
AF-QCN: Approximate Fairness with Quantized Congestion Notification
for Multi-tenanted Data Centers

Abdul Kabbani∗, Mohammad Alizadeh∗, Masato Yasuda †, Rong Pan‡, and Balaji Prabhakar∗
∗Department of Electrical Engineering, Stanford University

†System IP Core Research Laboratories, NEC Coporation, Japan
‡Cisco Systems, San Jose, California

{akabbani, alizade, balaji}@stanford.edu, m-yasuda@ct.jp.nec.com, ropan@cisco.com

Abstract—Data Center Networks represent the convergence of

computing and networking, of data and storage networks, and

of packet transport mechanisms in Layers 2 and 3. Congestion

control algorithms are a key component of data transport in this

type of network. Recently, a Layer 2 congestion management

algorithm, called QCN (Quantized Congestion Notification), has

been adopted for the IEEE 802.1 Data Center Bridging standard:

IEEE 802.1Qau. The QCN algorithm has been designed to be

stable, responsive, and simple to implement. However, it does not

provide weighted fairness, where the weights can be set by the

operator on a per-flow or per-class basis. Such a feature can be

very useful in multi-tenanted Cloud Computing and Data Center

environments.

This paper addresses this issue. Specifically, we develop an

algorithm, called AF-QCN (for Approximately Fair QCN), which

ensures a faster convergence to fairness than QCN, maintains this

fairness at fine-grained time scales, and provides programmable

weighted fair bandwidth shares to flows/flow-classes. It combines

the QCN algorithm developed by some of the authors of this

paper, and the AFD algorithm previously developed by Pan et. al.

AF-QCN requires no modifications to a QCN source (Reaction

Point) and introduces a very light-weight addition to a QCN-

capable switch (Congestion Point). The results obtained through

simulations and an FPGA implementation on a 1Gbps platform

show that AF-QCN retains the good congestion management

performance of QCN while achieving rapid and programmable

(approximate) weighted fairness.

I. INTRODUCTION

Multi-tenanted data centers host a large number of distinct
tenants on a shared infrastructure. These data centers need to
share computing, storage, and networking resources among
the tenants in a fair and programmable manner. In recent
years, advances in virtualization technologies have made great
strides towards solving the problems of sharing computing and
storage resources [8], [9]. However, progress in virtualizing the
network has been limited.

Network virtualization entails providing programmable
bandwidth guaranties to the different tenants, and ensuring
performance isolation among the tenants. The performance
of one tenant’s traffic must not suffer due to the traffic of
another; specifically, an aggressive, perhaps malicious, tenant
must not be allowed to deny other tenants their fair share
of the bandwidth resources. Also, ideally, isolation should
not be achieved at the cost of poor network utilization, as
can occur with static bandwidth reservations. It is, therefore,
desirable to perform bandwidth allocation only at the onset of
congestion when utilization is high. The notion of weighted

max-min fairness satisfies all these requirements: different
tenants are assigned weights or priorities, and each tenant’s
share of the network bandwidth is determined by it’s weight or
priority. Any unused bandwidth is recursively divided among
the remaining tenants (again in weighted max-min fashion).

In this paper, we design and evaluate Approximately Fair
QCN (AF-QCN). AF-QCN is a simple lightweight enhance-
ment to the Layer 2 end-to-end congestion management algo-
rithm, QCN, recently adopted for the IEEE 802.1 Data Center
Bridging standard [12]. AF-QCN borrows ideas from the
Approximate Fair Dropping algorithm of Pan et. al. [1], and
extends the functionality of QCN, by adding an Approximate
Fairness (AF) controller to the QCN switch.1 As will be
demonstrated via simulations (Section IV-B), and a hardware
implementation (Section IV-C), this merger retains all the good
properties of QCN, while enabling (approximate) weighted
max-min fairness at the level of a few milliseconds (see
below).

