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Abstract— A number of algorithms have been proposed in
the literature for scheduling CIOQ switches. The algorithms
which have been proven to provide strict performance guarantees
on delay (via the emulation of an output-queued switch) have
been too complicated to implement because they require the
exchange of a large amount of information between inputs and
outputs. With implementation as our primary focus, we consider
scheduling algorithms that are “fully local.” This means inputs
and outputs must be able to make decisions regarding matchings
using only local information (except requests, grants and accepts).
This constraint, which is essentially necessary for high-speed
implementations, appears too restrictive for designing algorithms
which enable the emulation of an output-queued switch. Rather
surprisingly, we find a very simple and fully local algorithm
FLGS (for fully local Gale-Shapley) which, at a speedup of 2,
emulates an output-queued switch implementing a number of
different output link scheduling algorithms such as weighted
round robin and strict priority. We explore the performance of
the algorithm at speedups between 1 and 2 using simulations
and find that it partitions the bandwidth nearly as well as an
output-queued switch at speedups 1.2 or higher.

I. INTRODUCTION

Switching theory and practice have developed tremendously
during the past decade. In order to adequately motivate our
work, it is useful to survey this development and consider
the influence theory and practice have had on each other.
The theory consists, in the main, of designing scheduling
algorithms for a variety of switch architectures and developing
tools for proving performance guarantees. Particularly, there
are two main research threads for crossbar fabrics, which are
of practical interest, depending on the fabric speedup: the focus
at speedup 1 has been on algorithms which deliver 100%
throughput and low average delays, and at speedup 2 it has
been on algorithms which provide precise delay guarantees.

At speedup 1, the seminal result of Tassiulas and
Ephremides [12] and McKeown et al [10] is that the maximum
weight matching (MWM) algorithm delivers 100% throughput.
Despite this highly desirable property, the MWM is not
commercially implemented because it lacks the following two
properties: (i) RGA: the request-grant-accept (RGA) mecha-
nism of matching inputs and outputs, and (ii) FL: inputs and
outputs operate fully locally (FL). The MWM algorithm and
its subsequent variations ([12] and [7])are not amenable to an
RGA implementation and are not FL because a (centralized)
scheduler needs to know the backlogs (the weights) to find
the MWM. On the other hand, the appeal of the scheduling
algorithm iSLIP [9] derives from its possession of the RGA
and the FL properties. Yet, despite being widely-used ([14]),
no guarantees of throughput or delay can be made about iSLIP

at speedup 11. Thus, theorists face the following still-open
question: Does there exist a switch scheduling algorithm which
possesses the RGA and the FL properties which delivers 100%
throughput at speedup 1?

For speedups larger than one, Prabhakar and McKeown
[11] obtained an algorithm for a CIOQ (combined input- and
output-queued) switch running at speedup 4 which allows it
to exactly emulate an OQ switch. Exact emulation means
under identical inputs the CIOQ switch will match, cell-by-
cell, the departures from an OQ switch. Chuang et. al. [4]
then showed that speedup of 2-1/N is necessary and sufficient
for such emulation. However, the amount of information to
be exchanged between inputs and outputs in these algorithms
is prohibitively large; for example, time-stamp information,
flow IDs, etc. Other algorithms proposed by Charny et. al. [3]
and Krishna et. al. [8] also do not possess the FL property.
This strand of research, therefore, culminated in the impression
that the following question has a negative answer: Is there a
switch scheduling algorithm which possesses the RGA and the
FL properties and enables the emulation of an OQ switch at
speedup 2?

Our main contribution is an RGA algorithm which possesses
the FL property, called FLGS (for fully local Gale-Shapley),
for emulating an OQ switch at a speedup of 2. The FLGS
algorithm draws on previous work in [4]. A single, crucial,
observation in this paper ensures that FLGS is fully local while
those proposed earlier were believed not to be: we focus on
emulating OQ switches which offer port-level fairness as op-
posed to other OQ scheduling algorithms such as FIFO, flow-
level strict priority, or flow-level weighted fairness. Port-level
policies operate at a coarser level of granularity than flow-
level policies. The reason the port-level fairness assumption is
crucial can be understood from Section IV.

