)).

The performance of “BytesSent” is more varied. As expected, it is worse than the schemes with flow
size knowledge. Yet, for the data mining workload, it still achieves a significantly lower overall average
FCT than PDQ. In fact, we find that its average and tail FCT for the small flows (< 100KB) is almost
as good as default pFabric. However, its performance degrades for the larger flows. In particular, for
the web search workload its performance completely breaks down at high load. This is because in this
workload, especially at high load, it is common for multiple large flows to arrive and compete with an
existing large flow during its lifetime. Each time this occurs, the BytesSent priority scheme essentially
stops all existing flows (which have lower priority since they have sent more data) until the new flow
“catches up”. Hence, the large flows can take very long to complete. The takeaway is that the BytesSent
scheme should only be used in environments where a very small fraction of the flows are large and it is

17

0.2 0.4 0.6 0.80

2

4

6

8

10

Load

N
or

m
al

iz
ed

 F
C

T

PDQ
pFabric − BytesSent
pFabric − FlowSize
pFabric − RemainingFlowSize
Ideal

(a) Overall: Avg

0.2 0.4 0.6 0.80

2

4

6

8

10

Load

N
or

m
al

iz
ed

 F
C

T

(b) (0, 100KB]: 99th prctile

0.2 0.4 0.6 0.80

10

20

30

40

50

Load

N
or

m
al

iz
ed

 F
C

T

(c) (10MB, ∞): Avg

Figure 14: Web search workload using different priority assignment schemes.

0.2 0.4 0.6 0.80

1

2

3

4

5

6

Load

N
or

m
al

iz
ed

 F
C

T

PDQ
pFabric − BytesSent
pFabric − FlowSize
pFabric − RemainingFlowSize
Ideal

(a) Overall: Avg

0.2 0.4 0.6 0.80

1

2

3

4

5

6

Load

N
or

m
al

iz
ed

 F
C

T

(b) (0, 100KB]: 99th prctile

0.2 0.4 0.6 0.80

1

2

3

4

5

6

Load

N
or

m
al

iz
ed

 F
C

T

(c) (10MB, ∞): Avg

Figure 15: Data mining workload using different priority assignment schemes.

0.2 0.4 0.6 0.80

0.5

1

1.5

2

2.5

3

Load

N
or

m
al

iz
ed

 F
C

T

w/o starvation prevention
with starvation prevention
Ideal

(a) Overall: Avg

0.2 0.4 0.6 0.80

0.5

1

1.5

2

2.5

3

Load

N
or

m
al

iz
ed

 F
C

T

(b) (0, 100KB]: 99th prctile

0.2 0.4 0.6 0.80

5

10

15

20

Load

N
or

m
al

iz
ed

 F
C

T

(c) (10MB, ∞): Avg

Figure 16: Impact of pFabric’s starvation prevention (for the web search workload).

rare that multiple such flows are concurrently active on a single path.

pFabric’s starvation prevention mechanism: Figure 16 compares the performance of pFabric with
and without the starvation prevention mechanism discussed in §4.1. Recall that without starvation
prevention, pFabric dequeues packets strictly according to their priority number, which may delay a
packet from a flow for a long time if later packets of that flow have higher priority. The results show
that starvation prevention improves the overall average FCT by ∼6-22% across different loads.

pFabric only at the leaf tier: We now consider the implications of deploying pFabric switches only
at the leaf tier of the fabric. The spine switches employ standard drop-tail queues. We compare this
configuration with having pFabric switches at both the leaf and spine tiers. The results are shown in
Figure 17. We find that having pFabric only at the leaf tier is only marginally worse than having it
everywhere. This is because most contention occurs at the leaf switches anyway since packet-spraying
provides very good load-balancing (more on this below). This is a useful result which makes it easier to
deploy pFabric in existing environments; it suggests that we can initially introduce pFabric for a subset
of the switches and still get a significant benefit.

