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Abstract

This paper investigates the dynamics of a synchronization node in isolation, and of
networks of service and synchronization nodes. A synchronization node consists of
M infinite capacity buffers, where tokens arriving on M distinct random input flows are
stored (there is one buffer for each flow). Tokens are held in the buffers until one is
available from each flow. When this occurs, a token is drawn from each buffer to form
a group-token, which is instantaneously released as a synchronized departure. Under
independent Poisson inputs, the output of a synchronization node is shown to converge
weakly (and in certain cases strongly) to a Poisson process with rate equal to the minimum
rate of the input flows. Hence synchronization preserves the Poisson property, as do
superposition, Bernoulli sampling and M/M/1 queueing operations. We then consider
networks of synchronization and exponential server nodes with Bernoulli routeing and
exogenous Poisson arrivals, extending the standard Jackson network model to include
synchronization nodes. It is shown that if the synchronization skeleton of the network
is acyclic (i.e. no token visits any synchronization node twice although it may visit
a service node repeatedly), then the distribution of the joint queue-length process of
only the service nodes is product form (under standard stability conditions) and easily
computable. Moreover, the network output flows converge weakly to Poisson processes.
Finally, certain results for networks with finite capacity buffers are presented, and the
limiting behavior of such networks as the buffer capacities become large is studied.
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1. Introduction

In this paper we analyze a basic synchronization operation on point processes, implemented
by a system called the synchronization node (or synchronization queue), and study networks
of service and synchronization nodes. We suppose that tokens arrive at a synchronization node
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Figure 1: Synchronization of point processes. At least one queue is always empty.

according to M ∈ Z+ point processes

Xi (t) =
∞
∑

n=−∞
1{t in=t}, i ∈ {1, 2, 3, . . . , M}, (1)

where t in is the arrival time of the nth token of the ith flow. The synchronization node has M

infinite capacity buffers, one for each flow, where arriving tokens are queued up (Figure 1).
The synchronization operation consists of holding tokens in the buffers until one is available
from each flow. As soon as this happens, exactly one token is taken from each buffer to form
a group which is instantaneously released as a synchronized departure. The point processes
Xi (·) are assumed to be jointly stationary and ergodic, and the n-index numbering is such that
· · · < ti−1 < 0 ≤ t i0 < ti1 < · · · < tin < tin+1 < · · · pathwise for i ∈ {1, 2, 3, . . . , M}.

The synchronization operation is assumed to begin at time 0, all buffers being empty before
that time. Thus, the departure time of the nth (n ≥ 0) token group is

t sn = max{t in; i ∈ {1, 2, 3, . . . , M}}

and the synchronized process is
S(t) =

∑

t sn

1{t sn=t}. (2)

The process S(t) is obviously not stationary with respect to time shifts, since the extra condition
that the buffers are empty at time 0 is imposed on the system.

One of our primary goals is to study the departure flow of the synchronization node

Sr (t) =
∑

t sn≥r

1{t sn−r=t},

which is just S(t) viewed from time r onwards, as r→∞. Although some simple results are
shown for general arrival processes, the most interesting ones are for the case where the Xi (t)

are independent Poisson processes. In this case, it is shown that Sr (t) converges weakly to a
Poisson process as r→∞. That is, synchronization preserves the Poisson property of flows, as
do other basic operations like superposition, Bernoulli splitting and M/M/1 queueing [15,18].
This key property can be exploited for analyzing whole networks of service and synchronization
nodes, as discussed later.
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Figure 2: Inclusion of synchronization nodes in networks of service nodes. Circles represent service
nodes, bars synchronization ones, and arrows arrivals and routeing of tokens.

Our original motivation for analyzing the synchronization queue comes from the following
canonical model of parallel processing. Consider M processors working in parallel on an
on-going global computation, consisting of an infinite sequence of consecutive tasks. Each
processor produces a sequence of local events corresponding to completions of subtasks as-
signed to it for execution. A global event corresponds to the completion of a task, and each
task is considered completed only when all its corresponding subtasks have been executed.
Assuming that the processing times for subtasks are independent and exponentially distributed
with rate λ, the processes representing local events at each processor are independent Poisson
processes of equal rate λ (load-balanced processors). A key question about this basic parallel
processing paradigm is the determination of the statistics of the global event flow, which tracks
the completion of tasks across all processors. It turns out that this is also Poisson. The model
is basically a synchronization node with independent Poisson inputs of equal rate. Besides
parallel processing, synchronization nodes (and networks of service and synchronization ones)
have applications in various other areas, including database concurrency control, flexible
manufacturing systems, communication protocols, etc.