It is now worth considering the FLGS algorithm from the
practical stand-point. Port-level fair output scheduling policies
are the most prevalent in practice (see [13], [14], [15], for
example). These algorithms allow an operator to configure a
router or a switch so that the bandwidth at an output can be
shared according to weighted fair or strict priority policies
by the various input ports. The general approach taken in
designing schedulers for such systems is two-tiered: first,
an output scheduler decides which input it wants the next
packet from; then, the fabric scheduler obtains this packet
from the input. Thus, there are two separate, but interlocking,
schedulers: one for partitioning the output link bandwidth
and the other for transferring packets from inputs to outputs.

1In fact, it is only at a speedup of 2 that iSLIP, when it is maximalized,
is known to deliver 100% throughput. This follows from the fact that any
maximal matching algorithm gives 100% throughput at speedup 2 [5].
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Speedup is used as the grease which, when adequately applied,
smooths the interlocking mechanism. In this sense adequate
speedup enables practical algorithms to “work;” without prov-
able performance guarantees and without knowing exactly
how much speedup is adequate. The only theoretical approach
taken for integrating the two schedulers to date is the work
on CIOQ switches, typified by Chuang et. al. [4]. But, as
mentioned previously, these algorithms are too complicated
for practice. The FLGS algorithm presented in this paper is
the first practical integrated scheduler which provides provable
performance guarantees at a speedup of 2.

Section V studies the performance of FLGS at speedups
between 1 and 2 via simulations and compares its bandwidth
partitioning ability to that of an OQ switch.

II. MODEL AND NOTATION

Consider an N ×N crossbar switch such as the one shown
in Figure 1. Assume that time is slotted and that cells arrive at
the switch at the beginning of a time slot. We will assume that
at most one cell arrives at an input port and at most one cell
departs from an output port during a time slot. Cells arrive at
the switch just at the beginning of a time slot and depart from
the switch just prior to the end of a time slot.

Depending on the traffic pattern and the switching disci-
pline, cells may have to wait at an input port before being
switched to the correct output port, and may have to wait at
an output port before departing. Each input has a buffer of
infinite capacity for holding cells prior to switching them to
their respective outputs. Likewise each output has an infinite
capacity buffer for holding cells that will be placed on the
outgoing line. The buffer at an input is partitioned into N
“virtual output queues” (VOQs). The buffer at an output is
partitioned into N “virtual input queues” (VIQs). The virtual
output queue VOQ(i, x) holds cells arriving at input i destined
for output x. The virtual input queue VIQ(i, x) holds cells
which are waiting at the output port x and which arrived via
input port i.

VOQ(1,1)

VOQ(1,N)

VOQ(N,1)

VOQ(N,N) VIQ(N,N)

VIQ(1,N)

VIQ(N,1)

VIQ(1,1)

Fig. 1. A CIOQ switch

A “scheduling phase” consists of two parts: (a) the matching
part, and (b) the switching part. During the matching part
a matching algorithm, m, selects a matching between inputs
and outputs in such a way that no input (respectively, output)
may be matched to more than one output (respectively, input).
During the switching part input i transfers a cell to output
x if they are matched to each other and VOQ(i, x) is non-
empty. The switch is said to have a speedup of s, where s ∈
{1, . . . , N}, if during every time slot there are s scheduling
phases.

Definitions and terminology: We will use I(C) and X(C) to
denote the input and output ports of cell C, a(C) and d(C) to
denote the its arrival and departure time respectively. A CIOQ
switch exactly emulates an OQ switch if given the same arrival
sequence, every cell C has the same departure time d(C) from
the two switches. A CIOQ switch is said to be consistent at
time t if all the cells in a VIQ are older (i. e. arrived at the
switch earlier) than all the cells in the corresponding VOQ.

III. PORT-ORDERED POLICIES

This section precisely defines a general class of policies,
under the title “port-ordered policies.” This class includes all
those of practical interest, including arbitrary combinations of
WFQ and strict priorities at the port level. Given the definition,
we quite easily see that FIFO does not fall under this category.

A scheduling policy for an output queued switch is said to
be port-ordered if

1) At any given time, every output port has a strict priority
order defined on the input ports (and hence, on the
VIQs). The priority order may be different at different
output ports at any given time, and may also be different
at the same output port at different times. The priority
order may depend on the cells which have departed the
output queue, but not on the cells which are currently
in the switch.

2) During each departure phase, an output port transmits
the oldest cell from the highest priority non-empty VIQ.
We will use rx,t(i) to denote the rank of input port i in
the priority list of output port x at time t. A rank of 1
denotes the highest priority.

