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Packet switches (that is, IP routers
and ATM and Ethernet switches) maintain
statistics for performance monitoring, net-
work management, security, network trac-
ing, and traffic engineering. Counters usually
collect such statistics as the number of
arrivals of a specific packet type or they count
a particular event, such as when the network
drops a packet. A packet’s arrival can lead to
the updating of several different statistics
counters.

The number of statistics counters in a net-
work device and their rate of update are often
limited by memory technology. On-chip reg-
isters or SRAM (on- or off-chip) can hold a
few counters. Often, a network device has to
maintain many counters and therefore must
store them in off-chip DRAM. But the large
random access times of DRAMs make their
use difficult when supporting high-bandwidth
links. The time it takes to read, update, and
write a single counter would be too long, and
worse still, each arriving packet can trigger the
update of multiple counters. 

To alleviate these problems, we use a well-
known architecture for storing and updating
statistics counters. This approach maintains
smaller-size counters in fast (potentially on-
chip) SRAM, while maintaining full-size
counters in a large, slower DRAM. Our goal
is to ensure that the system always correctly
maintains counter values at line rate. An opti-
mal counter management algorithm (CMA)

minimizes the required SRAM size while
ensuring correct line-rate operation for a large
number of counters.

Role of packet switches
Packet switches perform many processing

tasks on arriving packets. Jobs include address
lookup, classification, buffering, quality-of-ser-
vice scheduling, header editing, and statistics
maintenance. Packet switches typically perform
these tasks on the line cards of switches and
routers, and therefore need to occur at line rate.
When optical carrier line rates increase beyond
Sonet specification OC-192 (10 Gbps) to OC-
768 (40 Gbps), packet processing tasks will
becomes more difficult. Although several pro-
posed techniques deal with address lookup,1

packet classification,2 packet buffering,3-5 and
quality-of-service scheduling,6 we are not aware
of research besides ours that addresses the main-
tenance of a large number of statistics counters.

Packet switches maintain statistics for many
reasons. These include firewall support (espe-
cially stateful inspection), intrusion detection,
performance monitoring (for example, remote
monitoring), network tracing, load balancing,
and traffic engineering (for example, policing
and shaping of traffic patterns). In addition,
most packet switches maintain statistics coun-
ters to facilitate network management. We can
characterize the general problem of statistics
maintenance as follows: When a packet arrives,
the router classifies an arriving packet to deter-
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mine what actions to perform on it—should it
be accepted or dropped, receive expedited ser-
vice or not, and so on. Depending on the cho-
sen action, the router updates statistics counters.

We are interested in statistics that count
events. For example, the number of frag-
mented, dropped, or arriving packets or the
number of bytes forwarded, and so on. We
refer to these types of statistics as counters.
Here, we describe and quantitatively analyze
the problem of maintaining these counters.

We are particularly interested in applica-
tions that maintain many counters, such as a
routing table that counts how many times a
packet uses each prefix, or a router that counts
the packets belonging to each TCP connec-
tion. Both examples would require simulta-
neously maintaining several hundreds of
thousands, or even millions, of counters, mak-
ing it infeasible (or at least very costly) to store
them in SRAM and hence requiring DRAM
storage. Furthermore, we are interested in
applications that have frequent updates, such
as an OC-192c link in which the router
updates multiple counters upon each packet
arrival. These read-modify-write operations
must occur at the same rate as packet arrival.

If each counter is M bits wide, then a
counter update operation

• reads the M bit value stored in the
counter, 

• increments the M bit value, and 
• writes back the updated M bit value. 

If packets arrive at rate R (in gigabits per
second), the minimum packet size is P bits,
and if the router updates C counters each time
a packet arrives, the memory may need to be
accessed (either read or written) every P/(2CR)
ns. Let’s consider the example of 40-byte TCP
packets arriving on a 10-Gbps link; each
arrival leads to the update of two counters.
The memory needs to be accessed every 8 ns,
about eight times faster than the random-
access speed of today’s commercial DRAMs.

It is a strict requirement that routers cor-
rectly update a counter or counters every time
a packet arrives. Counters must account for
every packet. If the scheme that updates coun-
ters performs an update operation every time
a packet arrives and update C counters per
packet, then minimum bandwidth RD

required on the memory interface where the
counters are stored would be at least 2RMC/P.
Again, this bandwidth requirement can
become unmanageable as the size of the coun-
ters and the line rates increase.

