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Abstract

This paper describes the design of ElephantTrap, a de-
vice which aims to cache the largest flows (the “elephants”)
on a network link. ElephantTrap differs from previous work
on identifying large flows in one crucial sense: it does not
attempt to accurately estimate the size of the flows it is trap-
ping. This leads to an extremely lightweight design and a
surprisingly good performance. ElephantTrap can be em-
ployed in the line cards of switches and routers and be used
for diagnostics, anomaly detection and traffic engineering.

1 Introduction

A key function of network performance monitoring is
determining how bandwidth is used by flows; in particular,
determining which flows use the most bandwidth. Network
monitoring devices, such as Cisco Systems’ NetFlow [8],
provide information to operators regarding the “top talk-
ers” in the network, where top talkers are loosely defined
(see [9]) as “the flows that are generating the heaviest sys-
tem traffic.” From this loose definition, one can define two
problems: (i) Identify the largest flows without getting an
accurate estimate of their rates, and (ii) identify the largest
flows and state an accurate estimate of their rates. While
almost all research, including products like NetFlow, ad-
dresses problem (ii), our work focuses on problem (i). By
attempting to solve the lesser problem we obtain a device,
called ElephantTrap, that is much easier to implement. Ele-
phantTrap can be used to perform a variety of different func-
tions such as traffic engineering, load balancing, network
forensics (e.g. after a denial-of-service attack or a network
outage) and anomaly detection. It can also be adapted to
identify bursts on a wide range of time scales; i.e., the so-
called “microbursts.”

Before proceeding to describe our objectives and give a
high-level description of ElephantTrap, it is helpful to sur-

vey some related literature. Initial attempts [7, 6] to exactly
measure all flows proved unscalable: the cost and speed
of the required memory proved prohibitive. This led to re-
search that used some form of flow or packet sampling to
reduce the complexity of measurement and monitoring de-
vices [3, 2]. The paper by Estan and Varghese advocated
a shift away from per-flow monitoring and towards moni-
toring only those flows that consume a significant amount
of bandwidth; i.e., the so-called elephants. The short flows,
the mice, are ignored. Due to the heavy-tailed nature of net-
work traffic [1], there are few elephants compared to mice
and the scalability problem is vastly reduced. They identify
elephants using a pre-filter based on multiple hashing on an
array of counters. Once an elephant is identified, all further
packets from it are counted, a technique they called “sam-
ple and hold.” While this approach is certainly simpler, it
is not simple enough to be readily implemented. It requires
an array of counters for the pre-filter, and per-flow counters
for tracking sampled flows, which include the elephants and
therefore can be more than 15-20% of all flows.

Our goal is to be even simpler to implement. In order
to achieve this we start with a lesser aim: merely identify
the largest flows; there is no need for an accurate count of
the amount of data they send. This allows us to work with
ElephantTrap caches of a small size, say 32 or 64 entries,
and yet be able to trap the dominant flows.

It is useful to distinguish flows according to both size and
rate. Thus, a large flow (one which sends many bytes) may
have a small rate, and vice versa.1 By an “elephant flow”
in this paper we mean a flow which is both large and sends
data at a high rate. We are now ready to give the following
informal description of ElephantTrap, deferring a precise
description and pseudocode to Section 2. ElephantTrap is
a cache which stores flow IDs and has a counter for each
flow. Arriving packets are sampled and the flow ID corre-
sponding to a sampled packet is inserted into the cache. If

1It is perhaps better to classify flows according to size as “elephants and
mice,” and according to rate as “cheetahs and turtles.” Since this would
introduce unfamiliar terminology, we avoid it in this paper.
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the flow is already present in the cache, its count is incre-
mented. Eviction occurs when a new flow is sampled and
the cache is full. In this case an existing flow with a small
count value is evicted.

The design philosophy of ElephantTrap is: Sample for
size and hold for rate. It is very easy to sample large-
size flows by sampling packets. Indeed, by sampling each
packet with a probability of say p, flows with at least 1/p
packets have a very good chance of being sampled. On the
other hand, it is harder to sample according to rate because
the rate of a flow is not determinable instantaneously. Once
a flow is in the cache, the counters help to monitor the rate
(as in the cache eviction policy: least frequently used, or
LFU). By choosing a small sampling probability, we can
observe rate bursts on a time scale of tens of minutes, i.e.,
bursts caused by long flows, and make counter updates and
evictions infrequent. On the other hand, we can choose a
large sampling probability, and focus on bursts on a time
scale of micro-seconds.

The rest of the paper is organized as follows. The basic
version of ElephantTrap is presented in Section 2, followed
by an analysis in Section 3. Some variations of the basic
algorithm are presented in Section 4. Section 5 presents
simulation results and Section 6 concludes the paper.

