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Abstract

The heavy-tailed nature of Internet flow sizes, web pages and computer files can cause non-preemptive scheduling
policies to have a large average response time. Since there are numerous communication and distributed processing
systems where preempting jobs can be quite expensive, reducing response times under this constraint is a pressing
issue. One proposal for tackling non-preemption is through the use of multiple servers: classify jobs according to
size and assign a server to each class. Unfortunately, in most systems of interest, job sizes are unknown.
An alterative is to queue all jobs together in a central-queue and assign them in a FCFS fashion to the next

available server. But, this has been believed to yield large response times. In this paper, we argue that this is not
the case, so long as there are enough servers. The question then is: what is the right number of servers, and is this
small enough to be practical?
Despite the large amount of prior work in analyzing the behavior of a central-queue system, no existing models

are accurate for the case of heavy-tailed size distributions. Our main contribution is a simple yet accurate model for
a central-queue with multiple servers. This model accurately predicts the right number of servers, and the average
and variance of the response time of the system. Hence, it can be used to improve the performance of some real
systems, such as multi-server supercomputing centers and multi-channel communication systems.
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1. Introduction

The question of whether one fast server is better than many slow servers is quite old. In traditional
queueing systems, e.g. when arrivals are Poisson and services are exponential, it is easy to see that one
fast server is optimal. More specifically, in anM/M/K system2 where the processing speed of each server
is 1/K, the average response time is minimized for K = 1 ([1], pp. 256–260). (Note that in this paper,
the G/G/K notation implies that each of the K servers has speed 1/K, not 1.)
However, it has been recently observed that in numerous real systems, for example, in computer

clusters and web servers, service requirements are far from exponential, they are in fact heavy-tailed
[2–5]. In such systems, when it is not possible to interrupt the service of a job, multiple-server
architectures outperform single-server ones. The reason is that the probability of occurrence of very
long jobs is no longer exponentially small. As a result, it is quite probable for a single server to be
“blocked” by a long job, making all other jobs wait for a long time until this long job has completed
service.
One way to solve this problem is to introduce preemptive schemes that interrupt the long job to service

shorter ones. Actually, it is well known that a system with a single server that services first the job with
the shortest remaining processing time (SRPT) is optimal with respect to the average response time [6].
But preemptive policies come at a cost, and there are cases where it is impractical to interrupt jobs. For
example, in a cluster of servers that run tasks with high computational and memory requirements, it is
very expensive to switch between tasks.
Another way to reduce waiting times is to use many servers. The authors in [7] investigate this idea;

they show that a multi-server system which assigns the next job to the next available server, known as a
central-queue system, does not perform well under a fixed, small number of servers, and suggest to assign
jobs to different servers according to their size. However, rarely does one know the job size a priori. To
address this problem, the author in [8] proposes an interesting scheme that cancels a job if its service time
exceeds some threshold, and services canceled jobs from scratch, in servers dedicated for long jobs. This
scheme performs well in practice, but it is not work conserving.
Because of its simplicity, the multi-server central-queue system is very appealing in practice and it is

widely used in a variety of real systems. Hence, it is worth to carefully investigate its performance under
heavy-tail service requirements. To this end, we first make the observation that a central-queue system
has good performance so long as there are enough servers to avoid concurrent blocking of all of them, that
is, to avoid the situation where all of them are servicing very long jobs. The question now is: how many
servers does one need to achieve good performance and is this number small enough to be practical?
Unfortunately, there are no exact formulas for the average response time of a multi-server central-

queue system, even for the simplified case where arrivals are Poisson and service times are independent,
a system often referred to as an M/G/K queue. Further, the plethora of approximations that exist for
M/G/K systems, see, for example ([1], p. 386, [9–27]) and references within, are not accurate for
heavy-tail service requirements. In particular, these approximations rely heavily on the results derived
for exponential service requirements, and usually do not capture the significant reduction to the average
delay caused by the increase of the number of servers under heavy-tailed traffic. We present in detail
this prior body of work, and verify by simulations their inability to accurately predict the behavior of an
M/G/K queue when service requirements have heavy tails.