We propose an approach that uses DRAM
to maintain statistics counters and a small fixed
amount of (possibly on-chip) SRAM to sup-
port these operations. We assume that DRAM
stores N counters of width M bits and that
SRAM stores N counters of width m < M. The
SRAM counters track the number of updates
not yet reflected in the DRAM counters. Peri-
odically, under the control of a CMA, our
approach updates the DRAM counters by
adding the values in the SRAM counters to the
DRAM counters, as shown in Figure 1. Updat-
ing the DRAM counters relatively infrequently
reduces memory bandwidth requirements.

Our approach derives strict bounds on the
size of the SRAM so that—irrespective of the
arriving traffic pattern—none of the SRAM
counters overflow. DRAM access rate and
bandwidth requirements decrease but still
ensure correct counter operation.

SRAM size and DRAM access rate both
depend on the CMA used. The largest-
counter-first (LCF) CMA minimizes SRAM
size. We derive necessary and sufficient con-
ditions on counter sizes (and hence the SRAM
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Figure 1. Memory hierarchy for the statistics counters. A fixed-size ingress
SRAM (with N counters of width m < M bits) stores the small counters, which
are periodically transferred to the large counters in DRAM (with N counters of
width M bits). The DRAM memory bandwidth decreases by factor b, the num-
ber of timeslots between updates of the large DRAM counters. 
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that stores these counters), and prove that the
LCF CMA is optimal.

As an example of how our technique can
work, consider an OC-192c line card on a router
that maintains a million counters. Assume that
the maximum size of a counter is 64 bits and
that each arriving packet updates a maximum
of 10 counters. Our results indicate that such a
system can use a statistics counter with a 51.2-
ns DRAM access time, 1.25-Gbps DRAM
memory bandwidth, and 9-Mbyte SRAM.

Memory hierarchy
Packets arriving at a switch have variable

lengths; we denote minimum packet size P as
the minimum length of a packet. The time slot
is the time taken to receive a minimum-size
packet at link rate R. We organize the SRAM
as a statically allocated memory, consisting of
separate storage spaces for each of the N coun-
ters. In this article, we assume that an arriv-
ing packet increments only one counter. If we
instead considered the case where each pack-
et arrival updates C counters, the line rate on
the interface would be CR.

A large counter of size M bits in DRAM,
and a small counter of size m < M bits in
SRAM represent each counter. The small
counter counts the most recent events, and
the large counter counts events occurring
since the large counter was last updated. At
any time, the correct counter value is the sum
of the small and large counters.

Updating a DRAM counter consists of a
read-modify-write operation: Read an M bit
value from the large counter. Add the m bit
value of the corresponding small counter to
the large counter. Write the new M bit value
of the large counter to DRAM. Reset the
small-counter value.

Our goal is to decrease DRAM bandwidth
by factor b, that is, RD = 2RM/(Pb), and
increase DRAM access time accordingly, that
is, access time At = Pb/(2R). Thus, the CMA
will update a large counter only once every b
time slots. The minimum SRAM size is func-
tion g, which depends on N, M, and b. There-
fore, the system designer can trade off SRAM
size g(N, M, b) with DRAM bandwidth RD

and access time At. (The system designer
chooses variable b (b ≥ 1). If b = 1, no SRAM
is required, but the DRAM must be fast
enough for all counters to reside in DRAM.

Count C(i, t) is, at time t, the number of
times that the ith small counter has been
incremented since the ith large-counter
update. An empty counter is when counter i is
empty at time t; that is, C(i, t) = 0. 

The correct large-counter value could be
lost if the small counter overflows before it is
added to the large counter. Our approach is
to find the smallest possible size of counters
in the SRAM and a suitable CMA such that
the small counter cannot overflow before its
corresponding large-counter update.

Necessity conditions on any CMA
For this hierarchy of counters to work,

under any CMA the SRAM must meet cer-
tain conditions, which we define in the fol-
lowing theorem. 

Theorem 1 (necessity): Under any CMA, a
counter can reach a count C(i, t) of 

Proof: We will argue that we can create an
arrival pattern for which, after some time,
there exists k such that there will be (N −
1)/[(b − 1)/b]k counters with count k + 1 irre-
spective of the CMA.