It is worth mentioning an interesting scheme, called E2CM
[15], which was proposed at the IEEE 802.1Qau standards
discussion. E2CM achieves fair bandwidth partitioning simul-
taneously with congestion management via path probing and
destination-based per-flow fair share rate calculation. Because
it combines fairness and congestion management, E2CM must
be applied to all flows, regardless of whether they are large
enough to cause congestion. Moreover, weighted bandwidth
partitioning, if possible, seems difficult to achieve. By contrast,
AF-QCN is a switch-side function that runs on top of QCN to
provide weighted fairness to subset of flows or classes. Further,
the flows that are monitored for providing bandwidth slices can
be the few long-lived, elephant flows.
Congestion Management in Ethernet. The QCN (Quantized
Congestion Notification) algorithm [13], [16], has been devel-
oped for the IEEE 802.1Qau standard [12], to provide end-
to-end congestion management in switched Ethernet. In brief,
QCN enables a switch to control the packet sending rate of
an Ethernet source whose packets are traversing the switch.

In designing QCN, the major goals were:
(i) Stability: Queue occupancies should not oscillate widely, to
avoid underflows causing link underutilization, and overflows

1This is similar to the XCP protocol, which decouples efficiency control

(control of utilization or congestion) from fairness control [3]. In our case,
efficiency control is achieved by the QCN control loop, and fairness control
is provided by the AF algorithm (see Section III).

!"#"$#%&'$()))$*+,-./01,$.2$304'$5678.7,92:6$(2&67:.226:&/

!"#$%$"&!'$()%#$!*+%,-)&.%%,/,)%+%,0111
230,+%.++%!*4350.)%+%.)&

'#

leading to packet drops.
(ii) Responsiveness: QCN should rapidly adapt source rates to
extreme link bandwidth variations.
(iii) Simplicity: The algorithm should be very simple, as it is
typically implemented in hardware.

Besides these primary goals, inter-flow fairness was also
considered. Specifically, QCN flows must not suffer from
systematic unfairness, which means that two flows starting
with different sending rates, should have the same average
rate2. However, the fairness of QCN is on a coarse time-scale
(see Section IV-B and [17]), and, by design, it cannot provide
programmable weighted fairness.
Approximate Fairness. One canonical method for providing
fairness in a network has been to deploy schemes like Deficit
Round Robin (DRR) or Weighted Fair Queueing to obtain
packet-level fairness [4], [5]. However, such schemes require
intricate packet scheduling algorithms, per-flow queues, and
come at a high hardware implementation cost. In particular,
requiring separate queues imposes hard limits on how many
different classes can be supported, and is a major drawback of
these approaches in multi-tenanted data centers. For example,
major cloud providers today host tens of thousands of tenants
[6], [7], while most switches only support 8 or 16 class of
service queues.

In [1], Pan et. al. showed that by relaxing the packet-
by-packet fairness requirement, and aiming for approximate
fairness on longer time scales (on the order of several round-
trip times), a much simpler algorithm called Approximate Fair
Dropping (AFD) can be used. AFD is an active queue man-
agement scheme, which probabilistically drops packets based
on queue size measurements (congestion information) and the
estimated rate of individual flows (fairness information). The
packet drops are used by responsive flow sources, such as
TCP senders, as a congestion indication, prompting them to
adjust their rates accordingly. The simplicity of AFD, and it’s
“soft per-flow state” requirement (only the rates of the flows
needs to be monitored, as opposed to needing separate queues),
allow it to be much more flexible than fine-grained packet
scheduling algorithms, such as DRR. In fact, AFD can overlay
on top of DRR to provide a behavior consistent with a DRR
system that has a larger number of queues. The effectiveness of
AFD in providing approximate fairness, and its low complexity
design, make it amenable to high speed implementations, and
have spurred its wide deployment in several switch and router
platforms in industry [2].
Preliminary Description of AF-QCN. AF-QCN inherits sev-
eral features from the AFD design with two major differences:
(i) In AF-QCN, congestion management is already well-
handled by QCN, so the AF component is designed only to
enforce fairness, leaving attaining stability to QCN.
(ii) The rate control provided by QCN is based on switch-
to-source Congestion Notification Messages; switches send

2QCN has this property because the sampling of packets at a QCN switch
(for congestion notification) is naturally biased to sampling high rate flows,
and reducing their rates more frequently (see Section II-A).