18

0.2 0.4 0.6 0.80

0.5

1

1.5

2

2.5

3

Load

N
or

m
al

iz
ed

 F
C

T

pFabric−LeafOnly
pFabric−All
Ideal

(a) Overall: Avg

0.2 0.4 0.6 0.80

0.5

1

1.5

2

2.5

3

Load

N
or

m
al

iz
ed

 F
C

T

(b) (0, 100KB]: 99th prctile

0.2 0.4 0.6 0.80

5

10

15

20

Load

N
or

m
al

iz
ed

 F
C

T

(c) (10MB, ∞): Avg

Figure 17: Impact of having pFabric switches only at the leaf tier (for the web search workload).

0.2 0.4 0.6 0.80

0.5

1

1.5

2

2.5

3

Load

N
or

m
al

iz
ed

 F
C

T

pFabric(ECMP)
pFabric(Packet spray)
Ideal

(a) Overall: Avg

0.2 0.4 0.6 0.80

0.5

1

1.5

2

2.5

3

Load

N
or

m
al

iz
ed

 F
C

T

(b) (0, 100KB]: 99th prctile

0.2 0.4 0.6 0.80

5

10

15

20

Load

N
or

m
al

iz
ed

 F
C

T

(c) (10MB, ∞): Avg

Figure 18: Web search workload using ECMP and packet-spraying load-balancing for baseline topology with
40Gbps leaf-spine links.

0.2 0.4 0.6 0.80

1

2

3

4

Load

N
or

m
al

iz
ed

 F
C

T

pFabric(ECMP)
pFabric(Packet spray)
Ideal

(a) Overall: Avg

0.2 0.4 0.6 0.80

1

2

3

4

Load

N
or

m
al

iz
ed

 F
C

T

(b) (0, 100KB]: 99th prctile

0.2 0.4 0.6 0.80

5

10

15

20

25

30

Load

N
or

m
al

iz
ed

 F
C

T

(c) (10MB, ∞): Avg

Figure 19: Web search workload using ECMP and packet-spraying load-balancing for “flat” topology with
10Gbps leaf-spine links.

Impact of fabric load-balancing: We now compare pFabric’s performance with different load-
balancing mechanisms. We repeat the web search benchmark with ECMP and packet spraying load-
balancing on two topologies: the baseline topology which uses 40Gbps leaf-spine links (Figure 3), and a
“flat” topology which uses 10Gbps leaf-spine links. The latter topology employs 16 spine switches and
has the same bisection bandwidth as the baseline topology. We report the results in Figures 18 and 19.
We observe that ECMP and packet-spraying achieve similar overall performance for the baseline topol-
ogy except for the average FCT of large flows at high load where ECMP is up to ∼44% worse. However,
for the flat topology, we observe a fairly significant degradation even in the overall average FCT with
ECMP. At 80% load, the overall average FCT with ECMP is ∼46% higher than with packet-spraying.
Note that most of the performance degradation due to ECMP occurs for the large flows; pFabric achieves
near-ideal performance for the small flows regardless of the load-balancing scheme. These results are
consistent with prior findings (e.g., see [16]) and show that efficient load-balancing techniques beyond
ECMP (such as packet-spraying) improve the performance of large flows especially when there is no

19

0.1 0.2 0.3 0.40

1

2

3

4

Load

N
or

m
al

iz
ed

 F
C

T

pFabric
Ideal

(a) Overall: Avg

0.1 0.2 0.3 0.40

1

2

3

4

Load

N
or

m
al

iz
ed

 F
C

T

(b) (0, 100KB]: 99th prctile

0.1 0.2 0.3 0.40

1

2

3

4

Load

N
or

m
al

iz
ed

 F
C

T

(c) (10MB, ∞): Avg

Figure 20: Web search workload on a 3:1 oversubscribed fabric topology. The load here is at the fabric’s edge.

speedup at the core links relative to the edge links. Of course, good load-balancing is generally important
for any datacenter transport solution and is complimentary to pFabric’s mechanisms. We have used
packet-spraying in this paper due to its simplicity and good performance, but other techniques [2, 16]
can also be used with pFabric.