2 A queueing system with Poisson arrivals, exponential service times, and K servers.
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Our main contribution is a simple yet accurate model for a multi-server central-queue system. The
model assumes that arrivals come as a Poisson process, and it can be generalized to hold for any renewal
process. It makes no assumptions for the service requirements, and it is very accurate no matter how
heavy-tailed service requirements are. Interestingly, we find that the first two moments of the jobs’ size
distribution suffice to capture first-order dynamics of the system, as is the case forM/G/1 systems. It is
important to note that our primary goal is to come up with an easy to use, closed-form formula for the
expected delay of multi-server systems that can be use in practice. Along this lines we make a number
of choices: (i) we consider heavy-tailed distributions with finite second moments, as is the case in any
real system, following the paradigm of a number of other researchers [7,8,28,29,5], (ii) we are more
interested in establishing the accuracy of our formulas via simulations, rather than bounding the error
of the approximation using rigorous arguments, and (iii) we do not attempt to maximize accuracy, but
rather to achieve high accuracy while not losing simplicity. Quite surprisingly, despite our last choice,
our model is significantly more accurate than all prior models, including the ones that are quite complex
and very hard to use in practice.
The organization of the paper is as follows: Section 2 shows via simulations that the average re-

sponse time of a central-queue system can be very small when many slow servers are used instead
of a few fast ones. Section 3 develops our model and shows its accuracy via simulations. In the next
section, we present a detailed survey of the large body of work that analyzes M/G/K systems, com-
pare our model to prior models, and establish its superiority. Section 5 calculates the optimal num-
ber of servers that minimizes the average response time of the system, and Section 6 concludes the
paper.

2. A single queue with many servers

We consider an M/Heavy-tailed/K system, i.e., a central-queue system with Poisson arrivals, heavy-
tailed identically distributed job sizes that are independent from each other and the arrivals, and K servers
running at rate 1/K each. The total system service rate is one, and the queue operates in a first-come
first-served (FCFS) manner.
In general, a heavy-tailed distribution is one for which P(X > x) ∼ x−γ , where 0 < γ< 2. A simple

and popular heavy-tailed distribution is the Pareto distribution with cumulative distribution function
F (x) = 1− (m/x)γ , x ≥ m > 0. Since in practice there is always some upper bound on the size of a job,
a large number of researchers, see, for example, [7,8,28,29,5], have adopted the use of a bounded Pareto
distributionwith a very high upper bound. Following this approach,wedenote bybPareto a boundedPareto
distributionwith cumulative distribution functionF (x) = 1−(m/x)γ

1−(m/M)γ , whereM ≥ x ≥ m > 0,M % m, and
0 < γ< 2. A heavy-tailed, upper-bounded distribution has a very large but finite second moment, and
when applied as an input, a tiny fraction of the largest jobs comprises a sizeable fraction of the total load.
Fig. 1 plots the average response time for an M/bPareto/K system as a function of K. (Notice that

throughout the paper, the y-axis of figures plotting the average response time is normalized, i.e. it shows
the average response time divided by the average job size.) The parameters of the service distribution
equal m = 1,M = 106, and γ = 1.2. Finally, the system load, ρ, equals 0.8.
The figure also shows the performance of two schemes that assign jobs to different servers based

on their size. In particular, these schemes compute K − 1 size thresholds, and assign all jobs with size
less than the smaller threshold to the first server, all jobs with size between the first and the second
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Fig. 1. Mean response time as a function of the number of servers.

threshold to the second server, and so on. The first scheme, which is called pre-assigned based on size
(PABS), uses the size thresholds that equalize the load among the K servers.3 The second scheme,
which is called PABS-opt, uses the size thresholds that minimize the average response time of the
system.
There are two points to be observed from the plot. First, the central-queue scheme with the right

number of servers performs very close to the schemes that use the size of jobs to assign them to different
servers.4 Second, as the number of available servers is increased from one, the average response time is
significantly reduced for all three schemes. The reason is that the higher K is, the smaller the probability
that all servers will be blocked servicing a long job. 5 It is therefore interesting to investigate how many
servers a central-queue system requires to perform competitively. For this, we need a simple yet accurate
model for the expected delay of anM/G/K system.

Remark.We have made two choices with respect to the input: Poisson arrivals and heavy-tailed, upper-
bounded independent and identically distributed sizes. These choices are in accordance to what has
been observed in practice in many recent measurements of computing systems. In web servers, it has
been documented that web-page sizes are heavy-tailed [28,29,5] and that web sessions arrive as a Poisson
process [30]. In Unix systems, process CPU requirements fit a heavy-tail distribution [2,3]. In the Internet,
the flow-size distribution is also heavy-tailed [4]. Further, it has been measured that network sessions
arrive as a Poisson process [31–33], and has been argued that network flows are as if they were Poisson

3 In [7] the authors call this scheme SITA-E and compare its performance for a fixed number of servers against the central-queue
scheme.
4 We have produced Fig. 1 for a wide range of γ ,M, and ρ values and the results are similar. (For smaller ρ, the central-queue
scheme performs even closer to PABS and PABS-opt.) Due to limitations of space we do not show these plots.
5 However, as K increases further, the average response time deteriorates. This is so because the blocking probability becomes
insignificant, and the dominant effect is then the linear decrease of the speed of the servers, which causes a linear increase in the
service time.