Fig. 1. QCN (above) vs AF-QCN (below) – Basic example: Unlike QCN,
AF-QCN distinguishes between the 1Gbps and 9Gbps flows, and sends them
different values in the Congestion Notification Messages.

explicit messages to sources, asking them to cut their rates by
a factor proportional to the value (denoted Fb) in the feedback
message. In AF-QCN, we take advantage of this explicit
feedback facility; rather than differentially dropping packets to
obtain fairness as in AFD, AF-QCN adjusts the value of the
feedback messages based on the fairness information provided
by the AF component (see below and Fig. 1 for an example).
Hence, on the one hand, the source rates are rapidly controlled
by explicit feedback, and, on the other hand, intentional and
undesirable packet drops at the switch are avoided.

Fig. 1 illustrates a basic example showing how AF-QCN
differs from QCN. Two flows with different starting rates
(1Gbps and 9Gbps) share the same bottleneck. Because QCN
only takes the present and past queue size samples into con-
sideration, it sends the same feedback value to the two flows.
AF-QCN, however, distinguishes between the two flows based
on their (estimated) sending rates, and adjusts the feedback to
each flow accordingly. In this example, the amount of data that
the switch receives (within a sampling interval) from flow 2,
is 9 times that of flow 1. Therefore, AF-QCN sends a larger
feedback value to flow 2 (who is exceeding its 50% fair share),
and a smaller feedback value to flow 1 (who is below its fair
share). Of course, the same mechanism can be used to provide
programmable bandwidth allocation, as will be described in
detail in Section III.
Rest of the paper. The paper is structured as follows: in
Section II, we briefly review the QCN and AFD algorithms;
in Section III, we describe the AF-QCN algorithm in detail;
the simulation and hardware results are provided in Section
IV; and we conclude in Section V.

II. BACKGROUND

A. The QCN Algorithm

We now briefly describe the QCN algorithm, focusing on
those aspects which are relevant to this paper (see [13] and
[12] for more details). The algorithm is composed of two parts:
(i) Switch or Congestion Point (CP) dynamics: the mechanism
by which a switch buffer attached to an oversubscribed link

'!

Fig. 2. Congestion detection in QCN CP buffer

samples incoming packets and generates a feedback message
addressed to the source of the sampled packet. The feedback
message contains information about the extent of congestion
at the CP.
(ii) Rate limiter or Reaction Point (RP) dynamics: the mech-
anism by which a rate limiter (RL) associated with a source
decreases its sending rate based on feedback received from the
CP, and increases its rate voluntarily to recover lost bandwidth
and probe for extra available bandwidth.

Congestion Point

The CP buffer is shown in Fig. 2. The goal of the CP is
to maintain the buffer occupancy at a desired operating point,
Qeq . The CP samples incoming packets with an inter-sampling
period depending on the severity of congestion3. With each
sample, a congestion measure Fb is computed as follows: Let
Q denote the instantaneous queue-size and Qold denote the
queue-size when the last packet was sampled. Let Qoff =
Q−Qeq and Qδ = Q−Qold. Then Fb is given by the formula:

Fb = Qoff + wQδ, (1)

where w is a positive constant (set to 2 by default).
The interpretation is that Fb captures a combination of

queue-size excess (Qoff) and rate excess (Qδ). Thus, when
Fb > 0, either the buffer or the link or both are oversubscribed.
A feedback message containing Fb, quantized to 6 bits, is sent
to the source of the sampled packet only when Fb > 0; nothing
is signaled when Fb ≤ 0.

Reaction Point

The basic RP behavior is shown in Fig. 3. The RP algorithm
has the following phases:
(i) Rate decrease: This occurs only when a feedback message
is received. The RP decreases its sending rate (denoted CR
for Current Rate) multiplicatively in proportion to the value
of Fb received; the larger the Fb, the more CR is decreased.
(ii) Fast Recovery (FR): Immediately following a rate decrease
episode, the RP enters the FR phase. In FR, the RP tries to
reclaim the bandwidth lost in the decrease episode. It does this
by successively increasing the Current Rate toward the Target

Rate (TR)—the rate just before the decrease episode.
(iii) Active Increase (AI): After 5 increase cycles in FR have
completed, the RP enters the AI phase where it probes for
extra bandwidth on the path. In this phase, the RP increases
its sending rate by adding a constant RAI (5Mbps by default)
to CR in each cycle.

3For example, the inter-sampling period is 150KB at low congestion, and
can be as small as 18.5KB at high congestion.