Impact of oversubscription: Finally we show that pFabric works well even for oversubscribed topolo-
gies. All prior results have been based on the full-bisection bandwidth fabric topology shown in Figure 3.
We now consider the implications of having an oversubscription at the leaf switches. For this, we repeat
the web search benchmark for a 3:1 oversubscribed fabric topology with 3 leaf switches, each with 48
10Gbps downlinks (to the hosts) and 4 40Gbps uplinks (to the spine). The results are shown in Fig-
ure 20. Note that the load is shown for the fabric’s edge. Since about one-third of all traffic stays local
to a leaf switch and two-thirds traverse the spine (recall that the source and destination for each flow is
chosen at random), the load at the fabric’s core is about 2

3
× 3 = 2 times larger than at the edge. Hence,

the 5–40% loads considered correspond to 10–80% load at the core. The results confirm that pFabric is
very close to Ideal for the oversubscribed topology as well.

6 Incremental Deployment

Our goal in this paper has been to decouple flow scheduling and rate control and design the simplest
possible mechanisms for both tasks. This results in very simple switch and rate control designs, but it
does require some hardware changes. In this section we ask how far could we go with the same insight
of decoupling flow scheduling from rate control using existing switches? Specifically, we consider using
the available priority queues in today’s switches and tackle the question of how end-hosts should set the
priority field in the packet header to approximate SRPT-style flow scheduling in the fabric. Commodity
switches typically support 4–8 class of service queues. Current practice is to use these to isolate entire
traffic classes; for example, give higher priority to all traffic belonging to an important application
(such as a realtime web application) over less important traffic (such as data backups). Clearly such
crude mechanisms cannot minimize flow completion time and guarantee near-ideal latency for small
delay-sensitive flows.

We consider a design that dynamically decides the priority based on flow sizes as we have done with
pFabric. The basic idea is to set the highest priority for flows smaller than a particular size, the next
highest priority for flows greater than the above size but less than a second threshold and so on, so
we can approximate the same scheduling behavior as pFabric and thus minimize flow completion time.
The are two key challenges with this approach: (i) How many priority queues are necessary for good
performance? and (ii) What flow size thresholds should be used for each priority queue?

6.1 Assigning Flow Priorities

We now present a novel and principled approach to answering these questions. We use a simple queueing
model to derive the optimal thresholds for minimizing the average FCT for a given flow size distribution
(the flow size distribution is empirically measured and assumed to be known in advance). For simplicity,

20

!"
!#$%&'"

!%()#$%&''"

("

("*"+,$%&'""

"-./0"123"4"("

Figure 21: Queueing model for two-queue system. Flows arrive with rate λ and have size S ∼ FS(·). ρ is the
total load and BS(·) is distribution of total bytes according to flow size. Flows smaller than threshold, t, use the
high-priority queue.

105 106 107100

101

High−priority threshold t (Bytes)

FC
T n(t)

Increasing Load (10−80%)

Figure 22: FCTn(t) for the web search flow size distribution at loads 10–80%. The red circles show the optimal
threshold at each load.

we present the derivation for the case of two priority queues, but it can be generalized to any number
of priority queues.

The queuing model is shown in Figure 21. Flows arrive to a link of capacity 1 according to a Poisson
process of rate λ and have size S ∼ FS(·) (FS is the CDF of S), imposing a total load of ρ = λE(S) < 1.
Flows smaller (larger) than threshold t > 0 are enqueued in the high-priority (low-priority) queue.
Therefore, the arrival processes to the two queues are independent Poisson processes with rates λFS(t)
and λ(1−FS(t)). The high-priority queue has strict priority and drains at rate 1. The low-priority queue
uses the remaining bandwidth after servicing the high-priority traffic. Thus, its drain rate is 1− ρBS(t)

where BS(t) =
∫ t

0
xfS(x) dx/E(S) is the fraction of the overall bytes that belong to flows smaller than t.

Note that in reality, the low-priority queue drains only when the high-priority queue is empty. However,
this complicates the analysis since the two queues are dependent. By using the average drain rate of the
low priority queue as its instantaneous drain rate, we greatly simplify the analysis.

The average normalized FCT (FCT divided by flow size) can be derived as a function of the threshold
t for this model:

FCTn(t) = FS(t) +
1

1− ρBS(t)
(1− FS(t))

+
λ

2(1− ρBS(t))

∫ t

0

x2fS(x) dx

∫ t

0

fS(y)

y
dy

+
λ

2(1− ρBS(t))(1 − ρ)

∫

∞

t

x2fS(x) dx

∫

∞

t

fS(y)

y
dy. (1)

The derivation is based on using the well-known Pollaczek-Khintchine formula [12] to compute the
average waiting time for a flow in each priority queue (assuming M/G/1 queues) and can easily be
generalized for any number of priority queues (see Appendix A for the proof in the general case). It is
important to note that FCTn(·) depends on the flow size distribution as well as the overall load ρ.

