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DECAY OF TAILS AT EQUILIBRIUM FOR FIFO JOIN THE
SHORTEST QUEUE NETWORKS

BY MAURY BRAMSON1, YI LU AND BALAJI PRABHAKAR2

University of Minnesota, University of Illinois and Stanford University

In join the shortest queue networks, incoming jobs are assigned to the
shortest queue from among a randomly chosen subset of D queues, in a sys-
tem of N queues; after completion of service at its queue, a job leaves the
network. We also assume that jobs arrive into the system according to a rate-
αN Poisson process, α < 1, with rate-1 service at each queue. When the
service at queues is exponentially distributed, it was shown in Vvedenskaya
et al. [Probl. Inf. Transm. 32 (1996) 15–29] that the tail of the equilibrium
queue size decays doubly exponentially in the limit as N → ∞. This is a
substantial improvement over the case D = 1, where the queue size decays
exponentially.

The reasoning in [Probl. Inf. Transm. 32 (1996) 15–29] does not easily
generalize to jobs with nonexponential service time distributions. A modular-
ized program for treating general service time distributions was introduced in
Bramson et al. [In Proc. ACM SIGMETRICS (2010) 275–286]. The program
relies on an ansatz that asserts, in equilibrium, any fixed number of queues be-
come independent of one another as N → ∞. This ansatz was demonstrated
in several settings in Bramson et al. [Queueing Syst. 71 (2012) 247–292],
including for networks where the service discipline is FIFO and the service
time distribution has a decreasing hazard rate.

In this article, we investigate the limiting behavior, as N → ∞, of the
equilibrium at a queue when the service discipline is FIFO and the service
time distribution has a power law with a given exponent −β, for β > 1. We
show under the above ansatz that, as N → ∞, the tail of the equilibrium
queue size exhibits a wide range of behavior depending on the relationship
between β and D. In particular, if β > D/(D−1), the tail is doubly exponen-
tial and, if β < D/(D − 1), the tail has a power law. When β = D/(D − 1),
the tail is exponentially distributed.

1. Introduction. We consider join the shortest queue (JSQ) networks, where
incoming “jobs” (or “customers”) are assigned to the shortest queue from
among D distinct queues, D ≥ 2, with these queues being chosen uniformly from
among the N queues in the system, with D ≤ N . When two or more of these

Received June 2011; revised April 2012.
1Supported in part by NSF Grants CCF-0729537 and DMS-11-05668.
2Supported in part by NSF Grant CCF-0729537 and by a grant from the Clean Slate Program at

Stanford University.
MSC2010 subject classifications. 60K25, 68M20, 90B15.
Key words and phrases. Join the shortest queue, FIFO, decay of tails.

1841

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/12-AAP888
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


1842 M. BRAMSON, Y. LU AND B. PRABHAKAR

queues each have the fewest number of jobs, each of the queues is chosen with
equal probability. After completion of service at its queue, a job leaves the net-
work. We assume that jobs arrive according to a rate-αN Poisson process, α < 1,
and that jobs are served independently and at rate 1 at each queue. We are inter-
ested in this article in the case where the service discipline at each queue is first-in,
first-out (FIFO).

When the service at queues is exponentially distributed, the evolution of the
system is given by a countable state Markov chain where a state is given by the
number of jobs at each queue. It is not difficult to show that a unique equilibrium
distribution exists; this equilibrium is exchangeable with respect to the ordering
of the queues. Let P

(N)
k denote the probability that there are at least k jobs in

equilibrium for the system with N queues. It was shown in Vvedenskaya et al. [16]
that

lim
N→∞P

(N)
k = α(Dk−1)/(D−1) for k ∈ Z+;(1.1)

in particular, the right tail of P
(N)
k decays doubly exponentially fast in the limit

as N → ∞. This behavior is a substantial improvement over the case D = 1,
where P

(N)
k decays exponentially, and has led to substantial interest in JSQ net-

works in the literature. For other references, see Azar et al. [1], Graham [8],
Luczak–McDiarmid [9, 10], Martin–Suhov [11], Mitzenmacher [12], Suhov–
Vvedenskaya [14], Vocking [15] and Vvedenskaya–Suhov [17].

Little work has been done on the behavior of JSQ networks when the service
times are not exponentially distributed. In this setting, the underlying Markov pro-
cess will typically have an uncountable state space, and positive Harris recurrence
for the process is no longer obvious. The latter was shown in Foss–Chernova [7],
and uniform bounds on the equilibria were shown in Bramson [3]. (Both articles
also considered JSQ networks with more general arrivals and routing of jobs.)

This paper builds on previous work [3, 4] and [5] by the authors. Bramson et
al. [4] described a modularized program for analyzing the limiting behavior of the
equilibria of a family of JSQ networks with general service times, as N → ∞. An
important step is to show that any fixed number of queues become independent
of one another, with each converging to a limiting distribution that is the equi-
librium for an associated Markov process with a single queue, which is a cavity
process. This process corresponds, in an appropriate sense, to “setting N = ∞” in
the JSQ network and viewing the corresponding infinite dimensional process at a
single queue. We will refer to this equilibrium as the equilibrium environment. In
Section 2, we will precisely define this terminology.

Although it seems that this independence should hold in a very general setting,
including under a wide range of service disciplines, demonstrating it appears to be
a difficult problem. In Bramson et al. [4], this independence and convergence to the
equilibrium environment were stated as an ansatz. This ansatz was demonstrated
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in Bramson et al. [5] in several settings including for networks where the service
discipline is FIFO and the service distribution has a decreasing hazard rate.

In this article, we employ the restriction of the above ansatz to FIFO networks.
This version of the ansatz will be precisely stated in Section 2. Here, we summarize
it for application in the current section:

For a family of networks with the FIFO service discipline that are all
in equilibrium, any fixed number of queues become independent in
the limit as N → ∞. Moreover, each marginal distribution converges
to the unique associated equilibrium environment.

(1.2)

Although this ansatz has only been demonstrated for service distributions having
decreasing hazard rate and for general service distributions when the arrival rate α

is sufficiently small, our arguments here do not otherwise require either restriction.
Other applications of the ansatz, but for the processor sharing and LIFO service
disciplines, are given in [4].

Our goal, in this article, is to investigate the limiting behavior of the right tail
of the associated equilibrium environment, under the FIFO service discipline and
with the assigned mean-1 service distribution F(·). Denote by Pk the probability
that there are at least k jobs in the equilibrium environment. We will show that,
when F(·) has a power law tail with exponent −β , for given β > 1, the tail of
Pk exhibits a wide range of behavior depending on the relationship between β

and D. In particular, if β > D/(D − 1), the tail is doubly exponential and, if β <

D/(D−1), the tail has a power law; when β = D/(D−1), the tail is exponentially
distributed. When β ↗ ∞, the coefficient qD(β) of k in the doubly exponential
tail converges to 1, which is the coefficient of k in (1.1). One obtains the same
coefficient of k whether F(·) has an exponential tail or has bounded support. Our
main results are Theorems 1.1, 1.2 and 1.3. Theorem 1.1 covers the case β >

D/(D − 1), Theorem 1.2 covers the case β < D/(D − 1) and Theorem 1.3 covers
the case β = D/(D − 1). We set F̄ (s) = 1 − F(s).

THEOREM 1.1. Consider a family of JSQ networks, with given D ≥ 2 and
N = D,D+1, . . . , where the N th network has Poisson rate-αN input, with α < 1,
and where service at each queue is FIFO, with distribution F(·) having mean 1.
Assume that (1.2) holds and that

lim
s→∞ log F̄ (s)/ log s = −β,(1.3)

with β ∈ (D/(D − 1),∞). Then,

lim
k→∞(1/k) logD log (1/Pk) = qD(β)(1.4)

for some qD(β) ∈ (0,1). Moreover, qD(β) is continuous in β and

qD(β) ↗ 1 exponentially fast as β ↗ ∞.(1.5)

When (1.3) holds with β = ∞, then (1.4) holds with qD(∞) = 1.
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Theorem 1.1 implies that, when F̄ (s) ∼ cs−β as s → ∞, for β ∈ (D/(D −
1),∞) and c > 0, then Pk = exp{−D(1+o(1))qD(β)k}.

THEOREM 1.2. Consider a family of JSQ networks as in Theorem 1.1,
with (1.3) instead holding for β ∈ (1,D/(D − 1)). Then

lim
k→∞ log (1/Pk)/ log k = (β − 1)/

[
1 − (D − 1)(β − 1)

]
.(1.6)

Theorem 1.2 implies that, when F̄ (s) ∼ cs−β as s → ∞, for β ∈ (1,D/(D −
1)) and c > 0, then Pk = k−(1+o(1))γD(β), where γD(β) is the right-hand side
of (1.6). Note that γD(β) ↘ 0 as β ↘ 1 and γD(β) ↗ ∞ as β ↗ D/(D − 1).

THEOREM 1.3. Consider a family of JSQ networks as in Theorem 1.1,
with (1.3) replaced by

c1 ≤ lim
s→∞

sD/(D−1)F̄ (s) ≤ lim
s→∞ sD/(D−1)F̄ (s) ≤ c2(1.7)

for some 0 < c1 ≤ c2 < ∞. Then, for appropriate rD(c2) > 0 and sD(c1) < ∞,

rD(c2) ≤ lim
k→∞

(1/k) log (1/Pk) ≤ lim
k→∞(1/k) log (1/Pk) ≤ sD(c1),(1.8)

where

rD(c2) ↗ ∞ as c2 ↘ 0,
(1.9)

sD(c1) ↘ 0 as c1 ↗ ∞.

Theorem 1.3 implies that when F̄ (s) ∼ cs−D/(D−1) as s → ∞, then Pk de-
creases exponentially fast in the sense of (1.8). Because of (1.9), the exponent
depends strongly on the choice of c.

When F̄ (·) satisfies (1.3) for a given β > 1, the asymptotic behavior of Pk

behaves according to (1.4) or (1.6), depending on whether D > β/(β − 1) or D <

β/(β − 1). In applications where there is a substantial penalty for a moderately
large number of jobs at a queue (resulting, e.g., in memory overflow), it is therefore
important to choose D > β/(β −1). This distinction does not occur when F̄ (·) has
an exponential tail, since any choice of D ≥ 2 produces a doubly exponential tail
for Pk , as in (1.1). (See [4] for more detail.)

We point out that the proofs of Theorems 1.1–1.3 only depend on (1.2) for
the existence of an equilibrium environment. Regardless of how the existence of
an equilibrium environment is verified, (1.2) will be needed in order to relate the
tail behavior of Pk for the equilibrium environment to the tail behavior for the
equilibria of the corresponding family of networks as N → ∞.

We also note that, although the phrase “join the shortest queue network” is
widely used in the literature, such systems are not true networks in the sense that,
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upon the departure of a job from a queue, the job leaves the system instead of being
able to return to a different queue. However, such systems have been extended to
the setting of Jackson networks (see, e.g., [11] and [14]).

This article is organized as follows. In Section 2, we provide basic background
on the properties of the state space and Markov process that underlie the JSQ net-
works. We then define equilibrium environments and formally state the ansatz. In
Sections 3–5, we demonstrate Theorems 1.1, 1.2 and 1.3, respectively. Our ap-
proach will be to demonstrate lower bounds and then upper bounds that yield the
theorem. In each case, the lower bounds will be considerably easier to show.

Notation. For the reader’s convenience, we mention here some of the notation
in the paper. We will employ C1,C2, . . . to denote positive constants whose precise
value is not of importance to us. For z ∈ R, 
z� and �z
 will denote, respectively,
the integer part of z and the smallest integer at least as large as z.