460 K. Psounis et al. / Performance Evaluation 62 (2005) 456–474

[34,35]. (In particular, the equilibrium distribution of the number of flows in progress is as if flows arrive
as a Poisson process.)

3. An approximate model for the dynamics of the system

We now state the main result of this work, which we will prove later. The average response time,E(T ),
of an M/Heavy-tailed/K system can be approximated by the following expression:

E(T ) ≈ E(X)K + ρ

(1− ρ)
E(X2)
2E(X)

· (1− FP(ρlK)(K(1− ρs)− 1)), (1)

where X is the size of the jobs, ρ = ρl + ρs = λE(X) is the traffic intensity with ρl corresponding to
“long" jobs and ρs corresponding to “short" jobs,6 λ is the average arrival rate, and FP(λ)(.) denotes the
value of the cumulative distribution function of a Poisson distribution with parameter λ.
In the rest of the section, we derive our main result and investigate how good an approximation it is. We

start with the simplest of all the systemswith non-negligible tails, theM/Bimodal/K system. In this system,
job sizes are bimodal with a probability density function f (x) = α · δ(x − A)+ (1− α) · δ(x − B), where
δ(x) = 1 for x = 0 and 0 otherwise. The size distribution is heavy-tailedwhenB % E(X) > A and α ≈ 1,
where E(X) denotes the average job size. Later, we will extend the results to job sizes that are Pareto
distributed and to job sizes that follow empirical distributions taken from real traces.
We say that the system is blocked when all servers are serving long jobs of size B. The system can

be in two states, blocked and non-blocked. When the system is not blocked there is almost no queueing,
and the response time or time in the system, T, is dominated by the service time, S, while the waiting
(queueing) time, W, is insignificant. Since the service time of a job equals its size divided by the server
rate, 1/K, the average time spent in a non-blocked system equals

E(T |non-blocked) = E(S|non-blocked)+ E(W |non-blocked) ≈ E(X)K.

When the system is blocked, queueing can no longer be neglected, since many small jobs accumulate
while the servers are occupied with long jobs. The average service time is again equal to E(X)K. To
compute the average queueing delaywe do the following approximation:Wewill assume that the queueing
delay of a blocked system with K servers is not much different from that of a system with only one server
and the same input. This is because both systems are processing work at the same rate, and when the
system is blocked, no server is idle. Note that a number of prior works, e.g. [15,12,26], have made a
similar approximation, in particular, they have assumed that when all servers are busy, the system can
be regarded as an M/G/1 queue. (We regard the system as an M/G/1 queue when all servers are busy
servicing long jobs.) Returning back to the derivation of the expected delay, by the Pollaczek-Khintchine
formula [1, pp. 256–260] we get:

E(T |blocked) = E(S|blocked)+ E(W |blocked) ≈ E(X)K + E(W |K = 1)

= E(X)K + ρ

1− ρ
· E(X2)
2E(X)

,

6 Which jobs are called long and which short, is going to become precise later.
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where ρ = λE(X) is the total system load and λ is the average arrival rate. Hence, the average time in
the system is given by:

E(T ) = E(T |non-blocked) · (1− P(blocked))+ E(T |blocked) · P(blocked)

≈ E(X)K + ρ

1− ρ

E(X2)
2E(X)

P(blocked). (2)

The only unknown in this expression is the blocking probability.

3.1. Blocking probability

Let ρs = αA
E(X)ρ be the load caused by short jobs, and ρl =

(1−α)B
E(X) ρ be the load caused by long jobs. In

order to find the blocking probability, we first assume that ρs is very small. Then, we relax this assumption
and study what happens when short jobs carry a non-negligible amount of work.
Blocking occurs if there are at least K arrivals of long jobs to the servers in the past BK time interval.