Consider the following arrival pattern. In
time slot t = 1, 2, 3,…, N, small counter t is
incremented. Every bth time slot, one of the
large counters is updated and the corre-
sponding small counter reset to 0. Therefore,
at the end of time slot N, there are N(b − 1)/b
counters with count 1 and N/b empty coun-
ters. During the next N time slots, the N/b
empty counters are again incremented, and
N/b2 of these counters are used to update the
large counter and then reset. Therefore, after
2N time slots there are [N(b − 1)/b] + (N(b −
1/b2) counters that have count 1.

In a similar way, we can make N − 1 coun-
ters have a count of 1 at time slot N − 1. Dur-
ing the next N − 1 time slots, all N − 1 counters
are incremented once and 1/b of them are
served—their corresponding large counter is
updated and these small counters are reset to
zero. Now assume that all of the remaining
approximately N/b empty counters are incre-
mented twice in the next 2N/b time slots,
while 2N/b2 counters become empty due to
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service. Note that the number of empty coun-
ters decreased to 2N/b2 from N/b (if b = 2,
there is no change). In this way, after some
time, we see N − 1 counters of count two.

By continuing this argument, we can
arrange for all N − 1 counters to have a count
b − 1. We denote by T the time slot at which
this first happens.

During the interval from time slot 2(N −
1) to 3(N − 1), all of the counters are again
incremented, and 1/b of them are served.
while the rest have a count of two. Service
means that the counters are reset to zero. In
the next N − 1 time slots each of the counters
with size two are incremented, and again 1/b
are served, while the rest have a count of three.
Thus there are (N − 1)/[(b − 1)/b]2 counters
with a count of three. In a similar fashion, if
only nonempty counters keep being incre-
mented, after a while there will be (N − 1)/[(b
− 1)/b]k counters with count k + 1. Hence
there will be one counter with count

Thus, there exists an arrival pattern for
which a counter can reach a count C(i, t) of 

A CMA that minimizes SRAM size
Every b time slots, the LCF CMA algorithm

selects the counter i with the largest count. If
multiple counters have the same count, LCF
CMA arbitrarily picks one. LCF CMA updates
the value of corresponding counter i in the
DRAM and sets C(i, t) = 0 in SRAM.

Optimality
Key to establishing the LCF CMA’s ability

to minimize SRAM size in the concept of
optimality, which we explain using the theo-
rem that follows.

Theorem 2 (optimality of LCF CMA):
Under all arriving traffic patterns, LCF CMA
is optimal in the sense that it minimizes the
count of the required counter.

Proof: We give a brief intuition of this proof
here. Consider a traffic pattern from time t,
which causes some counter Ci (which is small-
er than the largest counter at time t) to reach
maximum threshold M*. A similar traffic pat-
tern can cause the largest counter at time t to
exceed M*. This implies that not serving the
largest counter is suboptimal. We provide a
detailed proof elsewhere.7

Sufficiency conditions on LCF service policy
We must show that under the LCF service

policy what size of SRAM is sufficient.

Theorem 3 (sufficiency): Under the LCF pol-
icy, count C(i, t) of every counter is no more
than ln(bN) / ln[b/(b − 1)]. 

Proof (by induction): Let d = b/(b − 1). Let
Ni(t) denote the number of counters with
count i at time t. We define

We claim under the LCF policy that F(t) ≤
bN for every time t. We shall prove this by
induction. At time t = 0, F(t) = 0 ≤ bN. Assume
that at time t = bk for some k that F(t) ≤ bN.
For the next b time slots, some b counters with
count i ≥ i2 ≥ … ≥ ib are incremented. For sim-
plicity, we assume that the counter values are
distinct (even though the proof does not
require this assumption). After the counters
are incremented, they have counts i1 + 1, i2 +
1, …, ib + 1, and the largest counter among all
the N counters is serviced. The largest counter
has at least value C(i,t) ≥ i1 + 1.