2. Markov process background, equilibrium environments and the ansatz.
In this section, we provide a more detailed description of the construction of the
Markov processes X(N)(·) that underlie the JSQ networks. We next define the cor-
responding cavity process and its equilibrium environment. We then employ these
concepts to state the ansatz for JSQ networks. Most of this material is included
in Sections 2 and 3 of Bramson et al. [5]. (Related material is also given in [2]
and [3].)

We define the state space S(N) to be the set(
Z × R

2)N
.(2.1)

The first coordinate zn, n = 1, . . . ,N , corresponds to the number of jobs at the nth
queue; the second coordinate un, un ≥ 0, is the amount of time the oldest job there
has already been served; and the last coordinate sn, sn > 0, is the residual service
time. When zn = 0, set the other two coordinates equal to 0. The coordinate un

will not play a role in the evolution of X(N)(·) here; we retain it for comparison
with [5], where it was used to demonstrate (1.2) under decreasing hazard rates.
(We will employ slightly different notation here than in [5].)

For given N ′ ≤ N , S(N ′) is the projection of S(N) obtained by restricting S(N)

to the first N ′ queues; for x ∈ S(N), x′ ∈ S(N ′) is thus obtained by omitting the
coordinates with n > N ′. One can also define projections of S(N) onto spaces S(N ′)

corresponding to other subsets of {1, . . . ,N} analogously, although these are not
needed here.

We define the metric d(N)(·, ·) on S(N), with d(N)(·, ·) given in terms of
d(N),n(·, ·) by d(N)(·, ·) = (1/N)

∑N
n=1 d(N),n(·, ·). For given x1, x2 ∈ S(N), with

the coordinates labelled correspondingly, set

d(N),n(x1, x2) = ∣∣zn
1 − zn

2

∣∣ + ∣∣un
1 − un

2

∣∣ + ∣∣sn
1 − sn

2

∣∣.(2.2)
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One can check that the metric d(N)(·, ·) is separable and locally compact; more
detail is given on page 82 of [2]. We equip S(N) with the standard Borel σ -algebra
inherited from d(N)(·, ·), which we denote by S (N).

The Markov process X(N)(t), t ≥ 0, underlying a given model is defined to be
the right continuous process with left limits, taking values x in S(N), whose evolu-
tion is determined by the model together with the assigned service discipline. We
denote the random values of the coordinates zn, un and sn taken by X(N)(t), by
Zn(t), Un(t) and Sn(t). Jobs are allocated service according to the FIFO disci-
pline; during the period a job is being served, Un(t) increases at rate 1 and Sn(t)

decreases at rate 1.
Along the lines of page 85 of [2], a filtration (F (N)

t ), t ∈ [0,∞], can be assigned
to X(N)(·) so that X(N)(·) is a piecewise-deterministic Markov process, and hence
is Borel right. This implies that X(N)(·) is strong Markov. (We do not otherwise
use Borel right.) The reader is referred to Davis [6] for more detail.

Equilibrium environments and the ansatz. In order to state the ansatz, we re-
quire some terminology. We denote by E (N,N ′) the projection of the equilibrium
measure E (N) of the N -queue system onto the first N ′ queues. [Since X(N)(t) is
exchangeable when X(N)(0) is, the choice of queues will not matter.]

We wish to describe the evolution of individual queues for the limiting process,
as N → ∞. For this, we construct a strong Markov process XH(t), t ≥ 0, on S(1).
We will define XH(t) similarly to X(1)(t), except that only a fraction of incoming
potential arrivals at the queue is permitted to arrive at the queue, with the fraction
depending on the current number of jobs there, and with the fraction decreasing as
the number of jobs increases.

We proceed as follows. Let H denote a probability measure on S(1), which we
refer to as the environment of the process XH(·); we refer to XH(·) as the asso-
ciated cavity process. We define XH(·) so that potential arrivals arrive according
to a rate-Dα Poisson process. When such a potential arrival to the queue occurs
at time t , XH(t−) is compared with the states of D − 1 independent random vari-
ables, each with law H; we refer to these D − 1 states at a potential arrival as
the comparison states. Choosing from among these D states, the job is assigned
to the state with the fewest number of jobs. (In case of a tie, each of these states
is chosen with equal probability.) If the job has chosen the state XH(t−) at the
queue, it then immediately joins the queue; otherwise, the job immediately leaves
the system. In either case, the independent D − 1 states employed for this purpose
are immediately discarded.

We give the following illustrations, denoting by Qk the probability that the en-
vironment H has at least k jobs. For D = 2, if a potential arrival occurs at time t

and XH(t−) = k, then the probability that XH(t) = k + 1 is (Qk + Qk+1)/2, and
so the rate αk of an arrival at the queue is α(Qk + Qk+1). For general D, in order
for a potential arrival to arrive at the queue, it is necessary for all of the D − 1
comparison states used at that time to be at least k, in which case the probability of
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selecting the queue is the reciprocal of the number of states equal to k. This gives
the bounds

αQD−1
k ≤ αk ≤ αDQD−1

k .(2.3)

We assume that jobs in the cavity process XH(·) have the same service distribu-
tion F(·) as in the queueing network and are served according to the FIFO service
discipline. The number of jobs in XH(t) will be denoted by ZH(t), the amount of
time the oldest job has already been served by U H(·) and the residual service time
by SH(t); we will employ x, z, u and s for the corresponding terms in the state
space.

When a cavity process XH(·), with environment H, is stationary with the equi-
librium measure H [i.e., XH(t) has the distribution H for all t], we say that H is
an equilibrium environment. One can think of an equilibrium environment as being
the restriction of an equilibrium measure for the JSQ network, viewed at a single
queue, when “the total number of queues N is infinite.” More background on the
cavity process is given in [4].

We now state the ansatz. Here,
v→ on S(N ′) denotes convergence in total varia-

tion with respect to the metric dN ′
(·, ·) on S(N ′).

ANSATZ. Consider a family of JSQ networks, with given D ≥ 2 and N =
D,D + 1, . . . , where the N th network has Poisson rate-αN input, with α < 1, and
where service at each queue is FIFO, with distribution F(·) having mean 1. Then,
(a) for each N ′,

E (N,N ′) v→ E (∞,N ′) as N → ∞,(2.4)

where E (∞,N ′) is the N ′-fold product of E (∞,1). Moreover, (b) E (∞,1) is the unique
equilibrium environment associated with this family of networks.

As was mentioned in the Introduction, this ansatz was demonstrated in Bramson
et al. [5] when the service time distribution F(·) has a decreasing hazard rate h(·)
[i.e., h(s) = F ′(s)/F̄ (s) is nonincreasing in s] and for general service distributions
when the arrival rates are small enough.

In order to demonstrate Theorems 1.1–1.3, we will analyze the cavity process
XH(·) with its unique equilibrium environment H = E (∞,1). In particular, we will
analyze E (∞,1) over a cycle starting and ending at the state 0. (The state where the
number of jobs z is 0.) Letting ν denote the time at which XH(·) first returns to 0
after visiting another state, the first cycle is the random time interval [0, ν]. For
any k ≥ 1, we will denote by Vk the occupation time at states x, with z ≥ k, over
[0, ν], that is,

Vk =
∫ ν

0
1
{
ZH(t) ≥ k

}
dt.
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Setting m0 = E[ν], the mean return time to 0, one has

Pk = m−1
0 E[Vk],(2.5)

where Pk is the probability there are at least k jobs in the equilibrium environment.
Letting αk denote the arrival rate of jobs for XH(·) when z = k, one has

αP D−1
k ≤ αk ≤ αDP D−1

k ,(2.6)

which is the analog of (2.3). Since the departure of jobs from the queue is deter-
ministic, being a function of the residual service time s, (2.6) gives a reasonably
explicit description of the transition rates for XH(·). Together with (2.5), (2.6)
will provide the basis for our demonstration of Theorems 1.1–1.3 and will be used
throughout the paper.

3. The case where β > D/(D − 1). In this section, we demonstrate Theo-
rem 1.1; we do this by demonstrating lower and upper bounds that are needed
for the theorem in Propositions 3.1 and 3.2. Each of these bounds is expressed in
terms of a recursion relation for Pk . In order to obtain Theorem 1.1 from these re-
cursions, we employ Proposition 3.3, which analyzes such recursions by utilizing
a standard framework involving rational generating functions. The section is orga-
nized as follows. After stating Propositions 3.1 and 3.2, we state and prove Propo-
sition 3.3. We next employ the three propositions to demonstrate Theorem 1.1. We
then provide the relatively quick proof of Proposition 3.1 and the longer proof of
Proposition 3.2, in the following subsections.

In both propositions, we set k1 = �k − β
 (or, equivalently, 
β� = k − k1) and
β̂ = β − 
β�.

PROPOSITION 3.1. Consider a family of JSQ networks, with given D ≥ 2 and
N = D,D+1, . . . , where the N th network has Poisson rate-αN input, with α < 1,
and where service at each queue is FIFO, with distribution F(·) having mean 1.
Assume that (1.2) holds. Then, for appropriate C1 > 0 and all k,

Pk ≥ (C1/8k)k
k−1∏
i=0

P D−1
i .(3.1)

If moreover, for some s0 ≥ 1,

F̄ (s) ≥ s−β for s ≥ s0,(3.2)

with β ∈ (D/(D − 1),∞), then, for appropriate C1 > 0 and all k,

Pk ≥ C13−k

(
k−1∏

i=k1+1

P D−1
i

)
P

β̂(D−1)
k1

.(3.3)
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PROPOSITION 3.2. Consider a family of JSQ networks, with given D ≥ 2 and
N = D,D+1, . . . , where the N th network has Poisson rate-αN input, with α < 1,
and where service at each queue is FIFO, with distribution F(·) having mean 1.
Assume that (1.2) holds and that, for some s0 ≥ 1,

F̄ (s) ≤ s−β for s ≥ s0,(3.4)

with β ∈ (D/(D−1),∞). If β is not an integer, then, for appropriate C2 and all k,

Pk ≤ C2k
β+1

(
k−1∏

i=k1+1

P D−1
i

)
P

β̂(D−1)
k1

.(3.5)

If β is an integer, then, for each δ > 0, appropriate C2 and all k,

Pk ≤ C2k
β+1

(
k−1∏

i=k1+2

P D−1
i

)
P

(1−δ)(D−1)
k1+1 .(3.6)

To employ the recursions in (3.3) and (3.5)–(3.6) of Propositions 3.1 and 3.2 in
the proof of Theorem 1.1, we will analyze the asymptotic behavior of the recur-
sions in (3.7).

PROPOSITION 3.3. Suppose that Rk satisfies

Rk = (D − 1)

(
k−1∑

i=k−�+1

Ri + ηRk−�

)
for k ≥ 1,(3.7)

with Rk = 1 for k = −� + 1, . . . ,−1,0, where �,D ≥ 2 and η ∈ [0,1]. Then, set-
ting β = � + η − 1,

lim
k→∞

1

k
logD Rk = qD(β)(3.8)

for some qD(β) ∈ (0,1). Moreover, qD(β) is continuous in β and qD(β) ↗ 1 ex-
ponentially fast as β ↗ ∞.

PROOF. The recurrence (3.7) is a special case of linear recursions of the form

Rk +
�∑

i=1

aiRk−i = 0,(3.9)

with ai ∈ C and general R−�+1, . . . ,R0. It is well known that (see, e.g., Stan-
ley [13], page 202)

Rk =
j∑

i=1

Pi(k)γ k
i(3.10)
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for each k, where γi are distinct, Pi(k) is a polynomial in k of degree strictly less
than �i , and

1 +
�∑

i=1

aix
i =

j∏
i=1

(1 − γix)�i ,(3.11)

with
∑j

i=1 �i = �. Moreover the converse holds, that is, if (3.10) and (3.11) both
hold, then so does (3.9).