Jackson networks (and their extensions) [6,7,13,15,18] are very popular models for manu-
facturing and computer networks, and have been extensively used in analyzing the performance
of these systems. This is mainly due to the fact that the queue-size process of a Jackson network
is a Markov chain with a stationary distribution that is of the so-called ‘product-form’ type.
That is, one can compute the joint distribution of all the queue lengths in the network by
treating each queue in isolation and simply taking the product of the individual distributions.
Moreover, Jackson networks have the additional property that all output processes are Poisson.
There are three basic operations performed on traffic flows in the standard Jackson network
model: superposition, Bernoulli routeing, and ·/M/1 queueing. Given that synchronization
preserves the Poisson property, an interesting question that arises is whether it is possible to
include synchronization as a basic operation in the model, along with the three others named
above (see Figure 2), and yet retain the product-form stationary distributions for queue lengths.
It turns out that this is possible, allowing one to generalize the familiar Jackson network model
(and other quasi-reversible networks [15, 18]) to include both service and synchronization
nodes.
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Understanding the dynamics of synchronization operations is important for the design
of modern communication, computer and manufacturing systems. A powerful modelling
framework for studying the logical and algorithmic aspects of concurrency and synchronization
is provided by Petri nets [3,9,19,20]. Unfortunately, their performance analysis and evaluation
is very difficult in a general setup, due to some technical difficulties [11, 19, 20]. Recent
interesting approaches for analyzing the dynamics of queueing networks with synchronization
operations [3–5] have provided structural results (stability, existence of stationary states,
stochastic bounds) under general stationary input flows. The synchronization node exhibits
an essentially pathological behavior, in the sense that it is inherently unstable. This has been
the subject of some interesting studies (see [1,12]) in the past. Due to this inherent instability,
the nature of the departure flow has remained elusive and no joint treatment of service and
synchronization nodes in a Markovian setup has been possible.

This paper contributes to the understanding of the dynamics of synchronization nodes in
isolation, as well as in interaction with other synchronization and service nodes. The issue
concerning the nature of the node departure flows is resolved by introducing a technique which
uses ‘ghost tokens’ to account for the deficit of real ones. We briefly describe it at the end of
this section and use it extensively in the proofs where its effectiveness is demonstrated. The
paper also extends the Jackson network paradigm to a generalized network model including
synchronization nodes (Figure 2). This retains the basic ‘product-form’ property of stationary
distributions, while it has more extensive modeling power than the standard model.

We proceed by introducing some additional notation needed to describe the dynamics of the
synchronization node. For any i ∈ {1, 2, 3, . . . M}, let Ni(t) = ∑∞

n=0 1{0<tin≤t} be the number
of arrivals of Xi (t) to the synchronization node in (0, t] (we assume Ni(t) = 0 a.s. for t < 0),
and let λi = E[Ni(1)] be the arrival rate of Xi (t). Further, let Ns(t) = ∑∞

n=0 1{0<tsn≤t} be the
number of synchronized departures in (0, t]. Then the number of tokens in the ith buffer at
time t , Qi(t) = Ni(t) − Ns(t), is an a.s. right-continuous process with left-hand limits.

Observe that, by definition of the synchronization operation, at least one of the M buffers
must be empty at any given instant. Specifically, in the 2-input case, this implies that min{Q1(t),

Q2(t)} = 0 for all t > 0. Thus

Q(t) = Q1(t) − Q2(t) (3)

completely specifies the status of the buffers at time t . Note also that Q(t) = N1(t) − N2(t).
An alternative definition for S(t) in terms of Q(t) is given by the equation

S(t) = X1(t)1{Q(t−)<0} + X2(t)1{Q(t−)>0}. (4)

Intuitively, this means that an event occurs for S(·) at some time t , if and only if just prior to t

(i.e. at t−) one of the buffers is non-empty and there is an arrival to the other buffer. Due to the
right continuity of the paths of Q(t), it is necessary to use Q(t−) in (4) rather than Q(t).

The focus of this paper is on the canonical case where the input flows are independent
Poisson processes. Considerable emphasis is placed on the special case of equal arrival rates,
because it naturally captures load balancing considerations that are essential in many practical
situations. The rest of the paper is organized as follows. In Section 2 the synchronization node
with independent Poisson inputs is studied in isolation. We establish the following results. If
there is a unique input of minimum rate, then the synchronization process converges to that
input process strongly (in total variation); otherwise, it converges weakly (and provably not
strongly) to a Poisson process of rate equal to the minimum rate of the inputs. Similar results
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are shown to be true for finite buffers in the limit as their sizes tend to infinity. The analysis is
based on exploiting the transience or null-recurrence of the Markovian queue-length process
and its effect on the synchronization process.