Fig. 3. QCN RP operation

As is evident in the above description, the RP performs rate
increases in cycles. The durations of the cycles are determined
based on the combination of a Byte Counter, which counts
cycles in terms of the number of bytes transmitted by the RP,
and a Timer, which counts cycles in terms of the amount of
time elapsed.4 The details of how the Byte Counter and Timer
cycles determine the RP rate increase cycles can be found in
[13].
Remark 1. QCN also has a Hyper-Active Increase phase to
quickly seize unused bandwidth, when it suddenly becomes
available [13].

B. The AFD Algorithm

AFD is an active queue management scheme that aims to
control bandwidth allocation among flows/classes5 that share
a common queuing system. Controlled bandwidth allocation is
achieved by probabilistically dropping the packets of classes
for which the sending rate ri is more than the fair share
rfair.6 As such, a key aspect of AFD is that unlike other
active queue management systems (e.g. RED) where the
decision to drop a packet is based solely on the queue depth,
in AFD, it also depends on the sending rate of the packet’s
class.

Let Di = (1 − rfair/ri)+ denote the probability with
which a packet from class i should be dropped. Thus, if
ri < rfair no drop will occur. If ri > rfair, the drop
probability increases as ri gets further away from rfair. As
a result, the throughput of each flow, ri(1−Di), is bounded
by its fair share: ri(1−Di) = min(ri, rfair). Hence, drops
do not occur evenly across flows but are applied differentially
to flows with different rates.

Two key algorithmic aspects of AFD lie in the manner in
which ri and rfair are estimated via measurements. There
are three elements in this procedure, as shown in Fig. 4.

Arrival Rate Estimation. Let Mi be the amount (measured
in bytes, packets, etc) of traffic from flow i during the interval
Ts.

4In the baseline implementation, each Byte Counter cycle is 150KBytes,
and each Timer cycle is 15msec.

5In the rest of the paper, the terminology of flow and class will be used
interchangeably; AFD (and AF-QCN) can be thought to provide fairness
between flows or classes depending on the setting.

6For simplicity, in this section, we only consider the most basic version
were all classes have an equal fair share. We will consider the more general
case in the discussion of the AF-QCN scheme.

&%

Fig. 4. Basic AFD Algorithm

Fair Share Calculation. Similarly, let Mfair be the fair share
amount of the traffic that the queue would have received from
each flow, if the sources sent at their fair share rate. This
is estimated dynamically, at the end of each measurement
interval, as follows:

Mfair ← Mfair − a1(Q−Qref) + a2(Qold −Qref), (2)

where Q is the instantaneous queue length measured at the
end of the current measurement interval; Qold is the queue
length measured at the end of the previous interval; Qref is
the reference queue length (set by the operator); a1 and a2 are
the averaging parameters (chosen as part of the design).

The main idea behind (2) is to try to dynamically find a
value for Mfair which along with the probabilistic dropping
of packets by AFD, leads to the queue stabilizing around Qref .
This allows AFD to perform bandwidth allocation and queue
management simultaneously. For more details, see [1].

Drop Probability Calculation. The drop probability Di for
packets of flow i is chosen as:

Di = (1−Mfairi/Mi)+ (3)

III. APPROXIMATE FAIR QCN (AF-QCN)
A. Algorithm Description

The main goal of the AF-QCN algorithm is to enable an
approximate bandwidth allocation on top of QCN. To this end,
AF-QCN adds to the basic QCN Congestion Point, a fairness
controller (henceforth called the AF controller), which is based
on AFD. Recall that the basic QCN CP ensures that the link
is well-utilized and the queue is stable around Qeq . The AF
controller ensures a weighted fairness among flows or flow
classes without affecting the system stability.

More specifically, AF-QCN computes the feedback message
value Fb as the weighted sum:

Fb = (1− α)Fb−QCN + αFb−AF , (4)

where Fb−QCN is the original QCN congestion measure given
by (1), and Fb−AF is a weighted fairness measure computed

by the AF controller. As is the case with QCN, Fb is computed
each time a packet is sampled, and is only sent if positive.
Remark 2. It is crucial to note that Fb−QCN is not a function
of the flow: it only depends on congestion. However, Fb−AF

does depend on the flow and is different for different flows.
Calculating Fb−AF involves the same three elements which

exist in AFD and which we now detail.