We assume the probability of this event is close to the probability of having K arrivals of long jobs to the
system in a period equal to BK. The reason is that if there is no blocking yet, the queue size is small, and
any job that arrives to the system hits a server very fast. Formally, {blocking} ⊇ {at least K long arrivals
to the servers in time BK} ⊇ {at least K long arrivals to the system in time BK}.
When short jobs carry a sizeable amount of work, they cannot be neglected as above. A simple, yet

accurate way to take short jobs into account is to treat them as “background traffic”. Then, because the
considered time interval, BK, is a lot larger than the service time of short jobs, the work done servicing
short jobs during this time interval is close to its long-term value ρs · BK. The result is as if Kρs of the
servers were busy serving short jobs. Hence, the arrival of K(1− ρs) long jobs during a time interval of
BK is enough to block the system, and the blocking probability equals:

P(blocked) ≈ P(at leastK(1− ρs) long arrivals in timeBK)

= 1−
K(1−ρs)−1∑

i=0
P(i long arrivals inBK) = 1− FP(λ(1−α)BK)(K(1− ρs)− 1)

= 1− FP(ρlK)(K(1− ρs)− 1), (3)

since the arrival process is Poisson of rate λ, and thus long jobs are also Poisson with rate (1− α)λ.
FP(λτ)(N) denotes the value of the cumulative distribution function of aPoissondistributionwith parameter
λτ, or equivalently, the probability of having at most N arrivals during a time interval τ when the arrival
rate equals λ.
Combining Eqs. (2) and (3) we obtain Eq. (1) which is our main result.
Fig. 2 shows the average response time for an M/Bimodal/K system with load ρ = 0.50, where long

jobs comprise 20% of the total workload and they represent between 0.0005% and 0.5% of all jobs. The
average job size equals 1500. It is evident from the plot that the model predicts the average time in the
system quite accurately. Similar are the results for different loads. (Note that as α increases, the difference
between A and B must also increase to keep the percentile of work carried by long jobs equal to 20%.)

Remark. FP(λτ)(N) is a sum between 0 and N, but the upper limit that we are using for the sum in Eq.
(1) is K(1− ρs)− 1, which is non-integer. If we take K to be integer, every 1/(1− ρs) units we have an
additional term in the sum. The result is that Eq. (1) has a saw-tooth pattern that dies as K increases, as
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Fig. 2. Response time as obtained from simulations and the model when job sizes are distributed according to a bimodal
distribution (ρ = 0.50).

shown in the dotted line in Fig. 2. If we make K take values in increments of 'K = 1/(1− ρs) starting
at 1, then the saw-tooth pattern is no longer present, as shown in the dash–dot line. We will use this
smoothed function in all the other figures.

3.2. A more realistic size distribution

As mentioned earlier, the size distribution of flows in the Internet, web pages, and process CPU
requirements fits a bounded Pareto quite accurately [2,4,5]. With this in mind, in this section, we extend
our model to approximate M/bPareto/K systems. Our goal is to compute the parameters A, B, and α of
an equivalent bimodal distribution that corresponds to the bounded Pareto distribution. One can then
calculate ρs = αA

E(X)ρ and ρl = ρ − ρs, and use Eq. (1) to estimate the average response time as a function
of the number of servers.
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Fig. 3. Response time for various size thresholds Ts.

Wechoose tofit thefirst twomoments of the twodistributions for the following reasons. First,when there
are many servers E(T ) = E(S)+ E(W) ≈ E(S) = E(X)K, which implies that fitting the first moment
suffices to have the same performance for largeK. Second, when there is only one serverE(T ) = E(X)+
ρ
1−ρ

· E(X2)
2E(X) , which implies that fitting the second moment as well suffices to have the same performance

for K = 1. Last, we wish to avoid using larger moments because this would increase the complexity of
the procedure; larger moments are not present in Eq. (1) and are extremely large in case of heavy-tailed
(upper-bounded) distributions.
To fit the first two moments of the two distributions we require:

E(X) = α · A + (1− α) · B, and (4)

E(X2) = α · A2 + (1− α) · B2. (5)

Using the system of Eqs. (4) and (5) we can express A and B as a function of E(X), E(X2), and α to get
A = E(X)−

√
(E(X2)− E(X)2) · 1−α

α
and B = E(X)+

√
(E(X2)− E(X)2) · α

1−α
.