3) The departure of a cell C from output port X(C) at time
t can only result in the port I(C) moving down in the
priority list of port X(C). More formally, if i1, i2 are
two input ports with I(C) #= i1 such that ri1,t < ri2,t,
then ri1,t+1 < ri2,t+1.

Port-ordered policies form a natural class, and include many
algorithms of practical interest. The FIFO scheduling policy
is not port-ordered, because the ranking of input ports at an
output depends on the arrival time of cells currently in the
switch. Hence, FIFO violates property 1 above.

Consider a CIOQ switch which has exactly emulated an
OQ switch with a port-ordered policy till time t, and which is
consistent at time t. Let R(x, t) denote the set of cells which
are either buffered at an output port x of this CIOQ switch
at time t or have departed port x at some earlier time t′ < t.
Let A(x, t) be the set of input ports whose buffer currently
contains at least one cell destined for x. For i ∈ A(x, t),
let Si(x, t) denote the set of cells currently buffered at input
port i which are destined for x. Observe that a fully local
computation at output port x is one which can be performed
using only knowledge of R(x, t) and A(x, t) (i.e. without any
knowledge of the Si(x, t)’s)2.

Let Ci(x, t) be the cell from Si(x, t) which has the
earliest departure time ti(x, t) in the port-ordered policy

2With speedup of two, there will be two scheduling phases during a time
slot, and hence the quantity V (x, t), A(x, t) etc. may not be uniquely defined.
We get around this notational difficulty by allowing t to be half-integral when
used as an argument to quantities A, Si, V, ti, R.
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being emulated. Let V (x, t) denote the sequence of size
|A(x, t)| obtained by sorting the set A in increasing order
of ti(x, t). We will call this sequence the departure-sorted
input list for port x at time t. Informally, the departure-sorted
list represents the order in which cells currently residing at
the heads of the different VOQs for x will be needed by
the output port x. The departure-sorted list V (x, t) can be
computed using a simple fully local algorithm, described
below.

Algorithm LOCAL-PORT-ORDER: /*Computes V (x, t)*/

1) Ignore all the cells in VIQ(i, x) for all i #∈ A(x, t).
2) Assume that VOQ(i, x) is of size 1 for all i ∈ A(x, t).
3) Assume there are no future arrivals into the switch.
4) Simulate the port-ordered policy of the OQ switch on

this restricted set of cells.
5) Arrange the input ports in A(x, t) in the order in which

the (single) cell in VOQ(i, x) leaves the output port in
the above simulation.

Lemma 1: Consider a CIOQ switch which has exactly
emulated an OQ switch with a port-ordered policy till time
t. Then an output port x can compute the set V (x, t) using
the fully local algorithm LOCAL-PORT-ORDER.

This lemma establishes a concrete connection between port-
ordered policies and fully local algorithms. The simplicity of
the algorithm is striking. For the three common port-ordered
policies mentioned earlier (WFQ, Round-Robin, and Static-
Priorities), the algorithm is even simpler. For Round-Robin,
the algorithm arranges the ports in A(x, t) in decreasing order
of the sizes of their VIQs at x; ties are broken depending on
the position of the Round-Robin pointer. WFQ is similar. For
Static Priorities, the set A(x, t) is simply sorted in the static
order. In each of these cases, determining V (x, t) does not
add any additional complexity to the switch.

IV. THE FLGS ALGORITHM

We will now give fully local algorithms for constructing the
preference lists of inputs and outputs such that at a speed-up
of 2, any port-ordered policy can be exactly emulated using
a CIOQ switch. We will assume an arbitrary (but fixed) port-
ordered policy. We will assume that there is an arrival phase
at the beginning of a time slot, followed by two scheduling
phases, followed by a departure phase at the end of the time
slot.

a) The Scheduling Algorithm:: During each scheduling
phase, the switch computes a stable marriage of the input
ports to output ports, using preference lists computed by
each port. This can be performed using the Gale-Shapley
algorithm [6] which only communicates request, grant and
accept information between the ports.