Arrival Rate Estimation. This is nearly identical to AFD. We
estimate the amount of traffic received during a time interval
of Ts from each flow or flow class. The estimate for class i is
denoted by Mi, and is updated every Ts seconds as follows:

Mi ← (1− β)Mi + βMi−new, (5)

where β ∈ (0, 1), and Mi−new is the actual amount of traffic
from class i during the last Ts interval.

Fair Share Calculation. In AFD, Mfair was dynamically
estimated using (2). As mentioned in Section II-B, this was
appropriate because as an active queue management scheme,
AFD attempts to control the queue size around Qref , as well
as perform bandwidth allocation. But AF-QCN is built on top
of QCN, which already takes care of queue size management.
Therefore, AF-QCN takes a more direct approach.

For each class i, let Wi denote its associated weight for
bandwidth allocation. Then the fair share of class i is estimated
as:

Mfairi =
Wi�
j Wj

�

j

Mj . (6)

Fb−AF Calculation. Given Mi and Mfairi, the AFD drop
probability would have been Di = (1 − Mfairi/Mi)+.
However, rather than dropping the packets of source i with
probability Di, AF-QCN incorporates Di into the feedback
message which will explicitly adjust the rate of source i.
Fb−AF is computed by simply encoding the same Di value
as a 6 bit number:

Fb−AF = �64Di� (7)

Since Di ∈ [0, 1), note that Fb−AF ∈ {0, 1, . . . , 63}.
Fb−QCN is also a 6 bit number, and so Fb computed by (4)
is a 6 bit number which will be fed back if positive.

Remark 3. A more robust estimation of the fair share can be
obtained by only considering those flows/classes whose traffic
exceeds a certain threshold. This ensures that short, transient
flows do not skew the fair share for long flows. Specifically,
(6) is replaced by:

Mfairi =
Wi�

j∈A

Wj

�

j∈A

Mj , (8)

where A = {j : Mj > active thresh} is the set of active
flows. Of course, (8) is only used for flows i ∈ A. If a packet
is sampled from a flow which is not active, Fb−AF is set to
zero.

&+

Remark 4. The situation is slightly more complicated when
a maximum allowed rate, Maxi, can be prescribed for each
class. In this case, the fair share values are set according to the
max-min allocation, given the Wi’s and Maxi’s of the active
flows.

B. Setting the Parameters

We now describe how the parameters α, Ts, β, and
active thresh are chosen.

The weight α ∈ (0, 1) trades off stability for weighted
fairness. Since stability is paramount, a small value of α en-
sures good stability by weighting Fb−QCN more than Fb−AF .
An exact characterization of this trade off requires a control-
theoretic study, which is left for future work. For now, based
on extensive simulations, we choose α ≤ 0.25 for good
stability.

The interval over which rates are estimated, Ts, must
be large enough to allow robust rate estimates not affected
by burstiness in packet arrivals (typically several round-trip
times). However, it shouldn’t be so large that convergence
to fairness is overly delayed. Based on these considerations,
assuming data center round-trip times are less than 500µsec,
a Ts of 1 to a few milliseconds is recommended.

Finally, the parameters β and active thresh should be
chosen so as to allow small transient (mice) flows to pass
without affecting the estimation of arrival rates and fair share
values for long (elephant) flows. Therefore, they should be
chosen with regard to the sizes we expect for the mice.

Following these considerations, the AF-QCN parameters
α = 0.125, Ts = 1msec, β = 0.125, and active thresh =
20KB are chosen for all experiments in this paper.

C. Complexity

We discuss the “unoptimized complexity”7 of the main
operations that AF-QCN needs in addition to those of QCN.
The operations are: (i) incrementing one Mi−new counter per
arrival, (ii) updating the Mi value for all flows, and (iii)
computing the Mfairi value per sampling interval, every Ts

seconds. Hence, two registers are required per flow where
the counter in (i) is accessed online via a hash table or a
similar data structure. Because the computations at steps (ii)
and (iii) need to be done once every Ts seconds, these can be
done periodically and offline. Note that AF-QCN is meant to
operate at the level of priority classes or long-lived/elephant
connections. This essentially means that the state information
required to be stored is small and the hardware complexity
required to update the counters is fairly low.