Figure 22 shows FCTn and the optimal threshold for the high-priority queue computed numerically
for the web search flow size distribution (Figure 4(a)). The threshold varies between ∼880-1740KB
as the load increases from 10% to 80%. Also, the figure suggests that the performance can be fairly

21

0.2 0.4 0.6 0.80

1

2

3

4

5

Load

N
or

m
al

iz
ed

 F
C

T

Q=2 (Optimized)
Q=4 (Optimized)
Q=8 (Optimized)
pFabric
Ideal

(a) Overall: Avg

0.2 0.4 0.6 0.80

1

2

3

4

5

Load

N
or

m
al

iz
ed

 F
C

T

Q=2 (Optimized)
Q=4 (Optimized)
Q=8 (Optimized)
pFabric
Ideal

(b) (0, 100KB]: 99th prctile

0.2 0.4 0.6 0.80

1

2

3

4

5

Load

N
or

m
al

iz
ed

 F
C

T

Q=4 (Optimized)
Q=4 (Equal Split)
pFabric
Ideal

(c) (10MB, ∞): Avg

Figure 23: Web search benchmark with 2, 4, and 8 priority queues. Parts (a) and (b) show the average
normalized FCT across all flows and the 99th percentile for the small flows. Part (c) compares the performance
using the optimized thresholds with a heuristic which splits the flows equally in case of 4 queues.

sensitive to the chosen threshold, particularly at high load. We evaluate the sensitivity to the threshold
using simulations in the next section.

Remark 3. The above derivation provides a principled way of determining thresholds for each priority,
however it assumes that we know the exact flow size distribution in advance. Measuring the flow size
distribution can be challenging in practice since it can change across both time and space. For instance,
because of spatial variations (different flow size distributions at different switches), we may need to use
different thresholds for the priority queues at each switch and further these thresholds may change over
time.

6.2 Simulations

We now compare using a few priority queues in existing switches with pFabric. Our results confirm that
while this mechanism provides good performance with a sufficient number of priority queues (around
8), it is still worse than pFabric and the performance is sensitive to the value of the thresholds used and
also how the switch buffer is shared among the priority queues.

We simulate the web search workload (§5.1) for three scenarios with 2, 4, and 8 priority queues per
fabric port. The queues at a port share a buffer pool of size 225KB (150 packets). We reserve 15KB (10
packets) of buffer per queue and the rest is shared dynamically on a first-come-first-serve basis. In each
scenario, we use the optimal flow size thresholds for each priority queue as derived in §6.1. The results
are shown in Figure 23. We observe that, as expected, the average overall FCT (part (a)) improves as
we increase the number of priority queues and is close to pFabric’s performance with 8 priority queues.
We observed a similar trend in the average FCT across small, medium, and large flows (plots omitted).
Figure 23(b) also shows that there is a significant increase in the 99th percentile FCT for the small flows
at high loads in the 8-queue case. This is because with 8 queues, 80 out of the total 150 packets are
reserved, leaving only 70 packets to be shared among the queues. Thus at high load, during some bursts,
the high priority queue runs out of buffers and drops packets, increasing tail latency. This demonstrates
the need for carefully tuning the buffer allocations for each priority queue for good performance.

Sensitivity to thresholds: Finally, we explore the sensitivity of the performance with a few priority
queues to using the “right” thresholds for splitting traffic. Figure 23(c) shows a comparison of the
4-queue system with optimal thresholds with a reasonable heuristic that splits flows equally across the
4 queues: the smallest 25% of flows are assigned to the highest priority queue, second smallest 25%
to the second highest priority, etc. The plot shows the average FCT across all flows. We find a fairly
substantial improvement with the optimized thresholds. At 80% load, the average FCT is reduced by
more than 30% with more substantial performance gaps for the tail latencies for short flows (we omit the
figure for brevity). This confirms that the thresholds for splitting traffic across limited priority queues
need to be chosen carefully. By allowing an essentially unlimited number of priorities, pFabric does not
require any tuning and is not sensitive to parameters such as thresholds (which may vary across time
and space), minimum reserved buffer per priority queue, overall buffer size, etc.

