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Abstract

The speedup of a switch is the factor by which the switch, and hence the memory used in the switch, runs faster compared
to the line rate. In high-speed switches, line rates are already touching limits at which memory can operate. In this scenario,
it is very important for a switch to run at as low a speedup as possible.
In the past, it has been shown that 100% throughput can be achieved for any admissible traffic for an input queued (IQ)

switch [IEEE Trans. Commun. 47 (8) (1999) 1260; The throughput of data switches with andwithout speedup, in: Proceedings
of the IEEE INFOCOM’00, vol. 2, Tel Aviv, Israel, March 2000, pp. 556–564] at speedup 1. This gives finite average delays
but does not guarantee control on packet delays. In [IEEE J. Sel. Areas Commun. 17 (6) (1999) 1030], authors show that
a combined input–output queued (CIOQ) switch can emulate perfectly an output queued (OQ) switch at a speedup of 2
and, thus, control the packet delays. This motivates the study of possibility of obtaining delay control at speedup less than
2. To guarantee optimal control of delays for a general class of traffic, as shown in [3], speedup 2 is necessary. Hence, to
obtain control of delays at lower speedup, we need to restrict the class of arrival traffics. In this paper, we study the speedup
requirement for a class of admissible traffic, which we will denote as (1, nF)-regulated traffic, with parameters n and F . We
obtain the necessary speedup for this class of traffic. Further, we present a general class of algorithms working at the necessary
speedups and providing bounded delays.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, input queued (IQ) and combined input–output queued (CIOQ) switches with virtual output
queueing (VOQ) have become an attractive architectural solution in very high speed routers [4,5] as they
scale well with the line rate.
At the same time, output queued (OQ) switches are attractive as they achieve 100% throughput under

any admissible traffic and give control over delays. But OQ switches require memory bandwidth (at the
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output ports) to scale as O(rN), where r is the line rate and N is the number of ports. In other words,
the internal switching speed has to run N times faster than the line rate, that is, speedup S is N. This
constrains the speed at which OQ switches can run.
A pure IQ switch is able to achieve very high speeds, since the memory bandwidth scales as O(r),

being by construction its speedup equal to 1. The main drawback of this architecture is that it requires
a scheduling algorithm which selects a non-conflicting set of packets to transfer across the switch. This
scheduling algorithm should be simple, because it is implemented in hardware at very high speed. A
class of maximum weight matching (MWM) algorithms for IQ switches are known which provide 100%
throughput for any admissible traffic [1,2,6]. In [7,8] bounds on the average delay are obtained for MWM
algorithm under admissible Bernoulli i.i.d. traffic pattern. But they do not guarantee delay bounds for each
packet. Many practical scheduling algorithms [9,10] have been proposed to approximate MWM perfor-
mance. Their simplicity usually leads to some performance penalties, usually in the form of throughput
degradation and/or larger delays.
In [2,11] it is shown that at speedup 2, simple maximal matching kind of algorithms are stable (provide

100% throughput) under admissible arrival traffic. But again, there are no strict delay guarantees provided.
In [3] it is shown that S ≥ 2 is necessary and sufficient to emulate performance of OQ switches and, thus,
to control the delays. Unfortunately the perfect emulation of OQ requires complicated stable-marriage
style algorithmswhich are not feasible to implement at a very high-speed. In [12] it was shown that simpler
scheduling algorithms can achieve the same performance of an OQ switch in terms of average delay.
Since speedup higher than 1 limits the speed at which a switch can operate, it is very desirable to operate

at as low speedup as possible. This leads us to investigate a possible tradeoff between speedup and delay.
However, if we want to obtain delay control for speedup 1 ≤ S < 2, we must restrict the arrival traffic.
In this paper, we consider a general enough class of arrival traffic and study the necessary and sufficient
speedup 1 ≤ S < 2 required to emulate OQ performance with guaranteed delay bounds.
The rest of the paper is organized as follows. In Section 2.1, we define the architecture of the CIOQ

switch which is of our interest. In Section 2.2 we present some important definitions. Section 2.3 deals
with notations used in the later part of the paper. Section 2.4 defines the restricted traffic class we consider
in this paper. In Section 3 we consider the essential properties of an F -work-conserving switch, which
incurs at most a delay penalty of F compared to OQ switch. Section 4 talks about the necessary and
sufficient speedup of a CIOQ switch to emulate F -work-conservation.