2 Basic Algorithm

In this section, we describe the basic version of the algo-
rithm. This version is not optimized in terms of implemen-
tation cost, but it includes the fundamental idea of sampling
and eviction. In short, ElephantTrap samples for size and
holds for rate.

The basic algorithm uses a cache that can be built in an
SRAM or a CAM. Each line of the cache includes a flow
ID (e.g. source-destination pair) and a counter. The cache
is also equipped with an eviction pointer, which records the
next location to check for eviction. The structure is shown
in Figure 1.

There are four operations in the cache: insertion, evic-
tion, incrementing counters (hit) and aging. All operations
can be based on packets as well as bytes. For the latter,
one simply needs to make the sampling probability propor-
tional to the number of bytes in the packet, and increment
the counter by number of bytes or byte-chunks. For clarity,
we will assume that all units are in packets in the following
sections.

Insertion: When flows arrive at the network node, each
incoming packet is sampled with probability p, whose value
is a design parameter. If the flow is not already present in the
cache, the algorithm will insert the flow ID into the cache
if there is space, or will seek to evict an existing flow in the
cache, and assign the emptied line to the new flow.

Eviction: When there is no space in the cache for a
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Figure 1. Cache structure and eviction
pointer for ElephantTrap algorithm.

new flow, the eviction pointer goes through the flows in
the cache, and checks if their counters are below a preset
threshold. Once such a flow is identified, it is “evicted” and
its line is assigned to the new flow.

Hit: When a packet is sampled, the flow cache is con-
sulted to determine if the flow to which the packet belongs
is already present in the cache. If the flow is present, the
counter in the same line as the flow ID is incremented; this
event is called a “hit.” An “elephant” flow can be reported
when the counter value exceeds a certain threshold.

Aging: As the eviction pointer goes through the flows
to search for one below threshold, it halves the counts that
are above threshold before moving to the next line. The ex-
ponential decrement is mainly to combat the effect of flows
arriving and departing. In a nutshell, when a long flow ter-
minates, we want to quickly bring down its large accumu-
lated counts in order to empty space for new arrivals; on the
other hand, when a new flow arrives, we want to provide
enough time for it to accumulate counts.

A precise description of the algorithm is contained in Ex-
hibit 1.

3 Analysis

In this section, we consider the scenario of infinitely
long-lived flows to gain some insight into the algorithm, and
the relationship between the parameters. The consideration
of infinitely long-lived flows allows us to focus on the “rate”
aspect of ElephantTrap. We will look at the more realistic
scenario of finite-sized flows in subsection 3.1.

Assume that there are a total of N infinitely long-lived
flows, each occupying a fraction si(1 ≤ i ≤ N) of the
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Exhibit 1 Basic Algorithm
1:Get next packet ← a
2: Generate a random number, r ∈ (0, 1)
3:if r < p, then
4: Search cache for flow ID of packet a
5: if cache.line[i] == a.flowID then
6: increment cache.counter[i]
7: if cache.counter[i]> report-threshold then
8: report the flow ID
9: endif
10: else
11: if there is empty line in cache then
12: insert a.flowID into the line
13: initialize counter to 0
14: else
15: while (counter pointed to by eviction pointer

≥ threshold) or (eviction pointer has not gone
through entire cache)

16: current counter is divided by 2
17: eviction pointer ++
18: endwhile
19: if (counter pointed to by eviction pointer

< threshold)
then

20: evict current entry
21: insert a.flowID into current line
22: initialize counter to 0
23: endif
24: endif
25: endif
23:endif
26:go to line 1

total bandwidth C in packets. Further assume the flow rate
distribution follows a power-law according to

P(siC > x) = Ax−α,α > 0, x ≥ 1.

The power law distribution of flow rates was first observed
in [4]. Similar observations have been made in [5] using
traces from a variety of locations including a 100Mbps link
at a national laboratory, a T3 peering link between two
providers, and a FDDI ring connecting a modem bank at
a dial-up provider to a backbone network.

Let S be the cache size in number of entries, p be the
sampling probability, and t be the time taken for the eviction
pointer to go through the entire cache. Time is measured in
number of packet arrivals.

Note that the rate at which the packets of a flow enter
the cache is psiC. The flow will remain in the cache if it
manages to accumulate a count no less than the threshold
value within time t. For this analysis, we set the threshold

value to 1. Hence a flow will remain in the cache if

psiCt ≥ 1.

Define the functions

f(t) = |{si : psiCt ≥ 1}| and

g(t) =
∑

i

siCI(psiCt < 1),

where I is the indicator function evaluating to 1 when
psiCt < 1 and 0 otherwise. f(t) is the number of flows
that remain in the cache and g(t) is the sum rate of the flows
that are slow; i.e., the flows whose rates are insufficient to
keep them in the cache; as a result, they keep entering and
leaving the cache.