Case 1. If all the counter values at time t
were nonzero, then the contribution of
these b counters in F(t) is α=di1+di2+…+dib.
Consider the values of these counters’ val-
ues after they are incremented, their con-
tribution to F(t + b) becomes dα. But a
counter with count C(i,t) ≥ i1 + 1 is served
at time t + b and its count becomes zero.
Hence, the decrease to F(t + b) is at least
dα/b. Thus, the net increase is at most dα[1
− (1/b)] − α. But d [1 − (1/b)] = 1. Hence,
the net increase is at most zero, that is, if
arrivals occur to nonzero queues, F(t) can’t
increase.
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Case 2. Now we address when one or more
counters at time t are zero. For simplicity,
assume that all incremented b counters are
initially empty. For these empty counters,
their contribution to F(t) was zero, and
their contribution to F(t + b) is db. Again,
the counter with the largest count among
all N counters is served at time t + b. If F(t)
≤ (bN − db), then the inductive claim holds
trivially. If not, that is, F(t) > (bN − dB),
then at least one of the N − b counters,
which did not get incremented, has count
i* + 1 such that di* = b. If this were not so, it
contradicts the assumption F(t) > bN − db.
Hence, a counter with count at least i* + 1
is served, which decreases F(t + b) by d i* + 1

= db. Hence the net increase is zero. You
can similarly argue this case when arrivals
occur at fewer than b empty counters.

Thus, we have shown that, for all times t
when the counters are served, F(t) ≤ bN. This
means that the counter value can not be larg-
er than im, where dim= Nb, that is, C(i,t) ≤
ln(bn)/ln(d). Substituting for d, we get the
counter value bound ln(bN) / ln[b / (b − 1)].

Theorem 4 (sufficiency): A counter of size
log2{ln(bN) / ln[b / (b − 1)]} bits is sufficient. 

Proof: We know that to store value x we need
at most log2x bits. Hence, the proof of this
theorem follows for the Theorem 3.

Choosing the correct value of b
There are three constraints to consider

when choosing b.

• Lower bound derived from DRAM access
time. The DRAM access time is At =
Pb/2R. Therefore, if the DRAM supports
a random access time TR, we require
Pb/2R ≥ TR. Hence, b ≥ 2RTR/P, which
gives a lower bound on b.

• Lower bound derived from memory I/O
bandwidth. Let DRAM I/O bandwidth
be D. Every counter update operation is
a read-modify-write, which takes 2M bits
of bandwidth per update. Hence,
2RM/Pb ≤ D or b ≥ 2RM/PD. This gives
a second lower bound on b.

• Upper bound derived from counter size for
LCF policy. From Theorem 4, the size of

the counters in SRAM is bounded by
log2{ln(bN) / ln[b / (b − 1)]}. However,
since our goal is to keep only a small-size
counter in SRAM, we require that
log2{ln(bN) / ln[b / (b − 1)]} < M. This
gives us an upper bound on b.

The system designer can choose any value
of b that satisfies these three bounds. Very
large N and small M can have no suitable
value of b. Such a case forces the system
designer to store all the counters in SRAM.

OC-192 line card counter design
Consider an OC-192c line card that main-

tains a million counters. Assume that the
maximum size of a counter is P = 64 bytes
and that each arriving packet updates a max-
imum of C = 10 counters, hence, R = 100
Gbps. Suppose that the fastest available
DRAM has access time TR = 51.2 ns. Since
our approach requires Pb/2R ≥ TR, this means
that b ≥ 20. Given present DRAM technol-
ogy, this is sufficient to meet the lower bound
obtained on b using the memory I/O band-
width constraint. Hence the lower bound on
b is simply b ≥ 20.

We consider the upper bound on b, using
two different values for counter size M,
required in the system. If M = 64, then
log2{ln(bN) / ln[b / (b − 1)]} < M and we
design the counter architecture with b = 20.
We find that 9 bits is the minimum size for
the SRAM counters, as required for the LCF
policy. This counter size results in a 9-Mbyte
SRAM. Keeping the SRAM memory on-chip
supports the required access rate. If M = 8,
then ∀b, b ≥ 20, log2{ln(bN) / ln[b / (b − 1)]}
> M. Thus there is no optimal value of b, and
this design must store all the counters in
SRAM without using DRAM.

Packet switches need to maintain counters
for gathering statistics on various events.

Our method can help build a high-bandwidth
statistics counter for any pattern of arrival traf-
fic. We discussed the necessary condition on
the size of SRAM required to keep exact sta-
tistics under any policy. LCF CMA policy is
optimal in the sense of smallest SRAM size,
and we obtained the bounds on the size of
SRAM. But LCF CMA is a complex algorithm
to implement at a very high speed. It will be
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interesting to obtain a similar performance as
LCF CMA with a less complex algorithm. MICRO
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