A New Proof of Parisi's Conjecture for the Finite Random Assignment Problem

Chandra Nair Dept. of Electrical Engineering Stanford University Stanford, CA 94305-9510 e-mail: mchandra@stanford.edu Balaji Prabhakar Depts. of Elec. Engg. & Comp. Science Stanford University Stanford, CA 94305-9510 e-mail: balaji@ee.stanford.edu

Mayank Sharma Dept. of Electrical Engineering Stanford University Stanford, CA 94305-9510 e-mail: msharma@stanford.edu

Abstract — Consider the problem of minimizing cost when assigning n jobs to n machines. An assignment is a one-to-one mapping of jobs onto the machines. Assume that the cost of executing job i on machine jis c_{ij} , i, j = 1, ..., n. When the c_{ij} are i.i.d. exponentials of mean 1, Parisi conjectured that the average cost of the minimum assignment equals $\sum_{i=1}^{n} \frac{1}{i^2}$. Recently, the authors, and independently, Linusson and Wästlund, have proved this conjecture. In the above work the authors also made a refined conjecture that, if established, would yield another proof of the Parisi's conjecture. This paper establishes the refined conjecture, thus providing a new proof of Parisi's conjecture.

I. INTRODUCTION

Consider a system with n jobs and n machines where the cost of executing job i on machine j is c_{ij} . The assignment problem concerns the determination of a 1-to-1 assignment of jobs onto machines that minimizes the cost of executing all the jobs. The cost of the minimizing assignment is given by $A_n = \min_{\pi} \sum_{i=1}^{n} c_{i,\pi(i)}$. In the random assignment problem the c_{ij} are i.i.d. random variables drawn from some distribution, and the quantity of interest is the expected minimum cost, $\mathbb{E}(A_n)$. For $c_{ij} \sim$ i.i.d. exp(1) variables, Parisi [9] conjectured that:

$$\mathbb{E}(A_n) = \sum_{i=1}^n \frac{1}{i^2}.$$
(1)

Let $C = [c_{ij}]$ be an $n \times n$ cost matrix with i.i.d. $\exp(1)$ entries. Delete the top row of C to obtain the rectangular matrix L of dimensions $(n-1)\times n$. For each $i = 1, \ldots, n$, let S_i be the cost of the minimum-cost permutation in the sub-matrix obtained by deleting the i^{th} column of L. These quantities are illustrated below.

Let σ be the random permutation of $\{1, \ldots, n\}$ such that $S_{\sigma(1)} \leq \ldots \leq S_{\sigma(n)}$. Define $T_i = S_{\sigma(i)}$. We shall refer to the sequence $\{T_i, i = 1, \ldots, n\}$ as the *T*-matchings of *L*. In the above example, $T_1 = 5$, $T_2 = 13$ and $T_3 = 20$.

In [8] we prove the following

Theorem 1 For j = 1, ..., n-1, $T_{j+1} - T_j \sim \exp(j(n-j))$ and these increments are independent of each other.

Theorem 2 $\mathbb{E}(A_n) = \sum_{i=1}^n \frac{1}{i^2}.$

In [8], we use Theorem 1 to establish Theorem 2.

II. MAIN RESULT

Let L be an $(n-1) \times n$ matrix of i.i.d. $\exp(1)$ entries and let $\{T_i\}_1^n$ denote its T-matchings, as defined in the previous section. Let Υ denote the set of all placements of the row-wise minimum entries of L; for example, all the row-wise minima in the same column, all in distinct columns, etc. Now consider any fixed placement of the row minima $\xi \in \Upsilon$. We prove the following conjecture made in [8]

Theorem 3 Conditioned on a particular placement ξ ,

$$T_{j+1} - T_j \sim \exp(j(n-j))$$
 for $j = 1, \dots, n-1$.

Furthermore, these increments are independent of each other.

The proof of Theorem 3 uses the memoryless property of the exponential distribution and some combinatorial observations to reduce the computations to that of Theorem 2.

Clearly, if we average over all $\xi \in \Upsilon$ then we recover Theorem 1. Hence Theorem 3 is a refinement of Theorem 1. It turns out that Theorem 3 is simple to prove in the case when ξ is the placement corresponding to all row-wise minima being in distinct columns.

References

- D. J. Aldous. Asymptotics in the random assignment problem, Probab. Th. Rel. Fields, 93 (1992) 507-534.
- [2] D. J. Aldous. The ζ(2) Limit in the Random Assignment Problem, Random Structures and Algorithms 18 (2001) 381-418.
- [3] D. Coppersmith and G. Sorkin. Constructive bounds and exact expectations for the random assignment problem, *Random Structures and Algorithms*, 15 (1999) 113-144.
- [4] S. Linusson and J. Wästlund. A Generalization of the Random Assignment Problem, arXiv: math.CO/0006146.
- [5] S. Linusson and J. Wästlund. A Proof of Parisi's Conjecture on the Random Assignment Problem, accepted for publication in *Probab. Th. Rel. Fields.* http://www.mai.liu.se/~svlin/rap.html
- [6] M. Mézard and G. Parisi. On the solution of the random link matching problem, J. Physique, 48 (1987) 1451-1459.
- [7] M. Mézard, G. Parisi and M. A. Virasoro. Spin Glass Theory and Beyond, World Scientific, Singapore, 1987.
- [8] C.Nair, B. Prabhakar and M. Sharma. A Proof of the Conjecture due to Parisi for the Finite Random Assignment Problem, *submitted.* http://www.stanford.edu/~ mchandra Conference version: Proofs of the Parisi and Coppersmith-Sorkin Conjectures for the Finite Random Assignment Problem, *Proceedings of IEEE FOCS, 2003.*
- [9] G. Parisi. A conjecture on random bipartite matching, Technical Report cond-mat/9801176, XXX LANL Archive, 1998
- [10] J. Michael Steele. Probability Theory and Combinatorial Optimization. Number 69 in CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia PA, 1997.