Note that with infinitely long-lived flows, if the rate of
a flow is above the threshold, it will always remain in the
cache, while if the rate is below the threshold, it will never
accumulate a hit before the eviction pointer returns. In other
words, the threshold draws a hard line between the “fast”
and “slow” flows. Hence when a slow flow enters the cache,
which happens with rate pg(t), a hit never happens and it
always needs to evict another slow flow. Since at any time,
there are S − f(t) lines occupied by slow flows, we have

t =
S − f(t)

pg(t)
. (1)

Let N be the total number of flows. We will compute
f(t) and g(t) as follows:

f(t) = NP(siC >
1
pt

)

= NA(pt)α,

and

g(t) = E(siC|psiCt < 1)NP(psiCt < 1)

= N

∫ 1
pt

1
P(x < siC <

1
pt

)dx

= N

∫ 1
pt

1
Ax−α − A(pt)αdx

=
AN

α − 1
(1 − α(pt)α−1).

We obtain the following relation from equation (1)

t =
(S − NA(pt)α)(α − 1)
pAN(1 − α(pt)α−1)

,

and with simple algebraic manipulation, we get

AN(pt)α − AN(pt) + S(α − 1) = 0.

When the rate distribution and total number of flows are
fixed, choosing the cache size S determines the product pt,
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and hence the number of flows that will remain in the cache
f(t) = NA(pt)α.

It is interesting to note that the choice of the sampling
probability p does not affect the functioning of Elephant-
Trap in the case of infinitely long-lived flows. The variable
t will adjust itself for different values of p such that the same
high-rate flows will be captured in the trap. Also, the actual
value of C does not come into the equation. Only the traf-
fic distribution α matters. In fact, the consumed bandwidth
can vary over time, and the same high-rate flows will be
captured so long as the flow distribution remains the same.

3.1 Real Network Scenarios

In the case of infinitely long-lived flows, each flow will
be sampled eventually regardless of the value of p. How-
ever, this is not the case in real networks where flows are
of finite length. Hence the value of p determines a sampled
sub-population of flows which will enter the ElephantTrap.
Another way to view this is in terms of the size of a time
window. The smaller p is, the larger the average size of the
sub-population, and correspondingly, we are searching for
“bursts” or “high-rate” flows over a large time-scale, where
the large-size flows reside. A larger p, on the other hand, fo-
cuses on a much smaller time window, e.g., micro-seconds,
and identifies bursts at this scale. Although a large p seems
to include almost all flows in consideration, within each
small time-window, the number of active flows is small.

We can extend our understanding of the infinitely long-
lived flows to the real network scenario by letting the num-
ber of active flows, N , and the current rate distribution,
Ax−α, vary with time. The following figures plot the num-
ber of captured “high-rate” flows f(t) against N and α re-
spectively. The line labelled “var 2” will be explained in
Section 4. The cache size S is fixed to 64 for this plot.

Figure 2 shows that for a fixed rate distribution, the num-
ber of flows that remain in the cache decreases as N in-
creases. This is because more slow flows are entering and
leaving the cache, making the turnaround faster and hence
the rate threshold higher.

Correspondingly, Figure 3 shows that the more heavy-
tailed the rate distribution is (in the direction of α decreas-
ing), the larger number of flows remain in the cache. This
is due to both the abundance of fast flows, and the lack of
interference from the slow flows entering and leaving the
cache.

4 Variations of Algorithms

In hardware implementations, tossing a coin on every in-
coming packet can be too costly, hence we propose the first
variation of the algorithm:
Toss a coin on one in ten incoming packets.
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basic
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Figure 2. Plot of the number of captured flows
against the number of active flows in a time
window. The flow rate distribution is fixed to
2x−2.

Since the sampling probability can be adjusted (×10) for
this variation such that it is the same as in the basic version,
the analysis remains the same.

In the basic algorithm, the eviction pointer goes through
the entire cache until a counter below threshold is found.
This operation is costly and also varies in amount of time
required, making pipelining difficult. We propose the sec-
ond variation of the algorithm:
Check at most 2 entries before eviction.

With this variation, if no flow below threshold is found in
the next two entries, the new flow is discarded. This process
with infinitely long-lived flows is governed by the following
equation:

t =
S

( q(t)
2 + 2(1 − q(t)

2 ))pg(t)
,

where

q(t) =
S − f(t)

S
.

We assume that with equal chance the eviction pointer will
encounter a flow below threshold at the first step and at
the second step, conditioned on the fact that such a flow
is found.

With f(t) and g(t) as defined in Section 3, we obtain the
following equation:

AN(pt)(3S + AN(pt)α)(1 − α(pt)α−1) = 2S2(α − 1).