IV. EVALUATION

A. Preliminaries

We envision AF-QCN operating with QCN-compliant NICs.
Each NIC potentially has a set of connections which can

7There are several obvious optimizations which can be performed to
significantly reduce the complexity of these operations. Indeed, some of these
have been performed in AFD and implemented on hardware platforms. Due
to a lack of space, and the obvious nature of the optimizations, we do not
describe them here.

Fig. 5. Dumbbell (top) and parking lot (bottom) topologies

transmit at the full line rate, and a set of connections which
are rate-limited and send through a QCN Reaction Point. A
new connection begins at line rate, and is associated with
a Reaction Point once it receives a Congestion Notification
Message. It is de-associated once the rate of the Reaction Point
reaches its maximum.

We simulate the AF-QCN design in various settings and
under different network dynamics using ns2 [19]. We are
interested in examining the performance of AF-QCN in the
case where all the connections are backlogged (static flows), as
well as in the case where we have a mix of static and dynamic
flows. We compare the performance of AF-QCN with that of
QCN using the two topologies in Fig. 5. All the links between
the sources, sinks and switches are 10Gbps, and each switch
hop involves a 50usec round-trip time delay (RTT), unless
otherwise stated. The default QCN configuration [12] is used
with 150KB switch buffers. Data packets are 1KB, and Wi

and Maxi are set to 1 and 10Gbps respectively for all flows,
except when indicated otherwise.

While our main interest is to study the bandwidth partition-
ing capabilities of AF-QCN, we also consider other important
performance metrics such as queue size fluctuations and flow
completion times.

B. Simulation Results

1) Static Flows:

Baseline experiment

We initiate 4 static flows traversing the single bottleneck in
the dumbbell topology. The switch service rate is cut down
from 10Gbps to 1Gbps at 2secs of simulation time and is
increased to 10Gbps at 4secs. Fig. 6 shows the rates of the
individual flows and the switch queue size plots (sampled
every 10msecs) for QCN and AF-QCN. Notice how AF-QCN
is successfully ensuring that all the flows are allocated their
equal fair share rates at 10Gbps and 1Gbps, while maintaining
the original queue size stability of QCN.

Long RTT

To ensure that stability and fairness are maintained as lags
increase, we repeat the previous experiment with a 400usec
RTT instead, which is considered to be very long for data
center networks. The rates of the individual flows and the
switch queue sizes plots are shown in Fig. 7 for QCN and
AF-QCN.

&)

Fig. 6. Rates of the individual flows (left) and switch queue size (right) with
QCN (top) and AF-QCN (bottom) at 50usec RTT

Fig. 7. Rates of the individual flows (left) and switch queue size (right) with
QCN (top) and AF-QCN (bottom) at 400usec RTT

Increased multiplexing

To see the effect of increased multiplexing, we initiate
40 static flows simultaneously and keep them running for 6
seconds. The CDF of the individual flow rates normalized by
250Mbps (the fair share) is plotted in Fig. 8 for QCN and
AF-QCN. The rates are measured every 10msec. Notice that
with AF-QCN almost 99% of the flows fall within 25% of the
fair share. With QCN, however, more than 45% of the flows
are off by more than 25% of the fair share and around 10%
are off by more than 50%.

Different weights and rate cap

We initiate 4 static flows as in the baseline experiment.
However, this time the flows are given different weights:
W1 = 4 , W2 = 3 , W3 = 2 , and W4 = 1. We also set Max1

to 1Gbps at 2sec to verify that AF-QCN can still maintain
fairness among the three other flows at the ratio 3:2:1. Fig. 9
shows that the ratios of the rates of the individual flows are
in accordance with the ratios of their weights before and after
setting the 1Gbps cap on Flow 1.

Parking lot

Using the parking lot topology in Fig. 5, we incrementally

Fig. 8. CDF of flow rates with QCN and AF-QCN

Fig. 9. Individual rates of 4 static flows with different weights

initiate each of the 6 static flows, one flow every second. Also,
at 7sec, we set Max1 to 1Gbps to cap the rate of Flow 1.
Fig.10 shows the rates of the individual flows with QCN and
AF-QCN.