2. Basic model, definitions and notations

2.1. A CIOQ switch

An N × N CIOQ switch has N inputs and N outputs with cross-bar in the switch fabric, as shown in
Fig. 1. The queues at each input are logically divided into N virtual output queues (VOQ) corresponding
to N different outputs. There are queues at outputs too. When a CIOQ switch is working at speedup S
(with 1 ≤ S ≤ N), each input is able to transfer up to S packets per time slot, and each output is able to
receive up to S packets per time slot. At speedup S = 1 a CIOQ switch is same as IQ switch, and does
not require queues at the output side.
We assume that time is slotted. In a given time slot, at most one packet can arrive at each input. In

every “scheduling cycle”, the cross-bar can transfer one packet from each input and one packet to each



P. Giaccone et al. / Performance Evaluation 55 (2004) 113–128 115

switch fabric1

N

1

N

Fig. 1. Architecture of an N × N CIOQ.

output. Effectively for a CIOQ switch operating at a speedup S, S scheduling cycles happen during one
time slot. For example, if S = 3/2, then every one time slot 1.5 scheduling cycles happen. That is, in real
switch every two time slots, three scheduling cycles happen.

2.2. Work conservation

Next we would like to consider the concept of work conservation for a switch. Consider the following
definition, which was first proposed in [12] motivated from the classical queueing theory.

Definition 1. A switch is work-conserving if and only if, for any time slot, an output is always transferring
one packet to the outgoing link whenever a packet is present in the system directed to the considered
output.

Note that this definition requires that the system should be “observed” at each time slot to check if it
is work-conserving.

An OQ switch is by construction work-conserving whereas an IQ switch is not work-conserving. For
example, consider a 3 × 3 IQ switch in which at time t = 0 no backlog exists and at time t = 1 two
packets arrive: one at input 1 directed to output 3 and one at input 2 directed to output 3. An arrived packet
is immediately transferred to the outputs and transmitted, while the other packet is stored at the input. At
time t = 2 other two packets arrive: one packet at input 1 directed to output 2 and one packet at input
2 directed to output 1. Now at the inputs there are three packets directed to different outputs, but only
two of them can be transferred to the outputs thus an output port remains idle even if there is a packet
directed to it. As a conclusion an IQ switch may be non work-conserving. Note that a work-conserving
switch ensures the minimum average delays, (i.e. the same average delay than an OQ switch) since an
output is never idling as long as a packet directed to it is in the switch.

The work-conserving property of OQ switch suggests the following equivalent work conservation
property which was first considered in [3].

Definition 2. A switch, in particular CIOQ switch, is work-conserving iff, for any arrival sequence A
the following holds for all the time slots: for each output j, the number of packets in the switch waiting
for transmission to j equals the number of packets that would be stored in an OQ under the same A.

From [3], speedup 2 is necessary to emulate OQ and hence to be strictly work-conserving for a CIOQ
switch. The goal of this paper is to consider the switch operating at speedup 1 ≤ S < 2 while providing
bounds on performance difference between CIOQ switch and an OQ switch. This leads to the notion
of little less strict work-conserving property which we call as F -work conservation. Basically, instead
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of requiring the system to be work-conserving every time, we consider system with property of work
conservation holding at every F times.

Definition 3. A CIOQ switch is F -work-conserving iff, for any arrival sequence A the following holds
for time t = 0, F, 2F, . . . , kF, . . . : for each output j the number of packets in the switch waiting for
transmission directed to output j equals the number of packets that would be stored in an OQ under the
same A. We call the time interval {t ∈ Z+ : t ∈ [(k − 1)F + 1, kF]} as the kth observation window.

The most important property about F -work-conserving switches is about the control of the delays. We
compare the delays experienced by packets in a CIOQ switch with an F -work-conserving policy and in
an OQ switch under the same arrival sequence.

Theorem 1. Fix any admissible arrival traffic sequence A at a switch of size N. Suppose an OQ switch
and an F-work-conserving CIOQ switch are given the same arrival traffic pattern A. For any packet
P ∈ A, let T P

OQ be the departure time from the OQ switch. Similarly, let T P
D be the departure time of the

same packet P under the F-work-conserving CIOQ switch. Then for every P departing from OQ switch,
there exists a unique packet P ′ ∈ A departing from CIOQ switch from the same output as P, such that

T P ′

D − T P
OQ ≤ F − 1. (1)

Hence, the average delay per packet experienced by F-work-conserving CIOQ switch is at most F − 1
times more than the OQ switch for each feasible traffic pattern A.