All that remains is to find a suitable value for α, which is the fraction of short jobs in the corresponding
bimodal distribution. Intuitively, α corresponds to the jobs that are not very large, which comprise the
vast majority of all jobs. In other words, if one uses a size threshold Ts to separate short and long jobs,
α =

∫ Ts
m f (x) dx, where f (x) is the probability density function of the size distribution. By experimenting

with the simulations, we found the model to be relatively insensitive to the exact value of α. This is shown
in Fig. 3 where the average response time in an M/bPareto/K system for ρ = 0.7 is plotted as a function
of the number of servers for various size thresholds. As a rule of thumb, the model works quite well when
the size threshold dictating short and long jobs is around one order of magnitude less than the maximum
job size.
Fig. 4 shows the average time in anM/bPareto/K system for different system loads ρ, whenm = 382.6,

M = 108, and γ = 1.1. The size threshold used equals M/10, that is, α is the percentile of jobs
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Fig. 4. Response time for different system loads as obtained from simulations and the model. Job sizes are distributed according
to a bounded Pareto distribution.

whose size is between m and M/10. Again, the model predicts the average time in the system quite
accurately.

Remark. It is easy to see that fitting the third moment too gives one more equation, E(X3) = α · A3 +
(1− α) · B3, that can be used to compute α. If we use this equation together with (4) and (5) to map the
distribution of Fig. 4 to a bimodal distribution, the resulting α equals 0.999994. This is very close to the
value obtained from the size-threshold approach, which equals 0.999987. (Recall that the later α-value
was obtained by using Ts = M/10, and note that the former α value corresponds to a size threshold
roughly equal to M/5.) Hence, due to the extra complexity associated with using the third moment, we
do not recommend its use. The size-threshold approach is able to identify the jobs that may cause server
blocking, and its accuracy is good enough.
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Fig. 5. Response time for different system loads as obtained from simulations and the model. Job sizes are dictated by a real
traffic trace from the Internet.

3.3. Testing the model under real traces

In this subsection, we use job-size distributions obtained from flow-traces of real backbone links in
the Internet [36] to test how good our model is in predicting the average time in the system under real
traffic. We calculate from the trace the first two moments of the corresponding size distribution, compute
the parameters A, B, and α of the model, and compare the average response time as obtained from the
model and by running simulations using the flow-size distribution obtained from the trace. Arrivals are
again Poisson. Note that in the simulation, the flow-size distribution does not fit exactly a bounded Pareto.
Despite this, Fig. 5 shows that the model manages to predict the average response quite accurately for a
variety of system loads.

3.4. Predicting the variance

So far, we have only studied the average response time, E(T ). Now, we work with its variance. First,
notice that for heavy-tailed traffic the variance is very close to the second moment. Second, it is a well-
known that the second moment of the queueing time in anM/G/1 system equals [37]:

E(W2) = 2E(W)2 + ρ

1− ρ
· E(X3)
3E(X)

≈ ρ

1− ρ
· E(X3)
3E(X)

.

Using the same arguments as those used to derive Eq. (2), we get:

E(T 2) ≈ E(X2)K2 + ρ

1− ρ
· E(X3)
3E(X)

· P(blocking), (6)

where the blocking probability is calculated as before.
Fig. 6 shows the standard deviation, i.e. the square root of the variance, of the response time in an

M/bPareto/K system for different system loads ρ, when m = 382.6,M = 108, and γ = 1.1. (The y-axis
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Fig. 6. Standard deviation of the response time for different system loads. The y-axis is normalized.

is normalized, that is, it plots the standard deviation of the response time over the standard deviation of
the job size.) It is evident that the model can also predict the second moment of the response time. It is
worth noting that the values of K that minimize the average and the standard deviation of the response
time are not necessary the same, but they are not very far apart.

4. Comparison to existing models

In this section, we compare the best approximations that exist in the literature, in terms of both accuracy
and simplicity, with the one introduced in this paper. Before proceeding, recall that in our discussion the
speed of each server is 1/K such that the total server capacity remains unchanged as K varies. Most of
the results in the literature assume the speed of each server is always 1, but it is easy to change these
results to account for different server speeds. We start by introducing the approximations.
The most popular approximation, which has been derived several times in the literature by various

arguments, is the one obtained by Stoyan [22], Hokstad [20], Nozaki and Ross [23], Tijms et al. [26], and
others, and is given by the following equation:

E(T ) = E(X)+ E(WM/M/K)
(1+ C2X)

2
. (7)

Recall that E(WM/M/K) is the waiting time in the exponential service requirement case, for which exact
closed-form formulas can be easily derived [1, pp. 256–260], andCX = σX

E(X) is the coefficient of variation
of the service requirement.
Before presenting the rest of the approximations lets first denote by GX the cumulative distribution

function (cdf) of the service requirement, byGe the stationary-excess cdf associated withGX, i.eGs(t) =
1