In Section 3 we focus on networks of synchronization and exponential service nodes, with
Bernoulli routeing and independent Poisson exogenous arrivals, generalizing the standard
Jackson network model. It is shown that if the synchronization skeleton of the network is acyclic
(a token visits a synchronization node only once, but may visit a service node any number of
times), then the stationary distribution of the joint queue-size process of the service nodes
alone is product-form under standard stability conditions. Moreover, all network output flows
converge weakly to Poisson processes. The results extend to networks with quasi-reversible
service nodes. To prove the main results of this paper, a simple technique is introduced,
wherein ‘ghost tokens’are injected into non-Poisson flows turning them into Poisson processes.
By showing that the ghost token flow eventually dwindles to zero, we are able to prove that
the real token flows asymptotically converge to Poisson processes. This technique may have
applications in other problems dealing with the convergence of stochastic flows.

2. The synchronization node

Figure 1 illustrates the synchronization queue (node) in the M-input and 2-input cases. In
Theorem 1 we show that the synchronization of two independent Poisson processes of equal rate
converges weakly to a Poisson process. Theorem 2 generalizes this result to the M-flow case.
In Theorem 3 we prove that strong convergence is impossible when synchronizing independent
Poisson processes of equal rate. This group of results provides a precise characterization of the
convergence mode of the synchronization process.

In a few sentences we describe the synchronization of arbitrarily distributed point processes,
when they are of unequal rates. Suppose that we have two stationary and ergodic processes
X1(t) and X2(t) of rates λ1 and λ2 respectively. Further suppose that λ1 < λ2 and that
synchronization begins at time 0 (both buffers being empty before that time). Since X2(t) has
a higher rate than X1(t), there is a finite random time τ such that N2(t) > N1(t) for all t > τ .
This causes buffer 2 to never empty after τ , and so S(t) = X1(t) for all t > τ . The following
lemma summarizes this simple observation.

Lemma 1. Let the processes Xi (t), i = 1, 2, . . . , M , be jointly stationary and ergodic with
rates λi such that λ1 < λ2 ≤ · · · ≤ λM (i.e. there is a unique process of minimum rate). Then
there is an almost surely finite random time τ , such that S(t) = X1(t) for all t > τ . Hence,
Sr (t) converges in total variation [2] to the input process with the slowest rate as r→∞.

2.1. Synchronizing two independent poisson processes of equal rates
We now consider the more interesting problem of synchronizing independent Poisson pro-

cesses of equal rates. We begin with the simpler 2-input case. Let X1(t) and X2(t) be two
independent Poisson processes of rate λ. Define Q(t) = Q1(t) − Q2(t), as in (3). Then Q(t)

is a continuous-time, null-recurrent, birth-death chain on Z, with birth and death rates equal to
λ. The null-recurrence implies that limt→∞ P(Q(t) = 0) = 0.

We will show that Sr (t) converges weakly to a Poisson process, by showing that the
distributional difference between Sr (t) and the process

P(t) = X1(t)1{Q(t−)<0} + X2(t)1{Q(t−)>0} + Y(t)1{Q(t−)=0}, (5)

goes to zero as r→∞. The process Y(·) in (5) is a rate λ Poisson process, independent of X1(·)
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and X2(·). Lemma 2 shows that P(t) is a rate λ Poisson process, thus establishing the claim.
For a discussion of weak convergence in the context of point processes see [10].

Recall (see [7], for example) that λt is said to be the Gt -intensity of the stochastic point
process Z(t) adapted to some history Gt , if and only if λt satisfies the following conditions: it
is a non-negative Gt -progressive process, such that

∫ t
0 λs ds < ∞ almost surely for all t ≥ 0,

and

E
[

∫ ∞

0
Cs dZ(s)

]

= E
[

∫ ∞

0
Csλs ds

]

for all non-negative Gt -predictable processes Ct . We then have the following two facts (see
[7]).

Fact 1: If λt is the Ft -intensity of the point process Z(t) and λt is Gt -progressive for some
history Gt such that F Z

t ⊆ Gt ⊆ Ft (where F Z
t is the internal history of Z(t)), then λt is also

the Gt -intensity of Z(t).

Fact 2: Let Z(t) have Ft -intensity λt and let Gt be some history such that G∞ is independent
of Ft for all t ≥ 0. Then λt is also the Ft ∨ Gt -intensity of Z(t), where Ft ∨ Gt is the smallest
σ -algebra containing both Ft and Gt .