The key point to note is that the computation of the
preference lists is fully local. Indeed, the computation of the
preference lists at the outputs requires only the output link
scheduler, which even an OQ switch needs. The computation
of the input preference lists requires nothing; a very simple,
fixed rule called GBVOQ (for Group By Virtual Output
Queue) suffices. The details follow.

b) Output ports:: During a scheduling phase at time t,
the output port x computes the departure-sorted list V (x, t) us-
ing the algorithm LOCAL-PORT-ORDER. Then, x uses V (x, t)
as its preference list for the stable marriage algorithm. During
a departure phase, output port x sends the highest priority cell
currently residing at x.

c) Input ports:: Input port i maintains a sorted list of
the non-empty VOQs at i. During an arrival phase, if a cell
arrives into an empty VOQ, the VOQ is inserted at the front
of this sorted list. If a cell arrives into a non-empty VOQ, the
sorted list does not change. During a scheduling phase, if a
VOQ becomes empty, it is deleted from the list. This sorted
list is used as i’s preference list during the stable marriage
algorithm. This is the GBVOQ scheme. Observe that GBVOQ
is analogous to LIFO at the port level3.

We now state our main theorem:
Theorem 1: FLGS exactly emulates any given port-ordered

policy at speedup 2.
Proof: We will adapt the proof of Chuang et al. [4]

to port-ordered policies. Define the Input Thread of a cell C
(denoted IT(C)) queued at a VOQ as the total number of cells
ahead of C (including C) in the preference list of the input
port. More precisely, the input thread of C is the number of
cells ahead of C in its VOQ plus the number of cells in the
VOQs ahead of C’s VOQ in the priority list maintained at the
input port. Define the Output Cushion of C, denoted OC(C),
as the number of cells waiting at C’s output port which have
an earlier departure time according to the port ordered policy
being emulated. Observe that in the input port’s preference list
during a stable marriage phase, output ports are arranged in
increasing order of input threads of the head-of-line cell in the
corresponding VOQ.

Also, in an output port’s preference list during the stable
marriage phase, input ports are arranged in increasing order
of output cushions of the head-of-line cell in the corresponding
VOQ. Thus, by definition of a stable marriage [6], during each
scheduling phase, for a head-of-line cell in any VOQ, either its
input thread goes down or its output cushion goes up. Define
the slackness of a cell C (denoted L(C)) as OC(C)− IT(C).
Hence, during each scheduling phase, the slackness of a head-
of-line cell in any VOQ must go up by at least 1. Since any
cell in the input thread/output cushion of a head-of-line cell
of any VOQ is also in the input thread/output cushion of all
other cells in that VOQ, we conclude that during a scheduling
phase, the slackness of any cell goes up by at least 1.

During an arrival phase, the input thread of an existing cell
can go up by at most 1. During a departure phase, the output
cushion of an existing cell can go down by at most 1. Hence,
the slackness of a cell can not decrease during the entire cycle
of arrival, scheduling, scheduling, and departure, as long as
this cell resides at an input port.

Now consider a cell C that arrives into an empty VOQ.
The input thread of this cell immediately after arrival is 1. Its

3This is a counter-intuitive scheme since it gives priority to newly populated
VOQs. But Chuang et. al. [4] have used it to prove that it can be used for
emulation of OQ switches which use monotone output scheduling policies at
a speedup of 2.
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Fig. 2. Weight Round Robin: Class 1 at loads 0.95 and .999

output cushion is at least 0, and hence its slackness is at least
-1. After the first scheduling phase, its slackness is at least
0. Hence, inductively, the slackness of this cell is at least 0
after the first scheduling phase as long as this cell resides at
the input port. Now suppose the departure time of this cell is
t. If this cell has not left the input port before or during the
first scheduling phase at time t, its output cushion will be zero
after the first scheduling phase. Therefore, this cell will have
a slackness of at least 0, and hence an input thread of 0. Thus,
the corresponding VOQ will be at the head of the preference
list for both its input port and its output port. Therefore, any
stable marriage must result in this cell being switched across
during the second scheduling phase, and being available at the
output port in time for departure.