The number of flows captured with N or α varying for
variation 2 is also plotted in Figures 2 and 3. From the
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Figure 3. Plot of the number of captured flows
against the heaviness of the tail. The number
of sampled flows is fixed to 150.

comparison, we see that variation 2 is catching fewer top
talkers than the basic version when the tail is light or when
too many flows are sampled, a tradeoff for the reduction in
complexity. The direction of change with respect to N and
α remains the same.

5 Simulation

We run simulations on a real Internet trace collected by
the NLANR MNA team on Aug 14, 2002. It consists of ten-
minute contiguous bidirectional packet header traces col-
lected at the Indianapolis router node (IPLS). It contains
4.96 million packets and a total of 161367 flows.

Due to space constraint, we will demonstrate the use of
ElephantTrap on a large time scale, i.e., to catch long and
fast flows, and compare the performance of the three vari-
ations. We choose the cache size S to be 32 entries since
this is a very small cost to the implementors. In practice,
we do not have any notion of the instantaneous rate or size
distribution. Hence we choose the sampling probability p
according to the following rule of thumb for the three vari-
ations of the algorithm.

Rule of Thumb
We introduce a further parameter L, which is the guessed

top talker length. The idea is as follows. Since we do not
know the exact distribution of flows in the network, we
guess the size of the flow who is consuming a significant
part of the bandwidth. And we compute p based on L as
follows:

Basic:

p =
2
L

Var 1:

p =
20
L

Var 2:

p =
20S
8L

=
5S

2L

The simulation results for different guesses of top talker
size are plotted in Figs. 4 to 7.

For all figures except Fig. 4, we plot the cache size (con-
stant line fixed at 32), the actual “big” flows (whose sizes
are above the guessed top talker size) and the cached “big”
flows. Since some of the actual “big” flows might not pass
the instantaneous rate screening, the line for actual “big”
flows is always above the cached “big” flows.

When we guess the top talker size to be 10000 packets,
all the “big” flows are captured in the cache soon after they
start and trapped thereafter, regardless of the variation of the
algorithm we use. Only one plot of captured “big” flows is
shown since all three are indistinguishable.

As the guess of top-talker size decreases and the sam-
pling probability increases correspondingly, we are simu-
lating the scenario when we do not have a good knowledge
of sizes of flows in the network and decide to cast our net
wide. As discussed in Section 3.1, this is equivalent to fo-
cusing our attention on a smaller time window, and hence is
not helpful for identifying the real top-talkers, who live on
a much larger time scale. Not surprisingly, as we compare
the actual number of flows above the guessed top-talker size
and the number captured, the latter is only a fraction of the
former. The situation becomes the worst in Fig. 7, when the
guessed top-talker size is 2000 packets.

However, even when only a small portion of flows with
size above 2000 packets are cached, this portion proves to
be the real top-talkers, i.e., flows who occupy the most
significant portion of the bandwidth. Table 1 shows the
counter values for the ten biggest flows from variation 2.
A high counter value indicates that the corresponding flow
is trapped in the cache for a long time.

In summary, ElephantTrap is able to capture and track
the top-talkers in the Internet trace over the span of 5 million
packet arrivals. As forecasted by analysis, variation 2 sets
the rate threshold higher for the same cache size and sam-
pling probability, hence captures fewer flows than the other
two versions of the algorithm. Regardless of the guessed
top-talker size, the small number of real top-talkers are al-
ways captured by ElephantTrap.
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flow ID total packets hits
1 13750 777
2 13489 665
3 12082 577
4 10929 432
5 10621 257
6 9564 197
7 9533 181
8 8594 161
9 8551 137

10 8445 283

Table 1. Counter values for the ten biggest
flows when the guessed top-talker size is
2000 packets.

6 Conclusion

In this paper, we presented ElephantTrap, an easily im-
plementable and low-cost device for identifying large flows
in the network. With a small cache size, a very low sam-
pling rate, and a readily pipelined simple eviction scheme, it
is able to identify the flows that occupy the most significant
portion of the bandwidth. ElephantTrap samples for size
and holds for rate. Since its definition of the rate threshold
is implicit, no actual estimates of the flow rates need to be
made. By tuning the sampling probability and aging rate, it
can also be extended to track the bursts caused by mid-sized
flows on a much smaller time scale.
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Figure 4. Left: Plot of actual big flows against packet arrivals. Right: Plot of captured big flows
against packet arrivals. Guessed top talker size = 10000 packets. All flows with sizes more than
10000 packets are trapped.
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Figure 5. Plots of actual and captured big flows against packet arrivals. Guessed top talker size =
6000 packets. Most flows with sizes more than 6000 packets are trapped.
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Figure 6. Plots of actual and captured big flows against packet arrivals. Guessed top talker size =
4000 packets. The majority of flows with sizes more than 4000 packets are trapped.
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Figure 7. Plots of actual and captured big flows against packet arrivals. Guessed top talker size =
2000 packets. Only a fraction of flows with sizes more than 2000 packets are trapped.
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