22

7 Discussion

pFabric, more generally, advocates a different design philosophy for datacenter networks. Our thought
process is informed by the fact that the datacenter network is more an inter-connect for distributed
computing workloads rather than a bit-pipe. Hence we believe that it is more important to orchestrate
the network resource allocation to meet overall computing objectives, rather than traditional commu-
nication metrics such as throughput and fairness which TCP optimizes for. This leads us to a design
ethos where flows (which are proxy for the datum needed to be exchanged in the compute tasks) be-
come first-class citizens and the network fabric is designed to schedule them in a lightweight fashion to
maximize application-layer objectives. pFabric is our first step in this direction. Below, we discuss some
other common concerns that might come up with a design like pFabric.

Starvation & Gaming: A potential concern with strictly prioritizing small flows is that this may
starve large flows. Further, a malicious user may game the system by splitting up her large flows to
gain an advantage. Of course, these issues are not unique to pFabric; any system that implements
SRPT-like scheduling has these concerns. That said, as prior work has also argued (see for example
PDQ [13] and the references therein, particularly Bansal et al. [7]), under realistic heavy-tailed traffic
distributions, SRPT actually improves the majority of flows (even the large flows) compared to TCP’s
fair sharing. This is consistent with our findings (e.g., Figures 8(d) and 9(d)). The intuition is that for
heavy-tailed distributions, small flows contribute a small fraction of the overall traffic; hence prioritizing
them has little impact on the large flows and in fact helps them because they complete quickly which
reduces network contention. Nonetheless, if desired, an operator can put in explicit safeguards against
starvation. For instance, she can place a cap the priority numbers so that beyond a certain size, all flows
get the same base priority. Finally, our current design is targeted to private datacenters thus malicious
behavior is out of scope. In public environments, further mechanisms may be needed to prevent abuse.

Setting packet priorities: In many datacenter applications flow sizes or deadlines are known at
initiation time and can be conveyed to the network stack (e.g., through a socket api) to set priorities. In
other cases, we expect that pFabric would achieve good performance even with imprecise but reasonable
estimates of flow sizes. As shown in §6, with realistic distributions, most of the benefit can be achieved
by classifying flows into a few (4-8) priority levels based on size. The intuition is that it suffices that
at any instant at each switch the priority dequeueing order is maintained (which does not require that
priorities be accurate, only that relative priorities across enqueued flows be largely correct).

Supporting multiple priority schemes: In practice, datacenter fabrics are typically shared by a
variety of applications with different requirements and a single priority scheme may not always be
appropriate. This can easily be handled by operating the pFabric priority scheduling and dropping
mechanisms within individual “higher-level” traffic classes in an hierarchical fashion. Traditional QoS
mechanisms such as WRR are used to divide bandwidth between these high-level classes based on user-
defined policy (e.g., a soft-real time application is given a higher weight than batch jobs), while pFabric
provides near-optimal scheduling of individual flows in each class according to the class’s priority scheme
(remaining flow size, deadlines, etc).

Other datacenter topologies: We have focused on Fat-tree/Clos topologies in this paper as this is
by far the most common topology in practice. However, since conceptually we think of the fabric as a
giant switch with bottlenecks only at the ingress and egress ports (§3) we expect our results to carry
through to any reasonable datacenter topology that provides uniform high throughput between ingress
and egress ports.

Stability: Finally, the theoretical literature has demonstrated scenarios where size-based traffic prior-
itization may reduce the stability region of the network [19]. Here, stability is in the stochastic sense
meaning that the network may be unable to keep up with flow arrivals even though the average load on
each link is less than its capacity [9]. However, this problem is mostly for “linear” topologies with flows
traversing different numbers of hops — intuitively it is due to the tradeoff between prioritizing small
flows versus maximizing service parallelism on long routes. We have not seen this issue in our study and
do not expect it to be a major concern in real datacenter environments because the number of hops is
very uniform in datacenter fabrics, and the overall load contributed by the small (high-priority) flows is
small for realistic traffic distributions.