For Rk given by (3.7), it is not difficult to check that there is exactly one value γi ,
say γ1, that is real and positive, that γ1 varies continuously in η, and moreover that
γ1 satisfies γ1 > 1, since ai < 0 and

∑�
i=1 ai < −1. (Descartes’ rule of signs in fact

implies that 1/γ1 is a simple root.) Also, because ai < 0, and possesses both odd
and even indices, |γi | < γ1 for i �= 1. Since the initial data given below (3.7) are
all positive, any solution of (3.7) is majorized by this particular solution, up to a
multiplicative constant; so, P1(·) �≡ 0. The limit in (3.8), with qD(β) = logD γ1 >

0, follows from these observations.
We still need to examine the limiting behavior of qD(β) as β → ∞. Dividing

both sides in (3.7) by Rk , then substituting (3.10) for each of the terms, and letting
k → ∞ implies that

1 = (D − 1)
(
x + x2 + · · · + x�−1 + ηx�)

= (D − 1)
(
x − (1 − η)x� − ηx�+1)

/(1 − x)

for x = 1/γ1 = D−qD(β). This again uses γ1 > |γi | for i �= 1. Hence,

Dx − 1 = (D − 1)
(
(1 − η)x� + ηx�+1)

.(3.12)

Note that x ∈ (0,1) and that, since qD(β) is increasing in β , x is decreasing in β .
Since the right-hand side goes to 0 exponentially fast as � ↗ ∞, and hence as
β ↗ ∞, it follows that x ↘ 1/D exponentially fast as β ↗ ∞, which also implies
qD(β) ↗ 1 exponentially fast, as desired. Note that the precise exponential rate of
convergence can be obtained by inserting this limit back into the right-hand side
of (3.12). �

Applying Proposition 3.3 to Propositions 3.1 and 3.2, we now demonstrate The-
orem 1.1.

PROOF OF THEOREM 1.1. Setting Qk = eRk , where Rk is given in (3.7), one
has

Qk =
(

k−1∏
i=k−�+1

QD−1
i

)
Q

η(D−1)
k−� ,(3.13)

with Qk = e for k = −� + 1, . . . ,−1,0. We proceed to compare Qk with 1/Pk ,
where Pk satisfies one of (3.3), (3.5) and (3.6).
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Comparison of Qk with 1/Pk , with η = β̂ , � = 
β� = k − k1 and Pk satis-
fying (3.3), provides an upper bound on the limit in (1.4). To see this, we first
set Q̃k = M−kQk , for given M > 1. Since (D − 1)(β − 1) > 1, by substituting
into (3.13), one can check that, for large enough M and k,

Q̃k ≥ C3b
k

(
k−1∏

i=k−�+1

Q̃D−1
i

)
Q̃

η(D−1)
k−�(3.14)

for any fixed choice of C3 and b, in particular, for C3 = 1/C1 and b = 3, where C1
is chosen as in Proposition 3.1. Moreover, on account of (3.8),

lim
k→∞(1/k) logD log (Q̃k) = qD(β),(3.15)

where, in particular, qD(β) > 0, and hence Q̃k → ∞ as k → ∞.
We observe that 1/Pk satisfies the inequality that is analogous to that for Pk

in (3.3), but with the inequality reversed and prefactors 3k/C1 instead of C1/3k .
Comparing Q̃k with 1/Pk therefore implies that, for large enough n not depending
on k,

1/Pk ≤ Q̃k+n.

The upper bound for (1.4) therefore follows from (3.15) for the same choice of
qD(β), which we recall is continuous in β . The limit in (1.5) also follows from
Proposition 3.3.

Comparison of Qk with 1/Pk also provides a lower bound on the limit in (1.4).
In the case where β is nonintegral, we choose η and � as before, with η = β̂ ,
� = 
β� = k − k1; note that Pk satisfies the upper bound in (3.5). We proceed as
in the first part, but instead set Q̃k = MkQk , for given M > 1. One can check that,
for large enough M and k,

Q̃k ≤ C3b
k

(
k−1∏

i=k−�+1

QD−1
i

)
Q

η(D−1)
k−�(3.16)

for any choice of C3 > 0 and b > 0. As before, (3.15) holds.
The terms 1/Pk satisfy the inequality that is the analog of (3.5). Also, 1/Pk →

∞ as k → ∞. Comparing Q̃k with 1/Pk therefore implies that, for large enough
n not depending on k,

1/Pk+n ≥ Q̃k.(3.17)

The lower bound for (1.4) therefore follows from (3.15) when β is nonintegral.
The reasoning in the case where β is integral is similar, but with the difference

that we now choose η = 1−δ, � = β −1 = k−k1 −1, where δ ∈ (0,1) is arbitrary.
Now, Pk satisfies the upper bound in (3.6). We proceed as in the nonintegral case,
once again obtaining (3.16). Comparing 1/Pk with Q̃k again produces (3.15), ex-
cept that the limit is now qD(β −δ) because of our choice of η. By Proposition 3.3,
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qD(·) is continuous in its argument. Therefore, letting δ ↘ 0 produces the same
limit as in the nonintegral case, and hence implies the lower bound for (1.4) in the
case where β is integral.

We still need to demonstrate that when (1.3) holds with β = ∞, then (1.4) holds
with qD(∞) = 1. The lower bound in (1.4) holds on account of (1.5). The upper
bound is not difficult to show and does not require Proposition 3.3; we proceed to
show the bound.

We will show by induction that, for all k,

Pk ≥ (C1/8k)kDk

,(3.18)

where C1 is as chosen as in (3.1), which we assume WLOG is at most 1. To
see (3.18), note that if it holds for all i = 0, . . . , k −1 then this, together with (3.1),
implies that

Pk ≥ (C1/8k)k
k−1∏
i=0

[
(C1/8i)iD

i ]D−1

≥ (C1/8k)(k−1)(Dk−1)+k ≥ (C1/8k)kDk

.

The upper bound in (1.4), with qD(∞) = 1, follows immediately from (3.18). �

Demonstration of Proposition 3.1. The proof of Proposition 3.1 is quick. To
obtain the lower bounds in both (3.1) and (3.3), it suffices to construct a path along
which ZH(t) increases from 0 to k within the first cycle. This is done, in both
cases, by allocating the same amount of time to each of the first k arrivals, which
are also required to occur before the first departure.

PROOF OF PROPOSITION 3.1. Consider the cavity process XH(·) with
XH(0) = 0. In order to show (3.1) and (3.3), we obtain lower bounds on the ex-
pected amount of time E[Vk] over which ZH(t) ≥ k before XH(·) returns to 0. We
first show (3.1).

We consider the event A where the first service time S is at least 1/2 and the
first k arrivals occur by time 1/4. The latter event contains the event where each
of the first k arrivals occurs not more than 1/4k units of time after the previous
arrival, starting at time 0.

Conditioned on there being i jobs in the queue, jobs arrive at rate αi ≥ αP D−1
i ,

and so the probability of such an arrival occurring over an interval of length 1/4k

is at least 1 − exp{−αP D−1
i /4k}. So, given that S ≥ 1/2, the probability that all k

of these arrivals occur by time 1/4 is at least

k−1∏
i=0

(
1 − exp

{−αP D−1
i /4k

})
.(3.19)
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The event S ≥ 1/2 occurs with some positive probability c depending on F(·)
and, under the event A, the departure time for the first job occurs at least 1/4 after
the last of the first k arrivals. So, the expected amount of time in [1/4,1/2], during
which ZH(t) ≥ k and before XH(·) has returned to 0, is at least

c

4

k−1∏
i=0

(
1 − exp

{−αP D−1
i /4k

})
,(3.20)

which is therefore a lower bound for E[Vk]. It therefore follows from (2.5) that

Pk ≥ c

4m0

k−1∏
i=0

(
1 − exp

{−αP D−1
i /4k

}) ≥ c

4
(α/8k)k

k−1∏
i=0

P D−1
i ,(3.21)

which implies (3.1) for appropriate C1.
We next show (3.3) under the assumption (3.2). For this, we set

s1 = 2k/
(
αP D−1

k1

)
.(3.22)

One can reason analogously as through (3.20), but by replacing the time interval
[0,1/2] by [0, s1] and employing s1/2k for the allotted time for each of the k

arrivals. One obtains that the expected amount of time in [s1/2, s1], during which
ZH(t) ≥ k and before XH(·) has returned to 0, is at least

s1

2
F̄ (s1)

k−1∏
i=0

(
1 − exp

{−αs1P
D−1
i /2k

})
.(3.23)

Choose k large enough so that s1 ≥ s0, where s0 is as in (3.2) and s1 is as
in (3.22). Since e−x ≤ (1 − x/2) ∨ 1/2 for x ≥ 0, this is at least

2−(k1+2)s
−(β−1)
1 (αs1/4k)k−k1−1

k−1∏
i=k1+1

P D−1
i

≥ 2−k(α/4k)β

(
k−1∏

i=k1+1

P D−1
i

)
P

β̂(D−1)
k1

,

where the inequality follows from (3.22) and k − k1 = β − β̂ . Consequently,

E[Vk] ≥ 2−k(α/4k)β

(
k−1∏

i=k1+1

P D−1
i

)
P

β̂(D−1)
k1

.

Again applying (2.5), it follows that, for large enough k (depending on α and β),

Pk ≥ 3−k

(
k−1∏

i=k1+1

P D−1
i

)
P

β̂(D−1)
k1

,

which implies (3.3). �
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Demonstration of Proposition 3.2. In order to demonstrate Proposition 3.2, we
will employ Lemma 3.1 below; the lemma will also be employed in the demon-
stration of Propositions 4.2 and 5.2. (A substantially more intricate variant of the
proof of Lemma 3.1 will be needed for the proof of Proposition 4.4.) Lemma 3.1
provides upper bounds involving R(k, s), H(n) and ρ(k, s), for k ≥ 1, s ≥ 0 and
n ≥ 0, which are defined as follows.

For s > 0, R(k, s) is the expected return time of the cavity process XH(·) (with
equilibrium environment H) to the empty state 0, from XH(0) with ZH(0) = k

and SH(0) = s. We set R(k,0) = lims↘0 R(k, s), which is also the expected return
time to 0 just after departure of a job, but without knowledge of the residual service
time of the job that is beginning service. The quantity H(n) is the number of jobs,
for this process, at the time when the (n + 1)st job has just departed, for example,
H(0) is the number of jobs just after departure of the job originally in service. The
stopping time ρ(k, s) is the first time n at which H(n) = 0.

We also denote by Yn the service time of the (n+1)st job (with Y0 = s being the
service time of the job originally in service), and set T� = ∑�

n=0 Yn = ∑�
n=1 Yn +s.

Note that Y1, Y2, . . . are i.i.d. with distribution function F(·), which, as always, is
assumed to have mean 1.

LEMMA 3.1. Let R(·, ·) and ρ(·, ·) be defined as above. Then, for large
enough N0,

R(k, s) ≤ 2(k + s + N0)(3.24)

and

E
[
ρ(k, s)

] ≤ 2(k + s/2 + N0)(3.25)

for all k and s.