E(X)
∫ t
0(1− GX(u))du, t ≥ 0, and let IG(K) =

∫ ∞
0 (1− Gs(t))Kdt, where K ≥ 1 equals the number of

servers.
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Tijms et al. [26] attempt to improve Eq. (7) by the following expression:

E(T ) = E(X)+
(

E(WM/M/K)
(1+ C2X)

2

)

δ, (8)

where δ = 1+ (1− ρ)
(
2KE(X)
E(X2) IG(K)− 1

)
. Observe that Eqs. (7) and (8) differ only by themultiplicative

factor δ.
Another attempt to improve Eq. (7) is the following, proposed by Wang and Wolff [16]:

E(T ) = E(X)+ E(WM/M/K)
(1+ C2X)

2
− ', (9)

where ' =
∣∣∣Pc ·

(
IG(K)− E(X2)

2KE(X)

)∣∣∣, and Pc is the fraction of arrivals at an M/M/K queue that find K
customers in the system and can be calculated recursively (see [1], pp. 256–260).
Eqs. (7)–(9) are all M/M/K-based expressions, and it is easy to verify that they are exact for the

M/M/K case. In contrast, the following two equations interpolate betweenE(WM/M/K) andE(WM/D/K).
They have been proposed by Cosmetatos [25] and Boxma et al. [24]7, and are as follows:

E(T ) = E(X)+ C2XE(WM/M/K)+ (1− C2X)E(WM/D/K), and (10)

E(T ) = E(X)+ 1+ C2X
2JG(K)

E(WM/M/K)

+ 1− JG(K)
E(WM/D/K)

, (11)

where JG(K) equals 1 for K = 1, and it equals K+1
K−1

(
(1+C2X)E(X)
(K+1)IG(K) − 1

)
for K > 1.

The above approximations are based on the following observation. When the variance of the service
requirement σ2X is close to E(X)2, E(W) for anM/G/K system is similar to the wait time in anM/M/K
system. When the variance is close to zero, E(W) is similar to the wait time in anM/D/K system. And
for intermediate variance values, E(W) lies between the corresponding wait time in an M/D/K and an
M/M/K system [19].
Takahashi [38] uses the result for the M/D/K system as a baseline, and accounts for the particular

service requirement distribution, GX, as follows:

E(T ) = E(X)+
(

µ(α)
E(X)α

)1/(α−1)
E(WM/D/K), (12)

where α is such that E(WM/M/K) =
(

µ(α)
E(X)α

)1/(α−1)
E(WM/D/K), and µ(α) =

∫ ∞
0 tαdGX(t).

Whitt [13] considers a GI/G/K system and suggests the following:

E(T ) = E(X)+
(

C2a + C2X
2

)

ΦE(WM/M/K), (13)

where Ca is the coefficient of variation of the interarrival times (for Poisson arrivals Ca = 1), Φ =
C2X−1
2+2C2X

(1− 4γ) e−2(1−ρ)/3ρ + C2X+3
2+2C2X

, for C2a ≤ C2x,
C2a+C2X
2 ≥ 1, and γ is the minimum of 0.24 and (1− ρ)

(K − 1)
√
(4+5K)−2
16Kρ . Note that both Eqs. (12) and (13) are exact for theM/M/K case.

7 We present the slightly modified version suggested by Kimura [14], which accounts for the case where K = 1.
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Fig. 7. Accuracy of our Bimodal model versus existing approximations. The service requirement is Bimodal (ρ = 0.50, α =
percentile of short jobs).

We finally present the simplified version of the diffusion approximation proposed by Yao [11], which
is a refinement of the diffusion approximation proposed earlier by Kimura [10]:

E(T ) = E(X)+ π0θK

E(X)/(1− ρ)
K(1− erK )

, (14)

where π0 =
(∑K−1

i=0 θi + θK/(1− ρ)+ (Kρ/r1) (er1/2 − e−r1/2 − r1)
)−1

, θi = (Kρ)i/ i!, ri = (2bi/ai),
bi = λ − iµ, ai = λ + iµC2X, i = 1, . . . , K, and as usual λ is the arrival rate and µ−1 = E(X).
Figs. 7 and 8 compare our Bimodal model versus Eqs. (7)–(14) for various heavy-tailed scenarios.

Simulation results are also plotted for reference. Fig. 7 corresponds to the scenario in Fig. 2 where the
service requirement is bimodal, ρ = 0.5, and α is the percentile of small jobs. Fig. 8 corresponds to the
scenario in Fig. 4 where the service requirement is bounded Pareto with shape parameter equal to 1.1.