Like TCP, QCN has a tendency to penalize multi-hop flows
which have more congested links on their path. This is due
to the relatively high frequency of Congestion Notification
Messages such flows receive from multiple Congestion Points
compared to those flows which pass fewer Congestion Points.
In this topology, when the queues stabilize, most of congestion
messages have small Fb values.8 However, the cumulative
effect of these messages adversely affect multi-hop flows and
force their rates to be below their fair share.

AF-QCN ensures that this phenomenon does not occur. It
compensates for the disparity in the frequency of Congestion
Notification Messages for the many-hop and few-hop flows,
by sending the few-hop flows larger Fb values when they
exceed their fair share. Thus, AF-QCN guarantees the flows
with fewer hops don’t exceed their fair share.

In fact, not only does AF-QCN solve the unfairness caused
to multi-hop flows, but the rate allocation it provides is the
max-min fair allocation at each stage of the experiment. We
have observed the same behavior in many other experiments
not shown in this paper. An analysis of the nature of bandwidth

8In fact, most of the Fb values during this experiment where equal to 1.

&6

Fig. 10. Flows rates in the parking lot topology with QCN (top) and AF-
QCN(bottom)

sharing achieved by AF-QCN in a general network topology
is left for future work.

2) Mix of Static and Dynamic Flows:

Bursty connection

We initiate 3 static flows at time 0 and an on-off source
(Bursty Flow) at time 0.5sec. The Bursty Flow is on for
10KB bursts, and its off duration is chosen so that its average
offered load is 1Gbps in one experiment and 6Gbps in another
experiment. We plot the rates of the individual flows in Fig.
11 for QCN and AF-QCN.

The bursty nature of the on-off source does not adversely
affect the fairness among the 3 static flows. In the case where
the Bursty Flow’s offered load is 1Gbps, the other static flows
are successfully able to utilize the remaining bandwidth. In the
other case, where the Bursty Flow’s offered load of 6Gbps is
more than its fair share of 2.5Gbps, its throughput is limited
to the 2.5Gbps fair share.

Flow completion time In this experiment, there are 8 QCN
Reaction Points in total that share the single bottleneck in the
dumbbell topology. The first 4 RPs each serve an infinitely
back-logged static flow. The second set of 4 RPs each serve
4 permanent connections9 (16 connections in total), over
which (short) dynamic flows with Poisson arrival processes are
initiated. The size of the dynamic flows is Pareto distributed
with a mean of 10KB and a shape parameter of 1.1. The flow
arrival rate is such that the total offered load from the dynamic

9These represent the permanent TCP connections common in data centers.

Fig. 11. Static and bursty flows throughput with QCN (top) and AF-QCN
(bottom) at 1Gbps (left) and 6Gbps (right) offered load

Fig. 12. Sending rates for long-lived flows in the presence of dynamic flow
arrivals with QCN (left) and AF-QCN (right).

flows is 1Gbps. We run the experiment until 100K flows are
generated, and we investigate the effect of AF-QCN on the
flow completion time of the dynamic flows.

As shown in Table I, the average FCTs for dynamic flows
of different sizes is 30–50% smaller with AF-QCN when
compared to QCN. This is because most of these flows are
small, and are therefore not penalized by the AF controller.
Hence, when they are sampled, the AF controller sends small
Fb values, enabling them to finish faster. Note that this is
correct behavior from the congestion point of view as well:
small flows contribute very little to congestion. Furthermore,
as Fig. 12 demonstrates even in the presence of dynamic flows,
AF-QCN is able to maintain fairness between the long-lived
flows.

TABLE I
FLOW COMPLETION TIME (FCT) WITH QCN AND AF-QCN

Flow Size FCT with QCN FCT with AF-QCN

Bin (KB) (µs) (µs)

[1,10[2.346 1.586
[10,100[2.610 1.732

[100,1000[5.037 2.932
[1000, ∞[33.14 17.14

&(

Fig. 13. AF hardware implementation - flow rates with equal weights (top)
and different weights (bottom).

C. Hardware Implementation

We implement the AF design on top of our existing 1Gbps
NetFPGA QCN switch [18] using the same AF-QCN parame-
ters as mentioned previously and used in the simulations. The
implementation is straightforward given the simplicity of the
design. The correctness of this implementation is verified over
the 50usec RTT dumb-bell topology in Fig. 5.