PROOF. It is not difficult to see that (3.24) follows from (3.25). By apply-
ing Wald’s equation to T (·) and ρ(·, ·) (with respect to the underlying σ -algebra
generated by XH(·)), one obtains

R(k, s) = E[Tρ(k,s)] = E

[
ρ(k,s)∑
n=1

Yn

]
+ s = E

[
ρ(k, s)

]
E[Y1] + s ≤ 2(k + s + N0),

with the inequality following from (3.25) and E[Y1] = 1.
In order to show (3.25), we consider the process

M(n) = H(n) + n/2 − N1 exp
{−θ

(
H(n) ∧ k0

)}
.(3.26)

For appropriate choices of N1, θ > 0 and k0 ∈ Z+, we claim M(n) is a super-
martingale, with respect to the filtration Gn = σ(H(0), . . . ,H(n)), after restricting
to times n, with n ≤ ρ(k, s), and then stopping the process.
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These three constants are chosen as follows. We choose k0 large enough so that
αDP D−1

k0+1 ≤ 1/2. For H(n) > k0, one can check that the supermartingale inequal-
ity

E
[
M(n + 1)|Gn

] ≤ M(n)(3.27)

is satisfied—the arrival rate of jobs is at most 1/2 over the time interval (Tn−1, Tn]
during which the (n + 1)st job is served, which has mean length 1, and so

E
[
H(n + 1)|Gn

] ≤ H(n) − 1/2.

In order to analyze M(n + 1) when H(n) ≤ k0, we set

M1(n) = − exp
{−θ

(
H(n) ∧ k0

)}
.

We choose θ large enough so that, for some ε > 0 and all H(n) ≤ k0,

E
[
M1(n + 1)|Gn

] ≤ M1(n) − ε.(3.28)

This requires a standard computation using the convexity of the exponential func-
tion and the upper bound αD on the arrival rate of jobs. [Since H(·) may have
positive drift, θ may need to be chosen large.]

We also choose N1 so that εN1 ≥ αD + 1/2. Together with (3.28), this im-
plies (3.27) also holds for H(n) ≤ k0. Consequently, M(n) is a supermartingale,
as claimed.

In order to demonstrate (3.25), we will apply the optional sampling theorem to
M(·) stopped at times ρn(k, s) = ρ(k, s) ∧ n. First note that

E
[
M(0)

] ≤ E
[
H(0)

] ≤ k + s/2(3.29)

for k ≥ k0, since the arrival rate of jobs is bounded above by 1/2. Also, for given s,
E[H(0)] is increasing as a function of k, the number of jobs in the cavity process
at time 0. Together with (3.29), this implies that, for all k,

E
[
M(0)

] ≤ (k ∨ k0) + s/2 ≤ k + s/2 + k0.(3.30)

Since the supermartingale M(·) is bounded from below, application of the op-
tional sampling theorem to ρn(k, s) implies that

E
[
M

(
ρn(k, s)

)] ≤ E
[
M(0)

] ≤ k + s/2 + k0,

and hence

0 ≤ E
[
H

(
ρn(k, s)

)] ≤ k + s/2 + k0 + N1 − E
[
ρn(k, s)

]
/2.

Solving for E[ρn(k, s)] implies

E
[
ρn(k, s)

] ≤ 2(k + s/2 + k0 + N1) = 2(k + s/2 + N0)

for N0 = k0 + N1. Letting n → ∞ implies (3.25). �
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Lemma 3.1 provides an upper bound on the expected time over a cycle during
which there are at least k jobs, provided such a state has already been attained.
Below, we will obtain an upper bound on the probability of attaining such a state
and combine this with (3.24).

In order for XH(·), starting at 0, to attain a state with k jobs, it must first attain
states with k1 + 1, k1 + 2, . . . , k − 1 jobs, where k1 has been specified in the previ-
ous subsection. (It turns out that including states with fewer jobs in this sequence
will not improve our bounds.) We let σk1+1, . . . , σk denote the number of jobs that
have already departed when such a state is first attained [e.g., σi = 0 means that
the first job is still being served at the time t when ZH(t) = i first occurs].

One trivially has

0 ≤ σk1+1 ≤ σk1+2 ≤ . . . ≤ σk.

Partition {k1 + 1, k1 + 2, . . . , k} so that i �= i′ are in the same subset if σi = σi′ ,
that is, the times ti and ti′ at which ZH(ti) = i and ZH(ti′) = i ′ first occur are in
the same service time interval. One can write such a partition as

‖i0 + 1, . . . , i1‖i1 + 1, . . . , i2‖ . . .‖im−1 + 1, . . . , im‖,(3.31)

with i0 = k1 and im = k, when the partition consists of m sets (where m is random).
We denote by 
k the set of all such partitions and by π ∈ 
k an element in the set,
with the notation i0(π), i1(π), . . . , im(π) being used when convenient. We will say
that a partition π occurs during a cycle when the corresponding sequence of events
occurs, and denote by Aπ the event associated with the partition.

For each of the sets in (3.31) except the last, there is a corresponding service
interval, [Tn�−1, Tn�

), with � = 1, . . . ,m − 1, at the beginning of which there are
strictly less than i�−1 jobs and at the end exactly i� jobs. (Since such an interval
ends with a departure, the number of jobs at the beginning of the next service
interval must be one less, which requires the cavity process to “retrace some of its
steps” before the number of jobs reaches i� again.) For � = m, there may be strictly
more than k jobs at Tn�

; instead, we consider the restricted interval [Tnm−1, τk],
where τk is the first time at which there are at least k jobs. Unlike at the end of
the other intervals [Tn�−1, Tn�

), the residual service time s will not be 0. When s is
large, this will increase the occupation time where ZH(t) ≥ k, which will require
us to exercise some care with our computations.

Since k − k1 ≤ β , the number of distinct partitions in (3.31) is at most 2β . In
Proposition 3.4 below, we compute an upper bound on Pk using an upper bound
on the expected occupation time corresponding to each partition, and then by mul-
tiplying by 2β . The upper bound in (3.34) includes a factor kβ obtained by em-
ploying Lemma 3.1 repeatedly. The form of the bounds in (3.34) and (3.35) varies
in different ranges of s; we will therefore find it useful to employ the notation

L�(s) =
i�−1∏

i=i�−1

[(
αDP D−1

i s
) ∧ 1

]
.(3.32)
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[L�(·) implicitly depends on the partition π through i�−1 and i�.] We will employ
L(s) when i goes from k1 to k − 1, which corresponds to the trivial partition
in (3.31) consisting of a single set.

In the proof of Proposition 3.4, we will use the following elementary Chebyshev
integral inequality, which states that, if f (s) and g(s) are both integrable functions
that are increasing in s, then, for any distribution function F(·),∫ ∞

−∞
f (s)g(s)F (ds) ≥

∫ ∞
−∞

f (s)F (ds) ·
∫ ∞
−∞

g(s)F (ds).(3.33)

PROPOSITION 3.4. Consider a family of JSQ networks, with the same as-
sumptions holding as in Proposition 3.2, except that (3.4) is not assumed. Then,
for large enough k,

Pk ≤ 3m−1
0 (6k)β

∫ ∞
0

(k + s)L(s)F (ds).(3.34)

PROOF. We first claim that the probability of the cavity process XH(·), with
ZH(0) ≤ i�−1 and SH(0) = s, attaining i� jobs before time s is at most

i�−1∏
i=i�−1

(
1 − exp

{−αDP D−1
i s

}) ≤
i�−1∏

i=i�−1

[(
αDP D−1

i s
) ∧ 1

]
(3.35)

= L�(s).

Under this event, arrivals must occur sequentially over [0, s] at times ti when
ZH(ti−) = i, for i = i�−1, . . . , i� − 1, and the rate of such arrivals is at most
αDP D−1

i . Since there is at most time s for each arrival, multiplying the corre-
sponding upper bounds on the probability of an arrival at each step gives the first
bound in (3.35). The following inequality is then obtained by applying the inequal-
ity 1 − e−x ≤ x ∧ 1.

Recall that Vk denotes the occupation time over a cycle when ZH(t) ≥ k. In
order for Vk > 0, the event Aπ must occur for some π ∈ 
k ; hence E[Vk] =∑

π∈
k
E[Vk;Aπ ]. We claim that, for any partition π ∈ 
k and large enough k,

E[Vk;Aπ ]
(3.36)

≤ (3k)mπ

mπ−1∏
�=1

(∫ ∞
0

L�(s)F (ds)

)
· 3

∫ ∞
0

(k + s)Lmπ (s)F (ds).

To obtain (3.36), we argue by induction, applying (3.35) at each step. It suf-
fices to show that, for each step with � < mπ , one obtains an additional factor
3i�−1

∫ ∞
0 L�(s)F (ds) and, for � = mπ , one obtains the factor 9(imπ−1)

∫ ∞
0 (k +

s)Lmπ (s)F (ds). For � ≥ 2, the factor 3i�−1 is obtained by applying (3.25), with
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s = 0, which gives an upper bound on the expected number of service intervals oc-
curring over the remainder of the cycle, after the service interval corresponding to
the (�−1)st step ends; also, i0 ≥ m0, which equals the expected number of service
intervals at the beginning of the cycle. The other factor is obtained from (3.35) by
integrating against F(·) and, for � = mπ , by employing (3.24) to provide an up-
per bound on the expected occupation time Vk , again employing (3.35) and then
integrating against F(·).

On the other hand, by repeatedly applying the Chebyshev integral inequal-
ity (3.33) to (3.36), it follows that, for an arbitrary partition in (3.31), (3.36) is
maximized for the trivial partition. That is, for any partition π ∈ 
k , the quantity
in (3.36) is bounded above by

3(3k)β
∫ ∞

0
(k + s)L(s)F (ds).(3.37)

Since |
k| ≤ 2β , it follows from (3.36) and (3.37) that

Pk = m−1
0 E[Vk] = m−1

0

∑
π∈
k

E[Vk;Aπ ]

≤ 3m−1
0 (6k)β

∫ ∞
0

(k + s)L(s)F (ds),

which implies (3.34) �

We now complete the proof of Proposition 3.2.

PROOF OF PROPOSITION 3.2. We employ the upper bound for Pk given
by (3.34) for large enough k. The integral in (3.34) is bounded above by

2ks0

∫ s0

0
L(s)F (ds) + 2k

∫ ∞
s0

sL(s)F (ds)

(3.38)
≤ 2β

(
s
β+1
0 + 1

)
k

∫ ∞
1

s−βL(s) ds

by integrating by parts and absorbing the first term into the second; note that
L(s) is increasing in s on account of (3.32). We decompose this last integral
using intervals of the form [1/αDP D−1

k−1 ,∞), [1/αDP D−1
i−1 ,1/αDP D−1

i ), for

i = k1 + 1, . . . , k − 1, and [1,1/αDP D−1
k1

); we need to consider the cases where
β is and is not an integer separately.

Suppose that β is not an integer. Applying (3.32) to the above integral over
[1/αDP D−1

k−1 ,∞), one has the upper bound
∫ ∞

1/αDPD−1
k−1

s−β ds = 1

β − 1
(αDPk−1)

(D−1)(β−1).(3.39)
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For i = k1 + 1, . . . , k − 1, one has, over [1/αDP D−1
i−1 ,1/αDP D−1

i ), the upper
bounds

∫ 1/αDPD−1
i

1/αDPD−1
i−1

(αDs)k−i(Pk−1 · · ·Pi)
D−1s−β ds

(3.40)

≤ (αD)β−1

β + i − k − 1

(
Pk−1 · · ·PiP

β+i−k−1
i−1

)D−1
.

For the last interval [1,1/αDP D−1
k1

), one has the upper bound

∫ 1/αDPD−1
k1

1
(αDs)k−k1(Pk−1 · · ·Pk1)

D−1s−β ds

(3.41)

≤ (αD)β−1

1 − β̂

(
Pk−1 · · ·Pk1+1P

β̂
k1

)D−1
,

where we recall that β̂ = β − k + k1. Note that the lower limits of integration
supply the dominant term in (3.39) and (3.40), whereas the upper limit supplies
the dominant term in (3.41), because of the choice of k1.