Proof. We apply exactly the same traffic sequence A to both: (a) an OQ switch, and (b) an F -work-
conserving CIOQ switch.

We would like to prove the statement by induction. At time t = 0, both systems start empty and hence
the statement is trivially true. Assume that the theorem statement is true for all packets departing from
OQ till time kF. By F -work conservation property, the number of packets queued for any of the output in
both OQ and CIOQ switch is the same at time kF. Consider P1, . . . , Pm packets departed from output j
in OQ switch between time kF+ 1, . . . , (k + 1)F , where m ≤ F , depending on arrival pattern A. Since

• at the end of time kF, both OQ and CIOQ had the same number of packets enqueued for output j,
• at the end of time (k + 1)F , both OQ and CIOQ have the same number of packets enqueued for output

j, and
• there are m packetsP1, . . . , Pm departing from output j in OQ switch between time kF+1, . . . , (k+1)F ,
• there are m packets P ′

1, . . . , P
′
m departing from output j of CIOQ by the end of time (k + 1)F .

We can associate each of the Pi with unique P ′
i and obtain,

T
P ′

i

D − T
Pi

OQ ≤ F − 1,

which means that the average departure time in CIOQ differs at most by F − 1 from OQ. Then the
same property holds for the average delay, since the arrival sequence is the same for CIOQ and OQ. This
completes the proof of Theorem 1. "

We would like to note that Theorem 1 refers to a much stronger property than just a bounded aver-
age delays. For example, under admissible traffic an IQ switch running at speedup 1 and using MWM
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scheduling policy has a bounded average delay, and hence bounded average delay with respect to OQ
switch too (by definition OQ has average delay ≥ 0). But it does not imply the property of Theorem 1.

2.3. Notations

Consider an N × N CIOQ switch. We observe the system at times tk = kF, ∀k ∈ Z+, since we are
interested in F -work-conserving property. We define the following notations:

• Bk
ij is the number of packets enqueued at the input port i and destined to output j, sampled at the

beginning of the observation window k, at time t = kF ∀k ∈ Z+.
• B̂k

j ! ∑

i B
k
ij and B̄k

i ! ∑

j Bk
ij.

• Aij(t) is the number of arrivals from input i to output j at time t ∀t ∈ Z+; A(t) = [Aij(t)]. Ak
ij is

the cumulative number of arrivals from input i to output j occurring during the (k − 1)th observation
window: Ak

ij =
∑kF−1

t=(k−1)F Aij(t). Ak = [Ak
ij].

• Âk
j !

∑

i A
k
ij and Āk

i !
∑

j Ak
ij.

• Dk
ij is the cumulative number of services from input i to output j, occurring during the kth observation

window: Dk = [Dk
ij].

• D̂k
j !

∑

i D
k
ij and D̄k

i !
∑

j Dk
ij.

• Ok
j is the number of packets enqueued at the output port j, sampled at the beginning of the kth observation

window.
• Yk

j =
∑

i B
k
ij + Ok

j is the total number of packet queued in the system and destined to output j.
• )x*+ = max{0, x}.

To model the system, we consider the switch evolving in a gated-fashionwith period F , i.e. new arrivals
are aggregated during each observation window and they are scheduled only at the beginning of the next
observation window. It is like considering batch arrivals at the beginning of a new observation window,
by batching all the arrivals during the previous observation window. The evolution of the state of the
system is sampled at the beginning of a new observation window and can be modeled as follows:

Bk+1
ij = Bk

ij + Ak
ij − Dk

ij ∀i, j, (2)

Ok+1
j =

⌈

Ok
j +

∑

i

Dk
ij − F

⌉+

∀j, (3)

Yk+1
j =

⌈

Yk
j + Âk

j − F
⌉+

. (4)

Eq. (2) models the system evolving in a gated fashion. Indeed, the new backlogged packets are given by the
old ones, plus the new arrivals and minus the departures, both occurring during the previous observation
window. Note that, when F = 1, Eq. (2) degenerates into the evolution of a generic discrete-time queue.
It is important to highlight that a system evolving in a gated-fashion can increase the delay of a packet
by at most F time slots, with respect to a slot-by-slot system. Eqs. (3) and (4) describe the transfer of all
the scheduled packets directed to a generic output; in fact, during each observation window, at most F
packets can be transferred to the output line cards. Eq. (4) assumes implicitly that the considered CIOQ
switch is F -work-conserving.
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Define the following norm.