We run two experiments with 4 static flows sharing a QCN
switch at a 950Mbps service rate. All the flows have the same
weights in one experiment and weights in the ratio 1:2:3:4 in
another experiment. The results are plotted in Fig. 13.

V. CONCLUSION

In this paper, we proposed and evaluated AF-QCN, an
algorithm that adds a programmable bandwidth partitioning
component based on AFD to the QCN Congestion Point
mechanism. No changes are needed at a QCN Reaction Point.
AF-QCN achieves weighted fairness at the granularity of
a few milliseconds. This enables Data Center operators to
provide programmable differential bandwidth allocation for
flows or flow classes, a feature very useful in multi-tenanted
Cloud Computing and Data Center environments. The results
obtained via simulations and a hardware implementation show
that AF-QCN retains the good properties of QCN (stability,
responsiveness, and simplicity), while achieving rapid and
programmable bandwidth partitioning.

One area for further work is a control theoretic study of
AF-QCN for precisely characterizing the manner in which the

AF component interacts with the QCN control loop, and the
tradeoffs in setting the different parameters. Understanding
the equilibrium fairness properties of AF-QCN in arbitrary
networks also warrants further investigation.

ACKNOWLEDGMENT

Mohammad Alizadeh is supported by a Caroline and Fabian
Pease Stanford Graduate Fellowship. The authors would like
to thank the anonymous reviewers, whose comments helped
improve the paper.

REFERENCES

[1] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker, “Approximate Fairness
Through Differential Dropping”, Computer Communication Review,
January 2003.

[2] R. Pan, B. Prabhakar, F. Bonomi, and B. Olsen, “Approximate fair band-
width allocation: A method for simple and flexible traffic management,”
Allerton, September 2008.

[3] Dina Katabi, “Decoupling Congestion Control and Bandwidth Al-
location Policy With Application to High Bandwidth-Delay Product
Networks,” Ph.D. Dissertation, Massechussetts Institute of Technology,
March 2003.

[4] Shreedhar, M., and Varghese, G., “Efficient Fair Queueing using Deficit
Round Robin”, ACM Computer Communication Review, vol. 25, no. 4,
pp. 231242, October, 1995.

[5] Bennett, J. and Zhang, H., “Hierarchical Packet Fair Queueing Algo-
rithms”, SIGCOMM Symposium on Communications Architectures and
Protocols, pp. 143-156, August, 1996.

[6] http://aws.amazon.com/ec2/
[7] http://www.microsoft.com/azure/default.mspx
[8] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G.

Lee, D. Patterson, A. Rabkin, I. Stoica, and Others. “Above the clouds:
A Berkeley view of cloud computing.” Technical Report UCB/EECS-
2009-28, Berkeley, 2009.

[9] R. Buyya, C. S. Yeo, and S. Venugopal. “Market-oriented cloud com-
puting: Vision, hype, and reality for delivering IT services as computing
utilities.” In Proceedings of the 10th IEEE International Conference on
High Performance Computing and Communications, 2008.

[10] http://www.t11.org/ftp/t11/pub/fc/bb-5/09-056v5.pdf
[11] http://www.ieee802.org/1/pages/dcbridges.html
[12] http://www.ieee802.org/1/pages/802.1au.html
[13] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha, R. Pan, B.

Prabhakar, and M. Seaman, “Data center transport mechanisms: Con-
gestion control theory and IEEE standardization,” Allerton, September
2008.

[14] http://www.ieee802.org/1/files/public/docs2008/au-prabhakar-qcn-los-
gatos-0108.pdf

[15] http://www.ieee802.org/1/files/public/docs2007/au-sim-IBM-ZRL-
E2CM-proposal-r1.09b.ppt

[16] http://www.ieee802.org/1/files/public/docs2008/au-rong-qcn-serial-hai-
pseudo-code%20rev2.0.pdf

[17] http://www.ieee802.org/1/files/public/docs2008/au-pan-qcn-benchmark-
sims-0108.pdf

[18] http://www.ieee802.org/1/files/public/docs2009/au-kabbani-yasuda-
0509-HW implementation evaluation.pdf

[19] Network Simulator. ns2. http://www.isi.edu/nsnam/ns.

&'