Since Pi is decreasing in i, if one ignores the coefficients not involving powers
of Pi on the right-hand sides of (3.39)–(3.41), the largest bounds in (3.39)–(3.41)
are given in (3.40), with i = k1 +1, and in (3.41), in each case by the powers of Pi ,

(
Pk−1 · · ·P β̂

k1

)D−1
.(3.42)

The coefficients of these powers are bounded above by terms not involving k. Em-
ploying (3.34) of Proposition 3.4, together with (3.38), one obtains the bound (3.5)
for Pk , for appropriate C2 and all k.

When β is an integer, the computations are similar. The inequalities in (3.39)
and (3.41) are the same as before, as are all of the cases in (3.40) except for i =
k1 + 1. Rather than (3.40), one obtains the following inequality when i = k1 + 1:

∫ 1/αDPD−1
k1+1

1/αDPD−1
k1

(αDs)β−1(Pk−1 · · ·Pk1+1)
D−1s−β ds

(3.43)
≤ (D − 1)(αD)β−1(Pk−1 · · ·Pk1+1)

D−1 log(Pk1/Pk1+1).

By comparing terms involving Pi and ignoring the other coefficients, one can
check that the largest bound is given in (3.43). Since the logarithm term there
is dominated by P

−δ(D−1)
k1+1 , for given δ > 0 and small enough Pk1+1, it follows

that (3.6) holds for Pk , for appropriate C2 and all k. �
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4. The case where β ∈ (1,D/(D − 1)). In this section, we demonstrate The-
orem 1.2. We do this by demonstrating the lower and upper bounds needed for the
theorem in Propositions 4.1 and 4.2. Here, we set

νβ = (β − 1)/
[
1 − (D − 1)(β − 1)

]
.

PROPOSITION 4.1. Consider a family of JSQ networks, with given D ≥ 2 and
N = D,D+1, . . . , where the N th network has Poisson rate-αN input, with α < 1,
and where service at each queue is FIFO, with distribution F(·) having mean 1.
Assume that (1.2) holds and that

F̄ (s) ≥ s−β for s ≥ s0,(4.1)

with β ∈ (1,D/(D − 1)) and some s0 ≥ 1. Then, for appropriate C4 > 0 and all k,

Pk ≥ C4k
−νβ .(4.2)

PROPOSITION 4.2. Consider a family of JSQ networks, with given D ≥ 2 and
N = D,D+1, . . . , where the N th network has Poisson rate-αN input, with α < 1,
and where service at each queue is FIFO, with distribution F(·) having mean 1.
Assume that (1.2) holds and that

F̄ (s) ≤ s−β for s ≥ s0,(4.3)

with β ∈ (1,D/(D − 1)) and some s0 ≥ 1. Then, for each δ > 0, appropriate
C5 > 0, and all k,

Pk ≤ C5k
−(1−δ)νβ .(4.4)

Theorem 1.2 follows immediately from Propositions 4.1 and 4.2 upon letting
δ ↘ 0 in (4.4).

As in Section 3, the demonstration of the lower bound is much quicker than that
of the upper bound. We first demonstrate the lower bound, Proposition 4.1, and
then, in the remainder of the section, derive the upper bound, Proposition 4.2.

Demonstration of Proposition 4.1. As in Section 3, when we considered the
case where β > D/(D − 1), for the lower bound, it suffices to construct a path
along which ZH(t) increases from 0 to k within the first cycle. As before, we
allocate the same amount of time for each of the first k arrivals, which are also
required to occur before the first departure.

PROOF OF PROPOSITION 4.1. Consider the cavity process XH(·) with
XH(0) = 0. We obtain a lower bound on the expected amount of time over which
ZH(t) ≥ k before XH(·) returns to 0, assuming that k ≥ s0.

We consider the event where the first service time is at least s1 = 4k/(αP D−1
k )

and the first k arrivals occur by time s1/2. We note that the probability of the latter



JOIN THE SHORTEST QUEUE 1861

event occurring is greater than the probability of at least k events occurring by
time s1/2 for a rate-αP D−1

k Poisson process, which, by a simple large deviations
estimate, is at least

1 − eC6k ≥ 1/2

for large enough k and an appropriate constant C6. Together with (4.1), this implies
that the expected amount of time in [s1/2, s1], during which ZH(t) ≥ k and before
XH(·) has returned to 0, is at least

1

2
· s1

2
· F̄ (s1) ≥ 1

4

(
4k/

(
αP D−1

k

))−(β−1)
.(4.5)

Inequality (4.5) implies that

Pk ≥ α

16m0
k−(β−1)P

(D−1)(β−1)
k ,

where m0 is the mean return time to 0. Solving for Pk , it follows from this that, for
large k,

Pk ≥ α

16m0
k−νβ ,

which implies (4.2) for all k. �

Demonstration of Proposition 4.2. The demonstration of the upper bound (4.4)
for Theorem 1.2 is considerably more involved than is the lower bound. The basic
idea is to consider two cases, depending on whether or not there is a service time s

with s > s1, for preassigned s1 ≥ 1, before a state x with z = k is reached in the
first cycle, and to obtain upper bounds for each case. The two bounds are given
in Propositions 4.3 and 4.4, which are then combined in Corollary 4.1. Employing
Corollary 4.1, the proof of Proposition 4.2 provides an iteration scheme where a
sequence of values s1(n), n = 0,1,2, . . . , for s1 are given that provide successively
better upper bounds for Pk , and that yield (4.4) in the limit. The demonstration of
Proposition 4.4 involves the construction of a supermartingale, whose details are
postponed until the end of the section.

Let τk , for given k ∈ Z+, denote the first time t in the first cycle at which
ZH(t) = k. For Propositions 4.3 and 4.4, we denote by Bs1,k the set of realizations
on which some service time that is strictly greater than s1, with s1 ≥ 1, occurs up
to and including the service time interval that contains τk . Proposition 4.3 con-
siders the case where Bs1,k occurs; the demonstration of the proposition is quick,
using Lemma 3.1. As in Sections 2 and 3, we denote by Vk the occupation time at
states x, with z ≥ k.

PROPOSITION 4.3. Consider a family of JSQ networks with the same assump-
tions holding as in Proposition 4.2. Then, for appropriate C7 and all k,

E[Vk;Bs1,k] ≤ C7s
−β
1 (k + s1).(4.6)
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PROOF. We apply Lemma 3.1 at the beginning of the first service time that is
greater than s1. Since there are less than k jobs under Bs1,k then, it follows that, for
appropriate C8 and large enough k,

E[Vk;Bs1,k] ≤ 3
(
P(Bs1,k)/F̄ (s1)

) ∫ ∞
s1

(k + s)F (ds)

(4.7)
≤ C8

∫ ∞
s1

(k + s)F (ds).

For the latter inequality, note that there are only a finite expected number of service
times in the first cycle, and that, by Wald’s equation, the expected number of such
times that are at most s, for given s ≥ 0, is proportional to F(s). Since k + s is
increasing in s, integration by parts together with (4.3) implies that the last quantity
in (4.7) is at most C7s

−β
1 (k + s1), for appropriate C7. �

In order to consider the behavior of XH(·) on Bc
s1,k

, we find it convenient to
employ the service time distribution F s1(·) that is given by

F s1(s) = F(s) for s < s1,
(4.8)

= 1 for s ≥ s1.

We define XH
s1

(·) analogously to XH(·), but where the service time distribution of
the process is F s1(·) up to and including the service time interval containing τk ,
and is given by F(·) afterwards; ZH

s1
(·) and SH

s1
(·) are defined analogously. One

has

E
[
Vk;Bc

s1,k

] ≤ E
[
V

s1
k

]
,(4.9)

where V
s1
k is the occupation time at states x with z ≥ k for XH

s1
(·). Note that the

mean of F s1(·) is at most 1.
In contrast to Proposition 4.3, Proposition 4.4 requires us to restrict our choice

of s1 in terms of k. For this, we set k1 = 
k/3� and introduce the abbreviation

p = pk1 = αDP D−1
k1

.(4.10)

The required restriction on s1 is that

s1 ≤ k1−η/p,(4.11)

where η ∈ (0,1/2). In the proof of Proposition 4.2, we will introduce an iterative
scheme that involves explicit choices of s1 based on our knowledge of Pk1 at each
step.

Proposition 4.4 gives us the following upper bound for E[Vk;Bc
s1,k

].
PROPOSITION 4.4. Consider a family of JSQ networks with the same assump-

tions holding as in Proposition 4.2. Suppose that δ > 0 and η ∈ (0,1/2) are given,
and that s1 satisfies (4.11). Then, for appropriate C9 and all k,

E
[
Vk;Bc

s1,k

] ≤ C9(k + s1) exp
{−δkη}

.(4.12)
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FIG. 1. Graph of f (z).

The demonstration of Proposition 4.4 depends on an appropriate supermartin-
gale. In order to construct the supermartingale, we employ the following notation.
We fix k0 ∈ Z+, which will not depend on k as k increases, and set k2 = 2k1,
where k1 is as defined earlier. We set

f (z) = (z ∧ k2) − N1 exp
{−θ(z ∧ k0)

}
(4.13)

+ γ −1 exp
{
φ(z ∨ k2)

} − γ −1 exp{φk2},
where N1, θ > 0, φ = δkη−1 and γ = φeφk2 , and where δ > 0 and η ∈ (0,1/2)

are as in Proposition 4.4; the function f (·) is sketched in Figure 1. The terms Pk

will continue to refer to the probabilities defined at the beginning of the paper with
respect to the cavity process with the original service distribution F(·) [not F s1(·)].

We let H(n), with n ≥ 1, denote the number of jobs for the process XH
s1

(·), with
XH

s1
(0) = 0, at the time when the nth job has just departed; we set H(0) = 1, and

we let ρ denote the first time n at which either H(n) = 0 or H(n) ≥ k − 1. Using
this notation, we define the analog of M(·) in (3.26),

M(n) = f
(
H(n ∧ ρ)

)
.(4.14)

Note that, unlike for M(·) in (3.26), M(·) here depends strongly on the choice of k.
Also, unlike M(·) in (3.26), it was not necessary to wait until the first departure
in defining H(0), since XH

s1
(0) = 0, and hence there is no initial residual service

time; in both cases, H(1) − H(0) is the change in the number of jobs during the
service time of the first job that begins service when t > 0.

PROPOSITION 4.5. Consider a family of JSQ networks with the same as-
sumptions holding as in Proposition 4.2. Suppose that δ > 0 and η ∈ (0,1/2) are
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given, and that M(·) is defined as above. Also, assume that s1 satisfies (4.11).
Then, for large enough k, M(·) is a supermartingale, with respect to the filtration
Gn = σ(H(0), . . . ,H(n)), for small enough δ > 0, and appropriate θ,N1 > 0,
with δ, θ , and N1 not depending on k.

The demonstration of Proposition 4.5 will be given at the end of the section.
Employing Proposition 4.5, we now demonstrate Proposition 4.4.

PROOF OF PROPOSITION 4.4. We suppose that the terms δ, θ and N1
are chosen so that, for large enough k, M(·) is a supermartingale. Set σL =
min{n :M(n) ≥ L}, for given L > 0, which will depend on k. Since M(·) is
bounded below by −N1 and M(0) ≤ 1, by the optional sampling theorem,

P(σL < ∞) ≤ 1

L
(1 + N1).(4.15)

On the other hand, denoting by nk the service interval during which ZH
s1

(t) = k

first occurs and by Tnk
the end of that interval, H(nk) = ZH

s1
(Tnk

) ≥ k − 1. Substi-
tuting this into (4.13)–(4.14) and recalling that φ = δkη−1, one obtains

M(nk) ≥ −N1 + γ −1 exp
{
φ(k − 1)

} − γ −1 exp{2φk/3} ≥ exp
{
δkη}

/2γ

for large k. Let τ
s1
k denote the first time t , during the first cycle, at which ZH

s1
(t) =

k. Plugging L = exp{δkη}/2γ into (4.15), substituting in for γ and recalling that
k2 = 2
k/3�, it follows that, for large k,

P
(
τ

s1
k < ∞) ≤ P(σL < ∞) ≤ exp

{−δkη} · exp
{
2δkη/3

}
(4.16)

= exp
{−δkη/3

}
.