23

8 Conclusion

This paper decouples the key aspects of datacenter packet transport — flow scheduling and rate con-
trol — and shows that by designing very simple mechanisms for these goals separately we can realize
a minimalistic datacenter fabric design that achieves near-ideal performance. Further, it shows how
surprisingly, large buffers or complex rate control are largely unnecessary in datacenters. The next step
is to integrate a prototype implementation of pFabric with a latency-sensitive application to evaluate
the impact on application layer performance. Further, our initial investigation suggests that further
work on designing incrementally deployable solutions based on pFabric could be fruitful. Ultimately, we
believe this can pave the path for widespread use of these ideas in practice.

Acknowledgments: We thank our shepherd, Jon Crowcroft, and the anonymous SIGCOMM reviewers
for their valuable feedback. Mohammad Alizadeh thanks Tom Edsall for useful discussions regarding
the practical aspects of this work.

References

[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center network architecture.
In Proc. of SIGCOMM, 2008.

[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. Hedera: dynamic flow
scheduling for data center networks. In Proc. of NSDI, 2010.

[3] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and
M. Sridharan. Data center TCP (DCTCP). In Proc. of SIGCOMM, 2010.

[4] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and M. Yasuda. Less is more:
trading a little bandwidth for ultra-low latency in the data center. In Proc. of NSDI, 2012.

[5] M. Alizadeh, S. Yang, S. Katti, N. McKeown, B. Prabhakar, and S. Shenker. Deconstructing
datacenter packet transport. In Proc. of HotNets, 2012.

[6] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Workload analysis of a large-scale
key-value store. In Proc. of SIGMETRICS, 2012.

[7] N. Bansal and M. Harchol-Balter. Analysis of SRPT scheduling: investigating unfairness. In Proc.
of SIGMETRICS, 2001.

[8] A. Bar-Noy, M. M. Halldórsson, G. Kortsarz, R. Salman, and H. Shachnai. Sum multicoloring of
graphs. J. Algorithms, 2000.

[9] T. Bonald and L. Massoulié. Impact of fairness on Internet performance. In Proc. of SIGMETRICS,
2001.

[10] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella. On the Impact of Packet Spraying in Data
Center Networks. In Proc. of INFOCOM, 2013.

[11] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and
S. Sengupta. VL2: a scalable and flexible data center network. In Proc. of SIGCOMM, 2009.

[12] D. Gross, J. F. Shortle, J. M. Thompson, and C. M. Harris. Fundamentals of Queueing Theory.
Wiley-Interscience, New York, NY, USA, 4th edition, 2008.

[13] C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing Flows Quickly with Preemptive Scheduling.
In Proc. of SIGCOMM, 2012.

[14] The Network Simulator NS-2. http://www.isi.edu/nsnam/ns/.

[15] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich, D. Mazières, S. Mitra,
A. Narayanan, D. Ongaro, G. Parulkar, M. Rosenblum, S. M. Rumble, E. Stratmann, and
R. Stutsman. The case for RAMCloud. Commun. ACM, 2011.

[16] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley. Improving datacenter
performance and robustness with multipath TCP. In Proc. of the SIGCOMM, 2011.

[17] B. Vamanan, J. Hasan, and T. N. Vijaykumar. Deadline-Aware Datacenter TCP (D2TCP). In
Proc. of SIGCOMM, 2012.

24

[18] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G. R. Ganger, G. A. Gibson,
and B. Mueller. Safe and effective fine-grained TCP retransmissions for datacenter communication.
In Proc. of SIGCOMM, 2009.

[19] M. Verloop, S. Borst, and R. Núñez Queija. Stability of size-based scheduling disciplines in resource-
sharing networks. Perform. Eval., 62(1-4), 2005.

[20] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better never than late: meeting deadlines
in datacenter networks. In Proc. of SIGCOMM, 2011.

[21] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. H. Katz. DeTail: Reducing the Flow Completion
Time Tail in Datacenter Networks. In Proc. of SIGCOMM, 2012.

25

Appendices

A FCT Derivation for Queueing Model in Section 6.1

In this section we present the FCT calculation for the queueing model presented in §6.1. Specifically, we
compute the average normalized FCT (FCT divided by flow size) for the general case with an arbitrary
number of priority queues as a function of the flow size thresholds used for each queue. The result for
two queues was given in Eq. (1).