Definition 4 (IO norm). Given X ∈ RN2 :

‖X‖IO ! max







max
j

{

∑

i

Xij

}

, max
i







∑

j

Xij













.

A policy D working with a speedup S is feasible if:

‖Dk‖IO ≤ SF ∀k, Bk
ij, A

k
ij. (5)

Indeed, by Birkhoff von Neumann theorem, any set Dk can be scheduled [13] in a time window of ‖Dk‖IO
slots, since Dk can be decomposed in ‖Dk‖IO switching configurations.

2.4. Traffic class

In our context, we consider only controlled traffic, since it is the only one for which it is possible to
guarantee delay bounds in an OQ switch architecture. We consider here only two kinds of controlled
traffic: regulated and leaky bucket constrained traffic. Since at most one packet arrives per time slot, the
following property holds when the arrivals are observed at the inputs:

Āi ≤ F. (6)

2.4.1. Regulated traffic
The following definition is derived by the adversary queueing theory [14].

Definition 5. An arrival process A is (ρ, W)-regulated if:
∥

∥

∥

∥

∥

t+W−1
∑

z=t

A(z)

∥

∥

∥

∥

∥

IO

≤ ρW ∀t,

i.e., at most ρW packets arrive during each interval of W time slots for each input–output couple. W is
called “admissibility window”.

We can say that a (ρ, W)-regulated traffic injects at most ρW packets during an admissibility window
W , corresponding to a maximum average rate ρ for each input–output couple during the same window W .
Furthermore, an arrival process (ρ, W)-regulated is also (1, ρW)-regulated, but not vice versa. In other
words, the family of all the possible arrival processes (ρ, W)-regulated is a subset of the bigger family of
processes (1, ρW)-regulated.

We focus on (1, nF)-regulated arrival processes for which it holds:
∥

∥

∥

∥

∥

k+n−1
∑

z=k

Az

∥

∥

∥

∥

∥

IO

≤ nF ∀k. (7)
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2.4.2. Leaky bucket constrained traffic
This second kind of source is the leaky bucket constrained [15].

Definition 6. An arrival process A is [ρ, σ]-LBC (leaky bucket constrained) with leaky rate ρ < 1 and
bucket size σ if

∥

∥

∥

∥

∥

k+n−1
∑

t=k

A(t)

∥

∥

∥

∥

∥

IO

≤ γρ,σ(n) ∀k,

where, being u(t) the step function,

γρ,σ(t) = (σ + ρt)u(t).

σ=ρW
ρ0= ρ

W 2W

ρW

t

ρW

Fig. 2. Any (ρ, W)-regulated arrival process (the dashed stair-case is the worst case) can be seen as a [ρ0, σ]-LBC arrival process
(the solid line is the limit for such traffic).

σ
ρ

Wmin
t

ρ

Fig. 3. Any [ρ0, σ]-LBC arrival process (solid line) can be seen as a particular (ρ, W)-regulated traffic pattern (dashed line is the
function ρt) when W ≥ Wmin.
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Note that a [ρ, σ]-LBC source is also (1, nF)-regulated, with the following choice of F :

F ≥
⌈

σ

n(1 − ρ)

⌉

, (8)

where )x* is the smallest integer greater or equal than x and (8) is given by solving γρ,σ(nF) ≤ nF:
under these conditions, we have that the arrival curve for a regulated source is always above the arrival
curve corresponding to the LBC source. Figs. 2 and 3 show the relations between (ρ, W)-regulated and
[ρ0, σ]-LBC arrival processes.

3. Properties of F -work-conserving policies

Property 1. A policy D is F-work-conserving in an observation window of size F with speedup S if

B̂k+1
j ≤

⌈

B̂k
j + Âk

j + Ok
j − F

⌉+
∀k, j. (9)

To understand the meaning of this property, start to consider the case F = 1. Eq. (9) means that if at
least a packet is present at the input ports destined for output j, this (single) packet should be transferred
to the output queue j, provided that no packet at the output queue j is present. For a generic F , Eq. (9)
implies that, if at least F − Ok

j packets are present at the input ports destined for output j, these packets
should be transferred to the output queue j.

For F -work-conserving policies we state the following theorem.

Theorem 2. Assume that policy D is F-work-conserving and the arrival processA is (1, nF)-regulated.
If Yk

j > 0 then

∃n0 : 0 ≤ n0 < n, Yk
j Y

k+n0
j = 0,

i.e., it exists a k′ close to k (that is, k′ − k < n) such that Yk′

j = 0.