Fig. 8. Accuracy of our Bimodal model versus existing approximations. The service requirement is bounded Pareto.
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In general, as it is evident from both figures, all previous approximations are quite inaccurate. These
approximations rely on the assumption that an M/G/K system behaves similarly to a multiple-server
system with exponential or deterministic service requirements. While this is the case when the service
requirements have small variances, it is far from accurate when the service-time distribution is heavy-
tailed. Note that all prior studies present numerical results for relatively small values of C2X, in particular
for C2X ≤ 9, whereas when service times are heavy-tailed C2X % 1.
Eqs. (8) and (9) perform a bit better than (7), especially in Fig. 7. This is expected since they are

improvements over (7) and take into consideration the particular service distribution. Notice that Eq. (9)
is not as good as (8) under high utilization, since it was derived under light traffic assumptions. Further,
Eq. (10) performs similarly to (7), (8) and (9).
Two approximations among prior work that give relatively good results in some cases are Eqs. (11)

and (12). In particular, Eq. (11) performs better in Fig. 7 than the rest of the approximations except ours,
but is bad in Fig. 8, and Eq. (12) performs well in Fig. 8 but is quite inaccurate in Fig. 7. Notice that
both of these approximations incorporate into their model the particular service distribution and they are
somehow hard to use in practice because of their complexity.
Eq. (13) is not very accurate either. This is not surprising since the main goal in deriving this expression

is to handle non-Poisson arrivals, rather than to improve over existing approximations for the Poisson
case. Finally, Eq. (14) performs similarly to (7). This is somehow expected since the derivation of the
corresponding diffusion model uses some approximations suggested while deriving (7).
Notice that we have also compared our model to the approximations suggested by Kimura [10],

Miyazawa [12] (cases 1 and 2, we left behind case 3 because it is very complicated to use), and Burman
and Smith [27]. These approximations do not perform better than Eqs. (7)–(14) and we do not show the
corresponding lines in the figures to keep them readable.
While prior approximations are inaccurate, our model is quite accurate. Considering its simplicity this

is quite surprising. The key point of our approach is the observation that the system’s behavior drastically
depends on whether all the servers are servicing long jobs and hence they are “blocked”. Depending on
the intensity of long jobs and the number of servers, a system can be “blocked" for a different proportion
of time, and the expected delay is affected accordingly. The parsimonious approach that we follow to
compute the probability that the system is blocked yields accurate results while being easy to use in
practice. Further, the simple approach that we use to map a heavy-tailed distribution into a bimodal
distribution works quite well in practice. We believe this is due to the fact that only very long jobs cause
server blockage, and the size threshold that we use in the mapping is enough to identify those jobs.
As a final note, given the vast differences between the accuracy of our and prior approximations, it is

interesting to inspect the corresponding equations and identify where they differ. With the exception of
Eqs. (11) and (12), the rest of the approximations appear to be clumped together in the plots, so we will
compare our model to only one of them, and in particular to Eq. (7) which is the most popular.
It is well known that E(WM/M/K) = P(busy)E(X)/(1− ρ), where P(busy) is the probability that all

servers are busy in an M/M/K queue, and can be easily computed by the stationary distribution of the
queue [1], pp. 256–260. Now, it is easy to see that Eqs. (1) and (7) would be the same if ρP(blocked) =
P(busy). Fig. 9 plots ρP(blocked) and P(busy) as a function of the number of servers for various values
of ρl/ρ, when ρ = 0.50 as in Fig. 7. It is evident from the plot that as the proportion of the load due to
long jobs approaches one, the two terms become the same. This is an interesting result which implies that
previous approximations yield similar results with our approximation only when ρl/ρ is close to one. (In
this case prior approximations are as accurate as our model and quite close to simulation results.) When
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Fig. 9. Comparison of ρP(blocked) = ρPb and P(busy) = Pe (ρ = 0.50).

ρl/ρ is smaller than one, which is the case in the vast majority of real traces, see, for example, [5,36],
previous approximations differ significantly from our model, and they are a lot less accurate as depicted
in Figs. 7 and 8. (In Fig. 7 ρl/ρ = 0.2 and in Fig. 8 it is between 0.1 and 0.3 depending on the size
threshold used to identify long jobs.) This observation reinforces our belief that what makes our approach
more accurate than prior work is the idea of “blocking” and the proper computation of the associated
probability P(blocked).