Lemma 3.1 applied to F(·), which is the service distribution of new service
times after τ

s1
k , provides the upper bound

E
[
V

s1
k |F

τ
s1
k

] ≤ 2(k + s + N0),

given that SH
s1

(τ
s1
k ) = s. Since the residual service time for XH

s1
(t) is at most s1 for

t ≤ τ
s1
k , it therefore follows from (4.16) that, for large k,

E
[
V

s1
k

] ≤ 3(k + s1) exp
{−δkη/3

}
.(4.17)

The inequality in (4.12) follows upon applying (4.9) to (4.17) and substituting in a
smaller choice of η. �

We combine the upper bounds given in Propositions 4.3 and 4.4 for E[Vk;Bs1]
and E[Vk;Bc

s1
] to obtain the following upper bound on E[Vk]. Since we will al-

ways assume s1 ≤ kνβ+1 in our application of the corollary, this allows us to omit
the exponential term inherited from (4.12).
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COROLLARY 4.1. Consider a family of JSQ networks with the same assump-
tions holding as in Proposition 4.2. Fix η ∈ (0,1) and assume that

s1 ≤ [
(αD)−1k1−ηP 1−D

k1

] ∧ kN(4.18)

for some N > 0. Then, for appropriate C10 and all k,

E[Vk] ≤ C10s
−β
1 (k + s1).(4.19)

PROOF. It follows from Propositions 4.3 and 4.4 that

E[Vk] ≤ C7s
−β
1 (k + s1) + C9(k + s1) exp

{−δkη}
for appropriate C7 and C9. The assumption s1 ≤ kN allows us to absorb the second
term into the first. �

The following elementary lemma will be employed in the proof of Proposi-
tion 4.2.

LEMMA 4.1. Suppose that R(n) satisfies

R(n) = aR(n − 1) + b for n ≥ 1,(4.20)

with R(0) = c, for a ∈ (0,1) and b, c ∈ R. Then,

lim
n→∞R(n) = b/(1 − a).(4.21)

If R(0) < b/(1−a), then the sequence R(n) is increasing, and if R(0) > b/(1−a),
then the sequence is decreasing.

PROOF. Setting R̃(n) = R(n) − b/(1 − a), it follows from (4.20) that

R̃(n) = aR̃(n − 1) for n ≥ 1,(4.22)

with R̃(0) = c − b/(1 − a). All of the claims follow by iterating (4.22). �

We will employ the lemma in the following multiplicative format.

COROLLARY 4.2. Suppose that Qk(n) satisfies

Qk(n) = (
k−(1−2η)Qk(n − 1)D−1)β−1 for n ≥ 1,(4.23)

with Qk(0) = k1−β+2ηβ , for (D−1)(β−1) ∈ (0,1) and η ∈ (0,1/2). Then, Qk(n)

satisfies Qk(n) = k−R(n), where the sequence R(n) is increasing in n and

lim
n→∞R(n) = (1 − 2η)νβ,(4.24)

with νβ = (β − 1)/[1 − (D − 1)(β − 1)].



1866 M. BRAMSON, Y. LU AND B. PRABHAKAR

PROOF. The limit in (4.24) follows from (4.21) upon setting a = (D − 1)(β −
1), b = (1 − 2η)(β − 1) and c = β − 1 − 2ηβ . The sequence R(n) is increasing
since R(0) < (1 − 2η)νβ . �

We now employ Corollaries 4.1 and 4.2 to demonstrate Proposition 4.2.

PROOF OF PROPOSITION 4.2. For given k and η ∈ (0,1/2), we define Qk(n)

as in Corollary 4.2 and set

s1(n) = (αD)−1k1−η for n = 0,
(4.25)

= (
αDQk1(n − 1)D−1)−1

k1−η for n ≥ 1,

where k1 = 
k/3�. Using s1(n), we will inductively show that, for large k (depend-
ing on η),

Pk ≤ Qk(n) for all n ≥ 0.(4.26)

Letting n → ∞, it therefore follows from the corollary that

Pk ≤ k−(1−2η)νβ .(4.27)

This implies (4.4) in Proposition 4.2, with δ < 2η.
To show (4.26) holds for n = 0, we note that s1(0) satisfies (4.18). Therefore,

by (2.5) and Corollary 4.1, for large k,

Pk ≤ 2C10(m0)
−1s1(0)−βk ≤ k−(β−1)+2ηβ = Qk(0),(4.28)

where the constants in the second expression are absorbed in the third expression
by using the 2η term. Note that, in this application of (4.19), s1(0) ≤ k. In the
application of (4.19) given next, s1(n) ≥ k for all n ≥ 1.

Suppose that (4.26) holds with n − 1 in place of n. Choosing s1(n) as in (4.25)
and employing the lower bound for Qk(n) given in (4.24), one can check that s1(n)

satisfies (4.18), with N = νβ + 1. Also note that, by Corollary 4.2,

Qk1(n) ≤ 3νβ Qk(n)

for large k and all n. Applying (2.5) and Corollary 4.1 again, we therefore obtain
that, for large k,

Pk ≤ 2C10(m0)
−1s1(n)−(β−1) ≤ (

k−(1−2η)Qk(n − 1)D−1)β−1

(4.29)
= Qk(n).

This demonstrates (4.26). �

In order to complete the demonstration of Proposition 4.2, we need to prove
Proposition 4.5, which asserts that M(·), given by (4.14), is a supermartingale.
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PROOF OF PROPOSITION 4.5. We need to show the supermartingale inequal-
ity (3.27) for H(n) ∈ (0, k − 1). We do this separately over the intervals (0, k1]
and (k1, k − 1). The basic idea for the first interval will be to show that, on (0, k1],
(3.27) will be satisfied for the same reasons as was M(·), for M(·) given by (3.26),
the point being that, since k2 − k1 = 
k/3� is large, the role played by the addi-
tional terms γ −1 exp{φ(z ∨ k2)} − γ −1 exp{φk2} in (4.13) is negligible. On the
second interval (k1, k − 1), the strong negative drift of ZH

s1
(·) will be enough to

compensate for both the z ∧ k2 and γ −1 exp{φ(z ∨ k2)}− γ −1 exp{φk2} terms. We
do the latter interval first.

We claim that for large k and H(n) ≥ k1,

E
[
exp

{
φH(n + 1)

}|Gn

] ≤ E
[
exp

{
φH(n)

}]
.(4.30)

We first note that, because of (4.10), for H(n) ≥ k1, the number of arrivals over
the (n+ 1)st service interval is dominated by a mixture of Poisson rate-ps random
variables, with s being distributed according to F s1(·). Therefore,

E
[
exp

{
φ

(
H(n + 1) − H(n)

)}|Gn

] ≤ e−φ
∫ s1

0
exp

{
ps

(
eφ − 1

)}
F s1(ds).

Since the integrand is convex and the mean of F s1(·) is at most 1, the right-hand
side is at most

e−φ

[(
1 − 1

s1

)
+ 1

s1
exp

{
ps1

(
eφ − 1

)}]
.(4.31)

On account of the definitions of φ and p given between (4.10) and (4.14), both φ

and ps1φ are at most δ. Using ez ∼ 1 + z for z close to 0, one can therefore check
that, for given ε > 0 and small enough δ > 0, (4.31) is at most

1 + φ
[
(1 + ε)p − (1 − ε)

]
.

For p ≤ (1 − ε)/(1 + ε), the above quantity is at most 1, which holds here since
p → 0 as k → ∞. This implies (4.30).

For H(n) > k2, it is easy to see that (3.27) follows from (4.30), since

f (z) − γ −1eφz = b for z ≥ k2,
(4.32)

≤ b for z < k2,

where b
def= f (k2) − γ −1eφk2 . For H(n) ∈ (k1, k2], (3.27) follows from (4.30) with

a bit more work. In place of (4.32), one uses

g(z)
def= f (z) − γ ′eφz ≤ f

(
H(n)

) − γ ′eφH(n)(4.33)

for all z, where γ ′ def= (φeφH(n))−1 = γ −1eφ(k2−H(n)). To check (4.33), note that
equality holds for z = H(n); we claim that the maximum of g(·) is taken there.
One has g′(H(n)) = 0 because of our definition of γ ′; g′(z) ≥ 0 for z ≤ H(n)
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and g′(z) ≤ 0 for z ∈ [H(n), k2) because of the concavity of g(·) there; and since
γ ′ ≥ 1, for z > k2, it is easy to see that g′(z) ≤ 0 there. This shows (4.33) and
hence (3.27) for H(n) ∈ (k1, k2] as well.

We still need to show (3.27) for H(n) ∈ (0, k1]. For this, we compare M(·) with
M̃(·), where

f̃ (z) = z + n/2 − N1 exp
{−θ(z ∧ k0)

}
and

M̃(n) = f̃
(
H(n ∧ ρ)

)
.

Set R(n) = M(n) − M̃(n). For H(n) ∈ (0, k1], one has

R(n + 1) − R(n) + 1/2 = 0 for H(n + 1) ≤ k2,
(4.34)

≤ γ −1eφH(n+1) for H(n + 1) > k2.

Since M̃(·) is the supermartingale in (3.26), except with a different initial state,
M̃(·) satisfies (3.27) if θ and N1 are chosen as in (3.26). In a moment, we will
show that

E
[
eφH(n+1)1

{
H(n + 1) > k2

}|Gn

] ≤ γ /2(4.35)

for H(n) ≤ k1 and large k. Using (4.34) and (4.35), (3.27) therefore also follows
for M(·) for H(n) ≤ k1.

It suffices to show (4.35) for H(n) = k1. To do this, we need to control the right
tail of H(n + 1). The number of arrivals over the (n + 1)st service interval for the
cavity process is dominated by a mixture of Poisson mean-ps1 random variables,
with the mixture distributed according to F s1 . This mixture is in turn dominated
by a Poisson mean-s1 random variable. Therefore, the left-hand side of (4.35) is at
most

∞∑
k′=k2

[
e−ps1(ps1)

k′−k1/
(
k′ − k1

)!]eφk′
.(4.36)

Setting � = k′ − k2, one has(
k′ − k1

)! ≥ �!(k2 − k1)! ≥ �!((k2 − k1)/e
)k2−k1,

where the last inequality follows from Stirling’s formula. Substituting � into (4.36),
applying this bound, and employing exp{eφps1} = ∑∞

�=0(e
φps1)

�/�!, it follows
that (4.36) is at most(

eps1

k2 − k1

)k2−k1

exp
{
ps1

(
eφ − 1

) + φk2
} ≤ C11k

−ηk/3e4φk(4.37)

for appropriate C11, where the inequality employs (4.11) and eφ − 1 ≤ 2φ, for
small φ. As k → ∞, the right-hand side of (4.37) goes to 0. It follows that the
left-hand side of (4.35), with H(n) = k1, goes to 0 as k → ∞. This implies (4.35)
holds for H(n) ≤ k1 and large k, which completes the proof of the proposition.

�
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5. The case where β = D/(D − 1). In this section, we demonstrate Theo-
rem 1.3. We do this by demonstrating the lower and upper bounds needed for the
theorem, in Propositions 5.1 and 5.2.