Proof. Case n = 1. Here, the meaning of the theorem is that Yk
j = 0 for all k. By induction, assume that

the theorem holds for an epoch less or equal to k, hence Yk
j = 0. Recall (4) and, by contradiction, assume

Yk+1
j > 0:

Yk
j = 0, 0 < Yk+1

j ≤
⌈

Yk
j + Âk

j − F
⌉+

≤ Âk
j − F ⇒ Âk

j > F,

which is in contradiction with A which is (1, F )-regulated.
Case n = 2. By induction, assume that the theorem holds for an epoch less or equal to k − 1, hence

Yk−1
j = 0 and Yk

j > 0. Recall (4) and by contradiction, assume Yk+1
j > 0:

0 < Yk
j ≤

⌈

Yk−1
j + Âk−1

j − F
⌉+

= Âk−1
j − F,

0 < Yk+1
j ≤

⌈

Yk
j + Âk

j − F
⌉+

≤ Âk−1
j − F + Âk

j − F ⇒ Âk
j + Âk−1

j > 2F.
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But, since A is (1, 2F )-regulated, Âk
j + Âk−1

j ≤ 2F , which is in contradiction. The proof can be easily
extended for n > 2. "

Note that Theorem 2 implies that the maximum delay experienced by packets of an (1, nF)-regulated
arrival process in a CIOQ switch with an F -work-conserving policy is not greater than nF slots.

We now show one possible example of F -work-conserving policy.

Lemma 1. The following policy D:

Dk
ij = (Ak

ij + Bk
ij) min

{

1,
θF − γOj

Âk
j + B̂k

j

}

∀i, j, k

is F-work-conserving for θ ≥ 1 and 0 ≤ γ ≤ 1.

Proof. If Âk
j + B̂k

j ≤ θF − γOj, then B̂k+1
j = 0 and D̂k

j = B̂k
j + Âk

j . Otherwise, if Âk
j + B̂k

j > θF − γOj,
then B̂k+1

j = B̂k
j + Âk

j − θF + γOj > 0 and D̂k
j = θF − γOj. Hence, if θ ≥ 1 and γ ∈ [0, 1],

B̂k+1
j ≤

⌈

B̂k
j + Âk

j − θF + γOj

⌉+
≤

⌈

B̂k
j + Âk

j − F + γOj

⌉+
≤

⌈

B̂k
j + Âk

j − F + Oj

⌉+
,

and the policy D is F -work-conserving. "

Policy D, to be feasible with the speedup S, satisfies the following relation, derived from Eq. (5),
referred as feasibility condition:

SF ≥ ‖Dk(θ, γ)‖IO ∀k.

Intuitively, policy D, with γ = 0, is greedy, since it transfers completely all the backlogged packets
if compatible with the available output bandwidth θF . Otherwise, the output bandwidth is distributed
among all the inputs proportionally to the number of backlogged packets.

4. On the minimum speedup under regulated traffic

The following three theorems are our main results. The first one is quite trivial and intuitive, but can
be significant.

Theorem 3. Consider a CIOQ switch. Under an arrival processAwhich is (1, W)-regulated, there exists
a W-work-conserving policy when S ≥ 1.

Proof. Fix the observation window size F = W . Consider the following policy:

Dk
ij = (Ak

ij + Bk
ij) min

{

1,
F

Âk
j + B̂k

j

}

.

We know, from Lemma 1, that it is F -work-conserving (in this case, θ = 1 and γ = 0). Now we will
prove that it is feasible for S ≥ 1. Thanks to Theorem 2, we can assume, for all k,

Yk
j = 0 ⇒ Bk

ij = 0 ∀i and Ok
j = 0.
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By assumption, Âk
j ≤ F and Āk

i ≤ F . Hence, the policy reduces to: Dk
ij = Ak

ij and by imposing ‖Dk‖IO ≤
SF, we obtain S ≥ 1. "

Theorem 4. Consider a CIOQ switch. Under an arrival processAwhich is (1, W)-regulated, there exists
a W/2-work-conserving policy if and only if S ≥ 4/3.

Proof. Fix the observation window size F = W/2. We divide the proof in two steps, in the first we show
that S = 4/3 is a sufficient speedup to deal with (1, 2F )-regulated traffic, in the second step we show
that it is also a necessary condition. Note that in this case, D is also the optimal policy, minimizing the
speedup needed.