5. On the optimal number of servers

Recall that according to the model, the average time in the system is given by Eq. (1). One can now
differentiate this expression to find the optimal K:

dE(T )
dK

= E(X)− λE(X2)
2(1− ρ)

· dFP

dK
= 0, (15)

where dFP

dK = d
dK

∑K(1−ρs)−1
i=0

(ρlK)i·e−ρlK

i! . This derivative can be calculated using the Leibniz integral rule
[39] which gives dFP

dK = (1− ρs) · fP(ρlK)(K(1− ρs)− 1)+ ∑K(1−ρs)−1
i=0 fP(ρlK)(i) · (i/K − ρl), where

fP(λ)(K) denotes the value of the probability mass function of a Poisson distribution with parameter
λ at K. By ignoring the second term on the derivative (this term takes care of the dependence of the
summation limit on K), we get dFP

dK ≈ (1− ρs) · fP(ρlK)(K(1− ρs)− 1). Hence, to compute the optimal
K we need to numerically solve the equation:

(1− ρs)
(ρlK)K(1−ρs)−1e−ρlK

(K(1− ρs)− 1)!
= 2(E(X))2(1− ρ)

ρE(X2)
. (16)

This approximation does not work well when ρ is close to one. As a result, for ρ ≥ 0.9, one should use
all the terms from the Leibniz integral rule to compute the optimal number of servers with good accuracy.
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Table 1
Optimum number of servers for various system loads and size distributions

ρ m M γ K∗
p K∗

b Ko Ko
a ρ m M γ K∗

p K∗
b Ko Ko

a

0.5 383 108 1.1 10 9 9 10 0.8 383 108 1.1 45 45 46 59
0.5 549 108 1.2 7 8 7 8 0.8 549 108 1.2 34 32 32 38
0.5 713 108 1.3 6 7 6 6 0.8 713 108 1.3 22 21 22 25

0.7 383 108 1.1 22 24 22 28 0.9 383 108 1.1 150 146 150 217
0.7 549 108 1.2 18 17 17 19 0.9 549 108 1.2 93 93 93 128
0.7 713 108 1.3 12 13 13 13 0.9 713 108 1.3 61 58 61 77

Let K∗
p be the optimal K obtained from simulating an M/bPareto/K system, and K∗

b be the optimal
K obtained from simulating the corresponding M/Bimodal/K system described in Section 3.2. Also, let
Ko be the optimal K obtained from Equation (15), and Ko

a be the optimal K obtained from using the
approximation of Eq. (16).
Table 1 compares these values for various system loads and size distributions. As expected from the

previous plots K∗
b is very close to K∗

p. Further, for small and medium ρ, Eq. (16) gives an accurate value
for the optimal number of servers, while as ρ approaches one, Ko

a is not anymore a good approximation
of the optimal number of servers. Even when our methods do not yield the exact optimum number of
servers, the error that we incur with respect to the minimum response time is rather small. Typically, the
error for K∗

b is less than 3%, and it is less than 7% in the worst case. The approximation Ko
a typically

yields an error of less than 7%. However, as we mentioned before, the error is larger for high loads as
shown in the table.
Note that in order to compute the optimal number of servers, the only information that is needed from

the traffic is the first two moments of the job-size distribution, the fraction of long jobs and the system
load.

6. Conclusions

Under heavy-tailed traffic, a single fast server that operates in a FCFSmanner yields very large average
delays. Preemptive schemes and schemes partitioning jobs into servers based on job sizes can significantly
reduce average delay. However, these schemes are often not available due to implementation constraints.
A multi-server central-queue policy that assigns the next job in FCFS order to the first available server,

does not suffer from implementation constraints and has good performance if it consists of enough
servers. Using simulations and analysis, we show that the required number of servers is small enough to
be practical. We also provide a simple way to compute this number.
Our main contribution is the derivation of an accurate and simple to use model for anM/G/K system.

In contrast to prior work, our model can accurately predict the average response time of such a system
when G, the jobs’ size distribution, is heavy-tailed. The key point of our approach is the observation that
the system’s behavior drastically depends on whether all the servers are servicing long jobs and hence
they are “blocked”, and the accurate computation of the probability that the system is on this state.
In the derivation of the model we do a number of approximations. For example, we model the system

as a single-server one when all servers are busy servicing long jobs, and we use a size threshold to map
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heavy-tailed distributions in corresponding bimodal distributions. These approximations make the model
very simple and easy to use. Yet, our model is significantly more accurate than all previous approaches.
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