Now consider a cell C that arrives into a non-empty VOQ.
We will prove inductively that the head-of-line cell in C’s
VOQ always has a slackness of at least 0 after the first
scheduling phase, and hence always makes the departure
deadline. We have already established this for a cell which
arrives into an empty VOQ, and hence the base case for our
induction holds. Let C ′ be the cell just ahead of C. The output
cushion of C is always at least as large as the output cushion
of C ′ and the input thread of C is exactly one more than the
input thread of C ′ as long as C ′ resides at the input side. When
C ′ gets to the head of the VOQ, the slackness of C ′ is at least
0 (by the inductive hypothesis), and hence the slackness of
C is at least -1. When C ′ gets switched to the output port,
IT(C) goes down by 1 and OC(C) goes up by 1, increasing the
slackness of C by two. This compensates for the slackness of
C being -1 just before C ′ gets switched. Hence, from this time
on, the slackness of C is at least 0 after the first scheduling
phase, completing the inductive argument.

V. SIMULATION RESULTS

In order to explore the performance of FLGS at speedups
lower than 2, we performed a number of simulations to
compare the bandwidth allocation of FLGS with an ideal
output queued switch. A fixed-cell-size switch simulator with
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Fig. 3. Weight Round Robin: Class 4 at loads 0.95 and 0.999

infinite VOQ and VIQ sizes was used to simulate a switch for
100K time steps. λi,j represents the arrival rate into VOQ(i, j).
We assume that the output port follows the same port-ordered
policy for all schemes to determine which packets leave the
switch. Of course the output port can only run this policy on
the cells actually available for departure (i. e. those queued in
a VIQ).

A. Weighted Round Robin

We measured the average latencies for cells flowing from
different input ports to a specific output port for a Weighted
Round Robin output scheduling policy, in order to compare
the amount of bandwidth allocated to each input port. Figures
2–3 show measured average latencies for different classes of
traffic for a 32x32 switch, supplied by a diagonal 4 traffic
pattern where λi,i = 0.1, λi,i+1 =0.2, λi,i+2 =0.3, and λi,i+3

= 0.35 (or 0.399 for a total load factor of 0.999).
The total arrival rate at an input or for an output equals 0.95

and 0.999 in the two separate experiments. The weight values
at the output ports are adjusted inversely: Wi,i=4, Wi,i+1=3,
Wi,i+2=2, Wi,i+3=1. The reason for this inverse ordering of
weights is that a scheduler which does not integrate switching
and bandwidth partitioning would give priority to the wrong
class of packets during switching. Therefore, it would need
a higher speedup to better track the OQ switch. The graphs
show the latency of the traffic from input ports 1 and 4 to
output 4. Class 1 traffic has the highest weight, equal to 4,
and goes from input 4 to output 4. Class 4 traffic goes from
input 1 to output 4 and has a weight of 1. As the figures
show, FLGS can track the bandwidth allocation of the OQ
switch extremely well for speedups more than 1.2.

B. Strict priorities

Figures 4–5, demonstrate a strict priority scheduling policy
at the output port between four levels of traffic in a 10x10
switch. Class 1 is the highest priority while class 4 is the
lowest. Traffic pattern is as follows: class 1, λi,i =0.1; class
2: λi,i+1 =0.2, class 3: λi,i+2 =0.3 and class 4 λi,i+3 =0.35
(or 0.399 for a total load factor of 0.999).
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Fig. 4. Strict Priority: Classes 2, 3, and 4 at load 0.95

The graphs show the average latency experienced by traffic
classes 2–4 in the OQ switch and FLGS for load factors of
0.95 and 0.999. The class numbers are as defined in previous
section. Since FLGS integrates the scheduling of the switch
fabric with the scheduling of the output port, it is able to re-
distribute the latency of the cells over the priority classes, such
that classes with higher priority have lower latency at the cost
of increased latency for lower priority classes.

VI. CONCLUSION

Motivated by the need for practical scheduling algorithms
that integrate the switching and the output scheduling func-
tions, we have introduced the class of fully local (FL), request-
grant-accept (RGA) scheduling algorithms. We have noted that
at speedup 1 no FL and RGA algorithm has been known to
give 100% throughput, or that at speedup 2 no such algorithm
has been known to emulate an OQ switch to date.

Given the practical importance of this class of algorithms,
the main result of this paper — an FL and RGA algorithm,
FLGS, for emulating an OQ switch — is interesting. The
crucial observation of the paper is that port-level fair output
scheduling policies (called port-ordered policies in the paper)
are surprisingly amenable to an FL and RGA implementation.
We prove that the FLGS algorithm emulates an OQ switch
which uses any port-level fair policy at a speedup of 2. By
simulations, we also find that the FLGS algorithm performs
very competitively with respect to an OQ switch at speedups
as low as 1.2.
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