Step 1. Fix θ0 = 4/3 and consider the following policy D:

Dk
ij = (Ak

ij + Bk
ij) min

{

1,
θ0F

Âk
j + B̂k

j

}

.

We know, from Lemma 1, that D is F -work-conserving (in this case, γ = 0 and θ = θ0), hence it is a
good representative for D. We show now that D is feasible for S ≥ 4/3. First we notice that, in general,

D̂k
j =

∑

i

Dk
ij = min{Âk

j + B̂k
j , θ0F } ≤ θ0F ≤ SF

with S ≥ 4/3. Thus, to decide the feasibility of D, we have to compute the maximum possible value
for D̄k

i . D̄k
i can be splitted in two components, D̄k

i,A which is the amount of services received by packets
arrived during the kth observation window at input i, and D̄k

i,B is the amount of services received by
backlogged packets from the previous observation window at input i : D̄k

i = D̄k
i,A + D̄k

i,B. It is D̄k
i,A ≤ F

because of (6). We now find the maximum for D̄k
i,B. Note that if D̂k

j,B > 0 then B̂k
j > 0, being D̂k

j,B

the amount of service received by backlogged packets at output j. Then, B̂k−1
j = 0 and Dk

ij,B = Bk
ij for

Theorem 2.

∑

j

Bk
ij =

∑

j

Ak−1
ij

(

1 − min

{

1,
θ0F

Ak−1
j

})

≤
∑

j

Ak−1
ij

(

1 − min
{

1,
θ0F

2F

})

≤ F

(

1 − θ0

2

)

thanks to the fact that Ak−1
j ≤ 2F . Thus, after maximizing D̄k

i,B, we can maximize D̄k
i and imposing the

feasibility conditions:

D̄k
i ≤ F + F(1 − 1

2θ0) = 4
3F ≤ SF,

which holds for S ≥ 4/3.
In conclusion, with speedup S ≥ 4/3 policy D is feasible.

Step 2. We want to show, by a counterexample, that the minimum speedup 4/3 is also necessary to have an
F -work-conserving policy. Consider a switch with two active inputs and three outputs. Assume Yk

j = 0,
hence Bk

ij = 0 for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3. Consider the following traffic pattern, (1, 2F )-regulated:
Ak

11 = Ak
21 = Ak+1

12 = Ak+1
23 = F . At the end of the kth observation window, to minimize the maximum

backlog at both inputs, we set Dk
11 = Dk

21 = SF/2.
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After the arrival at time k + 1, there are (1 − S/2)F packets enqueued at the inputs and destined to
output 1, whereas F are destined to output 2 and 3. Hence, to haveD work-conserving by setting Yj = 0
and Bk+2

ij = 0: Dk+1
ij = Bk+1

ij + Ak+1
ij . Since Dk+1

ij must be feasible, we impose

(2 − S)F

N
+ 2(2N − 1)F

3N
≤ SF ⇒ S ≥ 4

3
.

Hence, S ≤ 4/3 is a necessary condition to have an F -work-conserving policy. "

Theorem 5. Consider a CIOQ switch. Under an arrival processAwhich is (1, W)-regulated, there exists
a W/3-work-conserving policy, if S ≥ 3/2.

Proof. Fix the observation window size F = W/3. Consider the following policy D:

Dk
ij = (Ak

ij + Bk
ij) min

{

1,
θF

Âk
j + B̂k

j

}

.

Note that, thanks to Lemma 1,D is F -work-conserving (in this case, γ = 0). We show now that S ≥ 3/2
is a sufficient and necessary condition forD to be feasible. In this case, the considered policy may not be
the optimal policy, minimizing the speedup needed.

Step 1. Fix S ≥ 3/2. We first observe the following property.

Property 2. It can never happen that it exists j such that Bk
j > 0 and Bk+1

j > 0.

By contradiction, we can write the system evolution:

Bk
j = Ak−1

j − Dk−1
j + Bk−1

j > 0, (10)

Bk+1
j = Ak

j − Dk
j + Ak−1

j − Dk−1
j > 0 (11)

since Bk−1
j = 0 for Theorem 2. From both (10) and (11) we deduce that Dk

j = Dk+1
j = SF. But, because

of the traffic features, it should be satisfied: Dk
j + Dk+1

j = 2SF < Ak
j + Ak+1

j ≤ 3F , hence S < 3/2
which is in contradiction with our assumptions.