PROPOSITION 5.1. Consider a family of JSQ networks, with given D ≥ 2 and
N = D,D+1, . . . , where the N th network has Poisson rate-αN input, with α < 1,
and where service at each queue is FIFO, with distribution F(·) having mean 1.
Assume that (1.2) holds and that

F̄ (s) ≥ c1s
−D/(D−1) for s ≥ s0,(5.1)

for some c1 > 0 and s0 ≥ 1. Then, for appropriate C12 > 0 and sD(c1) < ∞,

Pk ≥ C12e
−sD(c1)k for all k,(5.2)

where

sD(c1) ↘ 0 as c1 ↗ ∞.(5.3)

PROPOSITION 5.2. Consider a family of JSQ networks, with given D ≥ 2 and
N = D,D+1, . . . , where the N th network has Poisson rate-αN input, with α < 1,
and where service at each queue is FIFO, with distribution F(·) having mean 1.
Assume that (1.2) holds and that

F̄ (s) ≤ c2s
−D/(D−1) for s ≥ s0,(5.4)

for some c2 < ∞ and s0 ≥ 1. Then, for appropriate C13 and rD(c2) > 0,

Pk ≤ C13e
−rD(c2)k for all k,(5.5)

where

rD(c2) ↗ ∞ as c2 ↘ 0.(5.6)

Theorem 1.3 follows immediately from Propositions 5.1 and 5.2.
As in the previous two sections, the demonstration of the lower bound is sub-

stantially quicker than that of the upper bound. We first demonstrate the lower
bound, Proposition 5.1 and then, in the remainder of the section, derive the upper
bound Proposition 5.2.

Demonstration of Proposition 5.1. As in Sections 3 and 4, where we consid-
ered the cases β > D/(D − 1) and β ∈ (1,D/(D − 1)), for the lower bound, it
suffices to construct a path along which ZH(t) increases from 0 to k within the
first cycle. In contrast to the previous two settings, we allocate geometrically in-
creasing amounts of time to the sequence of arrivals, up through the kth arrival; as
before, these arrivals are required to occur before the time of the first departure.
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PROOF OF PROPOSITION 5.1. The argument is similar to that for Proposi-
tion 4.1 in that we examine the cavity process XH(·) with XH(0) = 0, and obtain
a lower bound on the expected amount of time Vk over which ZH(t) ≥ k before
XH(·) returns to 0. Here, we argue by induction, and assume that

Pi ≥ C12e
−a1i for i = 0, . . . , k − 1,(5.7)

for given k, where C12 ≤ [(a1 ∨ 1)s0]−1, and a1 > 0 will be specified later.
We consider the following event A that leads to a lower bound on Pk that is

compatible with (5.7). We stipulate that the first service time is at least

s1
def= C14e

a1(D−1)k,(5.8)

where C14 = 4(αa1)
−1C

−(D−1)
12 . Note that C14 ≥ s0. We also assume that the in-

terarrival time for the (i + 1)st arrival at the queue, i = 0, . . . , k − 1, is at most

α−1C
−(D−1)
12 exp

{1
2a1(D − 1)(k + i)

}
.(5.9)

A little estimation shows that the sum of the terms in (5.9), over i = 0, . . . , k − 1,
is bounded above by

α−1C
−(D−1)
12 exp

{
a1(D − 1)k

}
/
(
exp

{1
2a1(D − 1)

} − 1
)

(5.10)
≤ (2/αa1)C

−(D−1)
12 exp

{
a1(D − 1)k

}
,

which is one-half of (5.8).
On account of the induction hypothesis in (5.7), the probability that the (i +1)st

arrival occurs within the interarrival time in (5.9) is at least

1 − exp
{−e(1/2)a1(D−1)(k−i)}.

So, the probability that the corresponding events for i = 0, . . . ,D − 1 all occur
within the allotted time is at least

k∏
i=1

(
1 − exp

{−e(1/2)a1(D−1)i}) ≥ ψ(a1),

where ψ(a1) > 0 for a1 > 0 and does not depend on k or D, with ψ(a1) → 1 as
a1 → ∞; the inequality requires a little computation.

It follows from the previous two paragraphs that the event A, given by the ser-
vice time and interarrival times restricted as in (5.8) and (5.9), has probability at
least

ψ(a1)F̄
(
C14 exp

{
a1(D − 1)k

})
.

On A, ZH(t) ≥ k over the interval [s1/2, s1], which has length 1
2C14 exp{a1(D −

1)k}. So,

E[Vk] ≥ 1
2C14ψ(a1) exp

{
a1(D − 1)k

}
F̄

(
C14 exp

{
a1(D − 1)k

})
.
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By substituting the bound in (5.1) for F̄ (s) and employing Pk = m−1
0 E[Vk], one

obtains

Pk ≥ 1

2m0
ψ(a1)c1C14 exp

{
a1(D − 1)k

}(
C14 exp

{
a1(D − 1)k

})−D/(D−1)

= 1

2m0
ψ(a1)c1(C14)

−1/(D−1)e−a1k ≥ c1

4m0
ψ(a1)(αa1)

1/(D−1)C12e
−a1k.

For given c1 and large enough a1, the last quantity in the above display is at least
C12e

−a1k . This implies the induction hypothesis in (5.7) for k and this choice of a1.
Since (5.7) obviously holds for i = 0, (5.2) follows, with sD(c1) = a1. Similarly,
for given a1, one obtains the lower bound C12e

−a1k , if c1 is chosen large enough,
which implies (5.3). This completes the proof. �

Demonstration of Proposition 5.2. The demonstration of the upper bound (5.5)
is substantially more involved than is the lower bound. The basic idea is similar
to that employed for the upper bound in Section 3, where we classified different
paths for attaining ZH(t)+k, for given k and some t , in terms of partitions π given
by (3.31). There, the probability of the event associated with the trivial partition
dominated the probabilities for the other partitions. Computing an upper bound for
the probability for the trivial partition and multiplying by the upper bound 2β for
the total number of partitions gave us our desired upper bounds on Pk .

The details of our setup here will be different. The partitions we consider will
be defined somewhat differently, and we will need to be more careful in summing
up probabilities—we will compute the probability of the event associated with
the trivial partition separately, and will then sum up the probabilities for the other
partitions, which will be negligible in comparison. We will also require an upper
bound on Pk from Proposition 4.2, at the beginning of our argument. On the other
hand, the computations of these upper bounds will be substantially easier here
than the corresponding bounds were in Section 3. The key difference is that here
the probabilities Pk will decrease sufficiently slowly in k so that, for our estimates,
not too much will be lost if we consider Pi to be approximately the same for
i = k1, . . . , k − 1, which will simplify our computations.

In order to show (5.5) and (5.6) of Proposition 5.2, we will argue by induction,
assuming that, for preassigned a2,C13 > 0 and k0, hT ∈ Z+,

Pi ≤ C13e
−a2i for i = k0, . . . , k − 1,(5.11)

for given k with k ≥ k0 + hT . For appropriate choices of these preassigned values,
we will show that the inequality in (5.11) holds with i = k. We set

hT = ⌈
700D2c2

⌉D−1 ∨ 6(5.12)

and

a2 = (hT )−1 ∨ 1
6 log

((
220D2c2

)−1)
,(5.13)
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where c2 is as in (5.4). These particular choices of hT and a2 are not needed for
most of the argument, and will only be inserted at the very end.

In order to specify C13 and k0, we note that, since (4.3) is satisfied for every
β < D/(D − 1) because of (5.4) and since νβ ↗ ∞ as β ↗ D/(D − 1), it follows
from Proposition 4.2 that, for any N , limk→∞ kNPk = 0. Here, we set N = hT +1.
We choose k0 large enough so that Pk0 ≤ (DM2kN

0 )−1, (1 + 1/k0)
N ≤ ea2 ,

k0 ≥ D
(
c2 ∨ (1/c2)

)
s

2hT

0 h
hT +1
T(5.14)

and k0 ≥ N0 all hold, where M = ea2hT , s0 is as in (5.4) and N0 is as in Lemma 3.1.
Setting C13 = Mea2k0Pk0 implies (5.11) holds for k = k0, . . . , k0 + hT , which we
will need in order to begin our induction argument.

It follows from the definition of C13 and the first two conditions on k0 that

C13DMe−a2k ≤ k−N for all k ≥ k0.

Setting qk = αD(C13Me−a2k)D−1, it follows from this that

qk ≤ k−(D−1)N for all k ≥ k0,(5.15)

which we will use throughout the induction argument for (5.11). In order to follow
the basic induction argument, the reader should keep in mind (5.11) and (5.15),
without worrying much about the other inequalities.

In order to demonstrate the inequality in (5.11) with i = k, we proceed as out-
lined in the beginning of the subsection, employing the partitions π given in (3.31)
and the events Aπ , on which a sequence of arrivals and departures occurs in the
first cycle that induces the partition π . We define 
k , as before, as the set of all
partitions with final element im = k; here, the first element will be i0 + 1, with
i0 = k1, where k1 = k −hT . In the present setting, we will pay more attention than
in Section 3 to the length of each of the sets in a partition π , setting h� = |G�|, for
� = 1, . . . ,mπ , for the number of elements in the �th set G� of the partition; one
has hT = ∑mπ

�=1 h�.
An important step in computing an upper bound for Pk is Proposition 5.3, which

is the analog of Proposition 3.4. Rather than employing L�(s) as in the proof of
Proposition 3.4 for the upper bound for a set in the partition, we employ

Jk,h(s)
def= e−qks

∞∑
i=h

(qks)
i/i!.(5.16)

The quantity Jk,h(s) is the probability of at least h events occurring for a mean-
qk(s) Poisson random variable, and dominates the probability that, over the time
interval (0, s], at least h arrivals occur for a cavity process XH(·) with ZH(0) ≥ k1
and SH(0) ≥ s. This bound follows from the upper bound in (2.6), together with
the induction hypothesis (5.11) and our definition of M .
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PROPOSITION 5.3. Consider a family of JSQ networks with the same assump-
tions holding as in Proposition 5.2, except that (5.4) is not assumed. Suppose that
the induction assumption (5.11) holds for given hT and for k0 ≥ N0, where N0 is
as in Lemma 3.1. Then,

Pk ≤ 3
∑

π∈
k

(3k)mπ−1
mπ−1∏
�=1

(∫ ∞
0

Jk,h�
(s)F (ds)

)
(5.17)

×
∫ ∞

0
(k + s)Jk,hmπ

(s)F (ds).

PROOF. One can reason similarly to the argument for (3.36), in the proof of
Proposition 3.4, by computing an upper bound on E[Vk;Aπ ]. Summation over
π ∈ 
k and application of (2.5) will then imply (5.17). The assumption k0 ≥ N0 is
needed only to absorb the term N0 when applying Lemma 3.1.

One argues inductively, repeating the argument for (3.36), except for the sub-
stitution of Jk,h�

(s) for L�(s) and a minor change involving the factors of 3k. For
each step with � < mπ , one obtains an additional factor i∗�−1

∫ ∞
0 Jk,h�

(s)F (ds)

and, for � = mπ , one obtains the factor 3i∗mπ−1

∫ ∞
0 (k + s)Jk,hmπ

(s)F (ds), where
i∗�−1 = 3i�−1 for � ≥ 2 and i∗0 = m0, with m0 being the mean return time to 0
for XH(·). For � < mπ , the integral part of the factor is obtained by employing
the comparison given directly before the statement of the proposition, comparing
Jk,h�

(s) with the probability of at least h arrivals over a service time of at least s,
and then by integrating against s; for � = mπ , one also employs (3.24) to provide
an upper bound on the expected occupation time Vk .