Our approach is to derive the overall average normalized FCT by computing the average FCT for a
flow in each priority queue. Since each queue is simply modeled as a M/G/1 queue, this can be done
using the Pollaczek-Khintchine formula [12]. Recall that the Pollaczek-Khintchine formula provides the
average waiting time for a M/G/1 queue:

E(W) =
λE(S2)

2(1− ρ)
,

where λ is the job arrival rate, E(S2) is the second moment of the job service time distribution, and ρ
is the traffic load.

We begin with some definitions:

• λ : Overall flow arrival rate (flows arrive according to a Poisson process of rate λ).

• FS(·) : Flow size CDF. For simplicity, we assume FS(·) is continuous and has a PDF denoted by
fS(·).

• ρ : Overall traffic load, equal to λE(S) < 1 (the link capacity is 1).

• k : Number of priority queues (k ≥ 2).

• t = (t0, t1, ..., tk−1, tk) : Vector of flow size thresholds corresponding to each priority queue.
Flows with size ti−1 < x ≤ ti are assigned to queue i (for 1 ≤ i ≤ k). Here t0 ! 0 and tk !∞ are
defined for convenience.

• λi : Flow arrival rate to priority queue i. Since the ith queue receives the flows with size in (ti−1, ti],
it is evident that:

λi = λ(FS(ti)− FS(ti−1)). (2)

Note that the arrival process to each queue is also Poisson.

• µi : Service rate for priority queue i. This is set to the remaining bandwidth after queues j < i
(which have higher priority) have been served. Hence:

µi = 1− ρ
i−1
∑

j=1

Bj
S , (3)

where

Bj
S =

∫ tj
tj−1

xfS(x) dx

E(S)
(4)

is the fraction of traffic contained in flows with size in (tj−1, tj].

• ρi : Traffic load for priority queue i, given by:

ρi =
ρBi

S

µi
. (5)

26

We can now use the Pollaczek-Khintchine formula to compute the average waiting time for a flow in
priority queue i (the time it takes for a new flow in queue i to begin service):

E(Wi) =
λi

2(1− ρi)

∫ ti

ti−1

(

x

µi

)2 fS(x)

FS(ti)− FS(ti−1)
dx

=
λ

2(1− ρi)µ2
i

∫ ti

ti−1

x2fS(x) dx

=
λ

2(µi − ρBi
S)µi

∫ ti

ti−1

x2fS(x) dx.

Here the first step uses Eq. (2) and the second step follows from Eq. (5). Now, using Eq. (3), we have
µi − ρBi

S = µi+1, and it follows that:

E(Wi) =
λ

2µi+1µi

∫ ti

ti−1

x2fS(x) dx. (6)

Recall that we wish to compute the overall average normalized flow completion time (FCT divided
by flow size). This is given by:

E(FCTn) =
k
∑

i=1

∫ ti

ti−1

(

y

µi
+ E(Wi)

)

fS(y)

y
dy, (7)

where the y/µi term denotes the time it takes to complete a flow of size y in queue i after its service
begins. Plugging in Eq. (6), we obtain:

E(FCTn) =
k
∑

i=1

(

∫ ti

ti−1

fS(y)

µi
dy +

λ

2µi+1µi

∫ ti

ti−1

x2fS(x) dx

∫ ti

ti−1

fS(y)

y
dy

)

,

=
k
∑

i=1

(

FS(ti)− FS(ti−1)

µi
+

λ

2µi+1µi

∫ ti

ti−1

x2fS(x) dx

∫ ti

ti−1

fS(y)

y
dy

)

. (8)

This completes the derivation. Note the for two priority queues (k = 2), we recover Eq. (1) by setting
t0 = 0, t1 = t, t2 =∞, µ1 = 1, µ2 = 1− ρBS(t), µ3 = 1− ρ.

As demonstrated in §6.1, given the flow size distribution, FS(·), and the desired number of priority
queues, k, we can numerically compute Eq. (8) for different threshold values, t, and traffic intensities,
ρ, to find the optimal thresholds that minimize the overall average normalized FCT (see Figure 22).

27