Consider the policy D and fix θ0 = 3/2. We know, from Lemma 1, that D is F -work-conserving (in
this case, γ = 0 and θ = θ0). We show now thatD is feasible for S ≥ 3/2. First we notice that, in general,

D̂k
j =

∑

i

Dk
ij = min{Âk

j + B̂k
j , θ0F } ≤ θ0F ≤ SF

with S ≥ 3/2. Thus, to decide the feasibility of D, we have to compute the maximum possible value for
D̄k

i . D̄k
i can be splitted in only two components, thanks to Property 2, D̄k

i,A which is the amount of services
received by packets arrived during the observation window k at input i, and D̄k

i,B is the amount of services
received by backlogged packets from the previous observation window at input i : D̄k

i = D̄k
i,A + D̄k

i,B. It is
D̄k

i,A ≤ F because of (6). We now find the maximum for D̄k
i,B, being D̂k

j,B the amount of service received
by backlogged packets at output j. Note that if D̂k

j,B > 0 then B̂k
j > 0. Then, B̂k−1

j = 0 and Dk
ij,B = Bk

ij
for Theorem 2.
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∑

j

Bk
ij =

∑

j

Ak−1
ij − Dk−1

ij =
∑

j

Ak−1
ij

(

1 − min

{

1,
θ0F

Ak−1
j

})

≤
∑

j

Ak−1
ij

(

1 − min
{

1,
θ0F

3F

})

≤ F

(

1 − θ0

3

)

(12)

thanks to the fact that Ak−1
j ≤ 3F . Thus, after maximizing D̄k

i,B, we can maximize D̄k
i and imposing the

feasibility conditions:

D̄k
i ≤ F + F(1 − 1

3θ0) = 3
2F ≤ SF,

which holds for S ≥ 3/2.
In conclusion, with speedup S ≥ 3/2 policy D is feasible.

Step 2. We now prove, by a counterexample, that the minimum speedup 3/2 is a necessary condition for
D to be F -work-conserving. By contradiction, consider a switch with three active inputs and three active
outputs, and j such that Yk

j = 0 : Bk
ij = 0 for 1 ≤ i ≤ 3. We assume S < 3/2 that implies θ <S< 3/2.

Consider the following traffic pattern, (1, 3F )-regulated: Ak
11 = Ak

21 = Ak
31 = Ak+1

12 = Ak+1
22 = Ak+1

32 =
Ak+2

13 = F . At the end of observation window k, the service is given by: Dk
11 = Dk

21 = Dk
31 = θF/3.

After the arrival at time k + 1, there are (1 − θ/3)F packets enqueued at each active input and destined
to output 1, whereas F packets are destined to output 2. Hence, at time k + 1 the policy D gives

Dk+1
11 = Dk+1

21 = Dk+1
31 = 1

3θF, Dk+1
12 = Dk+1

22 = Dk+1
32 = 1

3θF.

After the arrival at time k + 2, there are (1 − 2θ/3)F packets enqueued at each active input and destined
to output 1, (1 − θ/3)F packets at each active input and destined to output 2, whereas F packets are
destined to output 3. Hence, at time k + 2 the policy D gives

Dk+2
11 = Dk+2

21 = Dk+2
31 = (1 − 2

3θ)F, Dk+2
12 = Dk+2

22 = Dk+2
32 = 1

3θF, Dk+2
13 = F.

To impose the feasibility of Dk+2, it should be:

Dk+2
11 + Dk+2

12 + Dk+2
13 ≤ SF ⇒ (2 − 1

3θ)F < 3
2F

thus θ > 3/2 which is in contradiction with our assumptions. Hence, S ≥ 3/2 is a necessary condition
for D to be feasible. "

It is possible to compute the minimum speedup necessary and sufficient for D, with γ = 0, to be
F -work-conserving under a generic (1, nF)-regulated traffic. The idea is to generalize the counterexamples
used in the previous proofs as follows.

To impose the feasibility condition on D, we have to compute the maximum value that D̄k
i

D̄k
i =

∑

j

Dk
ij =

∑

k

(Ak
ij + Bk

ij) min

{

1,
θ0F

Âk
j + B̂k

j

}

can assume under any arrival process which is (1, nF)-regulated and finally impose D̄k
i ≤ SF.
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It is possible to show that the maximum value of D̄k
i can be found, for the first input, considering only an

arrival process in which during the (k − l)th observation window, only the first sl inputs, with 1 ≤ sl ≤ n,
receive packets destined to output l + 1:

Ak−l
i(l+1) = F for 1 ≤ i ≤ sl and 0 ≤ l < n.