For � ≥ 2, the factor i∗�−1 is obtained by applying (3.25), with s = 0, which gives
an upper bound on the expected number of service intervals occurring over the
remainder of the cycle, after the service interval corresponding to the (�−1)st step
ends. For �∗

0, instead of the factor 3i0, one can employ m0, since this is the expected
number of service intervals over an entire cycle, and no conditioning is needed for
this first step. Since each of the remaining factors is at most 3k, the product of all
of the factors is at most m0(3k)mπ−1, and since Pk = (m0)

−1E[Vk], the m0 factors
cancel, and one obtains the (3k)mπ−1 factor in (5.17). [The improved bound just
obtained by removing a factor of 3k will only be needed when bounding the right-
hand side of (5.17) for the trivial partition, in Proposition 5.4.] �

In Propositions 5.4 and 5.5, we provide upper bounds for the summands on the
right-hand side of (5.17), which we denote by Qk(π). In Proposition 5.4, we do
this for the trivial partition consisting of a single set, for which we write π1. In
Proposition 5.5, we do this for each of the other partitions. The sum over 
−{π1}
of the bounds for Qk(π) that are obtained in Proposition 5.5 will be negligible
in comparison with the bound obtained for Qk(π1) in Proposition 5.4. This last
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bound will therefore dominate the upper bound for Pk that will be obtained by
inserting these bounds into (5.17) of the preceding proposition.

Both Propositions 5.4 and 5.5 employ the elementary upper bounds for Jk,h(s),

Jk,h(s) ≤ (
4(qks)

h/h!) ∧ 1 for s ≤ h/4qk,
(5.18)

≤ 1 for s > h/4qk,

which one obtains by dominating the series in (5.16) by the geometric series
((qks)

h/h!)∑∞
i=0(3/4)i , for s ≤ h/4qk .

PROPOSITION 5.4. Suppose that

Qk(π1) =
∫ ∞

0
(k + s)Jk,hT

(s)F (ds),(5.19)

where F(·) satisfies (5.4) and Jk,hT
(s) is chosen as above, with hT ≥ 6, and sup-

pose that k ≥ k0, with (5.14) and 5.15) both holding. Then,

Qk(π1) ≤ 55Dc2(qk/hT )1/(D−1).(5.20)

PROOF. Throughout the proof, we will abbreviate by setting hT = h. We begin
the argument by decomposing the integral into the three parts,

∫ k
0 ,

∫ h/27qk

k and∫ ∞
h/27qk

, which we analyze separately.
Since k + s ≤ 2k for s ∈ [0, k], it is easy to check that∫ k

0
(k + s)Jk,h(s)F (ds) ≤ 8kh+1qh

k /h!.(5.21)

One has k ≥ s0 for s0 in (5.4). Applying (5.4) and k + s ≤ 2s, and substituting
t = qks/h, one sees that the second integral is bounded above by

(
8D/(D − 1)

)
c2

∫ 1/27

0
q

1/(D−1)
k

(t2/3h)h

h! t (h/3−D/(D−1)) dt.(5.22)

Since h ≥ 6, one can check that (t2/3h)h/h! ≤ 3−h and t (h/3−D/(D−1)) ≤ 1 for
t ≤ 1/27. Therefore, (5.22) is bounded above by

(8/27)
(
D/(D − 1)

)
c23−hq

1/(D−1)
k ≤ c23−hq

1/(D−1)
k .(5.23)

Applying (5.4), the third integral is at most

2
(
D/(D − 1)

)
c2

∫ ∞
h/27qk

s−D/(D−1) ds ≤ 54Dc2(qk/h)1/(D−1).(5.24)

On account of (5.15) and qk ≤ c2, the bound for the third integral is clearly the
dominant term. Combining the bounds for the three integrals therefore implies that

Qk(π1) ≤ 55Dc2(qk/h)1/(D−1),

which is the bound in (5.20). �
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PROPOSITION 5.5. Suppose that

Qk(π) = (3k)mπ−1
mπ−1∏
�=1

(∫ ∞
0

Jk,h�
(s)F (ds)

)
(5.25)

×
∫ ∞

0
(k + s)Jk,hmπ

(s)F (ds),

where F(·) satisfies (5.4) and Jk,h�
(s) is chosen as above, with hT ≥ 5, and sup-

pose that k ≥ k0, with (5.14) and (5.15) both holding. Then,

Qk(π) ≤ 81D2(c2 + 1)2s
2hT

0 h
hT

T (3k)hT q
D/(D−1)
k(5.26)

for each π ∈ 
k − {π1}.
In order to demonstrate Proposition 5.5, we will categorize each partition in


k − {π1} as one of three types, based on the sizes and indices of its constituent
sets G�, � = 1, . . . ,mπ . We will say G� is large if h� ≥ 3 and small if h� ≤ 2;
we will also distinguish between sets G� with � < mπ and � = mπ . We will say
that a partition π is of type (I) if at least one of its sets G�, with � < mπ , is large;
that it is of type (II) if Gmπ is large, but all of the other sets are small; and that it
is of type (III) if none of its sets is large, but at least two sets G�1 and G�2 , with
�1 < �2 < mπ are small. It is easy to check that, for any hT ≥ 5, the three types of
sets partition 
k − {π1}.

PROOF OF PROPOSITION 5.5. We will show separately that (5.26) holds
when π is a member of any of the above three types of partitions. We will first
bound the above integrals for the large and small sets G�, for both � = mπ and
� < mπ , and will then apply these bounds to the three types of partitions. When
convenient, we abbreviate by setting h� = h.

Applying almost the same reasoning as in the proof of Proposition 5.4, one
obtains, for large Gmπ ,∫ ∞

0
(k + s)Jk,hmπ

(s)F (ds) ≤ 2Dc2h
hmπ
mπ q

1/(D−1)
k .(5.27)

One decomposes the integral into the parts
∫ k

0 ,
∫ h/qk

k and
∫ ∞
h/qk

. A bound for the
first integral is again given by the right-hand side of (5.21) and a bound for the
third integral is given by 2Dc2(qk/h)1/(D−1). For the second integral, one obtains
the bound c2h

hq
1/(D−1)
k , after substituting t = qks/h as before. Instead of (5.22),

one employs

8
(
D/(D − 1)

)
c2

∫ 1

0
q

1/(D−1)
k

hh

h! t
(h−D/(D−1)) dt(5.28)

as an intermediate bound for the second integral, to which one applies
t (h−D/(D−1)) ≤ 1; the acquired factor hh will not cause difficulties in the present
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context. For k ≥ k0, the bound in (5.27) follows from the bounds on the three
integrals, on account of (5.15) and qk ≤ c2.

Similar reasoning can be applied for large G�, with � < mπ , to obtain the upper
bound ∫ ∞

0
Jk,h�

(s)F (ds) ≤ 2c2h
h�

� q
D/(D−1)
k .(5.29)

One decomposes the integral into the parts
∫ s0

0 ,
∫ h/qk
s0

and
∫ ∞
h/qk

. The first integral

is at most sh
0 qh

k ≤ sh
0 q3

k and the third integral is at most c2q
D/(D−1)
k . For the second

integral, one obtains the upper bound c2h
hq

D/(D−1)
k , after substituting t = qks/h.

Instead of (5.22) or (5.28), one employs

4
(
D/(D − 1)

)
c2

∫ 1

0
q

D/(D−1)
k

hh−1

h! t (h−(D/(D−1))−1) dt(5.30)

as an intermediate bound for the second integral, to which one applies
t (h−(D/(D−1))−1) ≤ 1. Since 1/qk ≥ sh

0 , the bound in (5.27) follows from the
bounds on the three integrals.

For small G� with � < mπ , one obtains the upper bound∫ ∞
0

Jk,h�
(s)F (ds) ≤ 9D(c2 + 1)s

h�

0 qk.(5.31)

As in the previous case, one decomposes the integral into the parts
∫ s0

0 ,
∫ h/qk
s0

and∫ ∞
h/qk

. The same estimates show that the first integral is at most sh
0 qh

k ≤ sh
0 qk and

the third integral is at most c2q
D/(D−1)
k . For the second integral, one obtains the

upper bounds

4
(
D/(D − 1)

)
c2

∫ h/qk

s0

qk

hh−1

h! s−D/(D−1) ds ≤ 8Dc2s0qk,(5.32)

with the inequality using h ≤ 2. The bound in (5.31) follows from the bounds on
the three integrals.

For small Gmπ , the upper bound∫ ∞
0

(k + s)Jk,hmπ
(s)F (ds) ≤ k + 1 ≤ 2k(5.33)

follows from Jk,hmπ
(s) ≤ 1, since F(·) has mean 1.

We also note that, for G� with � < mπ ,∫ ∞
0

Jk,h�
(s)F (ds) ≤ 1(5.34)

trivially holds.
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We now combine the upper bounds in (5.27), (5.29), (5.31) (5.33) and (5.34)
to obtain upper bounds for the right-hand side of (5.25), for large k. When π is a
type (I) partition, it follows from (5.29), (5.33) and (5.34) that

Qk(π) ≤ 2c2h
hT

T (3k)mπ q
D/(D−1)
k ;(5.35)

when π is a type (II) partition, it follows from (5.27), (5.31) and (5.34) that

Qk(π) ≤ 18D2(c2 + 1)2s
hT

0 h
hT

T (3k)mπ−1q
D/(D−1)
k ;(5.36)

and when π is a type (III) partition, it follows from (5.31), (5.33) and (5.34) that

Qk(π) ≤ 81D2(c2 + 1)2s
2hT

0 (3k)mπ q2
k .(5.37)

The right-hand side of (5.26) is greater than each of the quantities in (5.35)–(5.37).
Consequently, (5.26) holds for all π ∈ 
k − {π1}, as desired. �

Employing Propositions 5.3, 5.4 and 5.5, and the induction hypothesis (5.11),
we now complete the proof of Proposition 5.2.

PROOF OF PROPOSITION 5.2. We will demonstrate that the inequality
in (5.11) holds for i = k, provided it holds for i = k0, . . . , k − 1, for hT and a2
satisfying (5.12) and (5.13), and for k0 satisfying the inequalities in (5.14) and on
each side. By induction, it will follow that

Pk ≤ C13e
−a2k for all k ≥ k0.(5.38)

By Proposition 5.3,

Pk ≤ 3
∑

π∈
k

Qk(π) ≤ 3Qk(π1) + 3 · 2hT max
π∈
k−{π1}

Qk(π).(5.39)

On account of (5.14) and (5.15), it follows from the bounds in (5.20) and (5.26),
for Qk(π1) and for Qk(π), π ∈ 
k − {π1}, that the first term on the right-hand
side of (5.39) dominates the second term, and therefore

Pk ≤ 220Dc2(qk/hT )1/(D−1).(5.40)

Substituting for qk and then for M , this is at most(
220D2c2h

−1/(D−1)
T ea2hT

)
C13e

−a2k.(5.41)

Upon substitution of the value for hT in (5.12) and a2 = 1/hT , the quantity in-
side the parentheses in (5.41) is less than 1. Also, by replacing the term h

−1/(D−1)
T

by 1, it is easy to see that the quantity inside the parentheses is again less than 1,
for a2 = 1

6 log((220D2c2)
−1). So, in either case, the inequality in (5.11) holds for

i = k. This implies (5.38).
With a large enough choice of C13, (5.38) extends to all k ≥ 0. This implies (5.5)

of Proposition 5.2 with rD(c2) = a2, for this choice of C13. Moreover, as c2 ↘ 0,
one has a2 ↗ ∞, and so (5.6) also holds. This completes the proof of Proposi-
tion 5.2. �
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