According to the policyD, we can now compute the number of packets that have to be transferred during
the kth observation window, in the worst case:

fl(sl, θ) = max
l≤s1≤k

⌈

min
{

slF − θlF
sl

,
θF

sl

}⌉+
.

Now the minimum speedup necessary and sufficient to transfer all the traffic is given by solving the
following optimization problem:

min θ, (13)

1 ≤ θ ≤ 2, (14)

n−1
∑

l=0

fl(sl, θ) ≤ SF (15)

for all possible (s0, . . . , sn−1).
We have solved numerically the optimization problem, with an exhaustive search, and have observed

that for n < 8, the required speedup is less than 2 and the result is useful for computing delay bounds, as
shown in the next section.

5. Main results about delay performance

Under a (1, nF)-regulated arrival process, Theorems 3–5 evaluate the compromise between speedup and
average delay penalty with respect to an OQ switch, which is 3/2×F . Indeed, the average delay penalty is
sum of two contributions. The first is the average delay penalty equal to F due to the F -work-conserving

Table 1
Tradeoff between speedup, the average delay penalty with respect to an OQ switch and maximum delay for a (ρ, W)-regulated
traffic

Minimum speedup Average delay penalty w.r.t. OQ Maximum delay

Sufficient Necessary

S = 1 S = 1 (3/2)ρW 2ρW

S = 4/3 S = 4/3 (3/4)ρW (3/2)ρW

S = 3/2 – (1/2)ρW (4/3)ρW

S = 1.636 – (3/8)ρW (5/4)ρW

S = 1.739 – (3/10)ρW (6/5)ρW

S = 1.846 – (1/4)ρW (7/6)ρW

S = 1.976 – (3/14)ρW (8/7)ρW

S = 2 S = 2 0 ρW
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Table 2
Trade off between speedup, the average delay penalty with respect to an OQ switch and maximum delay for a [ρ, σ]-LBC traffic

Minimum speedup Average delay penalty w.r.t. OQ Maximum delay

Sufficient Necessary

S = 1 S = 1 (3/2)σ/(1 − ρ) 2σ/(1 − ρ)

S = 4/3 S = 4/3 (3/4)σ/(1 − ρ) (3/2)σ/(1 − ρ)

S = 3/2 – (1/2)σ/(1 − ρ) (4/3)σ/(1 − ρ)

S = 1.636 – (3/8)σ/(1 − ρ) (5/4)σ/(1 − ρ)

S = 1.739 – (3/10)σ/(1 − ρ) (6/5)σ/(1 − ρ)

S = 1.846 – (1/4)σ/(1 − ρ) (7/6)σ/(1 − ρ)

S = 1.976 – (3/14)σ/(1 − ρ) (8/7)σ/(1 − ρ)

S = 2 S = 2 0 σ/(1 − ρ)

property (see Theorem 1). The second is an additional average penalty equal to F/2 due to the switch
working in a gated-fashion (see Eq. (2)). On the contrary, the absolute delay is nF + F , thanks to the
observation at the end of Theorem 2.

Now consider an arrival process (ρ, W)-regulated and an arrival process [ρ, σ]-LBC. Tables 1 and 2
show the average delay penalty with respect to OQ and the absolute delay, for regulated and LBC traffic.
Note that, for 3 < n < 8, we computed the minimum speedup only numerically, solving the optimization
problem (13)–(15). Of course, with speedup S = 2, a CIOQ system can emulate perfectly an OQ and the
average delay penalty is null.

6. Conclusions

CIOQ switches that can control the packet delays at low speedups are very appealing. It is well known
that, at speedup lower than 2, a CIOQ switch cannot emulate OQ switch even with bounded delay penalty
[3]. Hence, we considered the CIOQ switch operating under a restricted, but general enough, arrival traffic
class. We defined a new notion of F -work conservation for CIOQ switches, which in turn implies the
property of OQ emulation with average delay penalty bounded by F . Under regulated traffic, we were
able to compute an upper bound of the delay penalty for S = 1, S = 4/3 and S = 3/2. We computed
also numerically an upper bound for some values of S, with 3/2 < S < 2.

Thus, we showed that it is possible to emulate OQ switch under quite a general class of arrival traffic
at lower speedup than 2 with bounded amount of average delay penalty.
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