Note that a process may have a constant intensity λ with respect to a filtration, and this
makes it a Poisson process with respect to that particular filtration. In order for it to be a rate
λ Poisson process in the standard sense, its intensity with respect to its own history (i.e. the
minimal filtration to which it is adapted) must be λ. This is what Lemma 2 establishes.

Lemma 2. (2-input case.) If X1(t), X2(t) and Y(t) are independent Poisson processes with
intensity λ and Q(t) is the system size process of (3), then

P(t) = X1(t)1{Q(t−)<0} + X2(t)1{Q(t−)>0} + Y(t)1{Q(t−)=0}

is a Poisson process with intensity λ.

Proof. Observe that P(t) is adapted to Ft = σ {X1(s), X2(s), Y (s); 0 ≤ s ≤ t} and that,
due to Fact 2 and the mutual independence of the processes X1(t), X2(t) and Y(t), all three
of them have Ft -intensity λ. Further, the functions 1{Q(t−)<0}, 1{Q(t−)>0} and 1{Q(t−)=0} are
Ft -predictable (being left-continuous and Ft -adapted). It readily follows that

E
[

∫ ∞

0
Cs dP(s)

]

= λE
[

∫ ∞

0
Cs ds

]

,

for all Ft -predictable processes Ct . Therefore, by Watanabe’s Characterization Theorem (see
[7]), P(t) is a Poisson process with respect to Ft . Since the internal history of P(t) is contained
in Ft , Fact 1 implies that P(t) is Poisson with respect to its own history.

We next show that the sequence of point processes {Sr (t); r ∈ R+} converges weakly [10]
to a Poisson process as r → ∞. As a consequence of Lemma 2 it suffices to show that for every
bounded continuous function f with compact support, the random variable

∫

R+ f (s) dSr (s)

converges in distribution to
∫

R+ f (s) dP(s). Intuitively, a comparison of (4) and (5) shows
that S(s) equals P(s) when Q(s−) *= 0. In other words, so long as one of the two buffers
is non-empty the synchronized process equals the process arriving to the other (the empty)
buffer, which is Poisson. Thus, the synchronized process is a random mixture of Poisson
processes (depending on which buffer is non-empty) and the identically zero random process
(if both buffers are empty). We exploit the null recurrence of Q(·) to establish that eventually the
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chance that both buffers are empty is arbitrarily small. Thus the ‘nuisance’ term Y(s)1{Q(s−)=0}
in (5) goes to zero in distribution and we get the desired weak convergence.

Theorem 1. (2-input case.) The synchronization process viewed from time r onwards, Sr (t),
converges weakly to a rate λ Poisson process as r → ∞.

Proof. Let f be a bounded continuous function with support in [0, N]. Set

xr =
∫ N

0
f (s) d(Y(r + s)1{Q((r+s)−)=0}),

yr =
∫ N

0
f (s) dSr (s), and zr =

∫ N

0
f (s) dP(r + s).

Note that xr + yr = zr and that zr equals z0 in distribution. We want to show that yr converges
in distribution to z0. Now

E|xr | ≤ E
[

∫ N

0
|f (s)| d(Y(r + s)1{Q((r+s)−)=0)})

]

≤ |f |max E
[

∫ N

0
d(Y(r + s)1{Q((r+s)−)=0)})

]

= |f |max λE
[

∫ N

0
1{Q((r+s)−)=0)} ds

]

= |f |maxλ

∫ N

0
P(Q((r + s)−) = 0) ds,

the last equality following from Fubini’s theorem. Since P(Q((r + s)) = 0) goes to zero as
r→∞, by dominated convergence the right-most term goes to zero as r → ∞. Therefore,
xr → 0 in distribution. Now zr equals z0 in distribution and we conclude (see [8, Theo-
rem 4.4.6]) that yr = zr − xr converges to z0 in distribution, as was required.

2.2. Extension to the M-input case
We extend the results to the M-input synchronization node, briefly discussing the additional

arguments needed. Consider M ∈ Z+ independent Poisson processes Xi (t), i ∈ {1, 2, 3, . . . ,

M}, all having rates equal to λ. Let S(t) be their synchronization and let Qi(t) = Ni(t)−Ns(t)

be the queue length process in the ith buffer at time t . For i ∈ {1, 2, . . . , M}, define

f M
i (t) =

{

1 if Qi(t
−) = 0 and Qj(t

−) > 0 for every j *= i,

0 otherwise

f M
0 (t) = 1 −

M
∑

i=1

f M
i (t).

(6)

The f M
i (t), i > 1 indicate that at t− only the ith buffer is empty, and f M

0 (t) indicates that at
t− more than one buffer is empty. Thus,

{f M
0 (t) = 1} =

⋃

i *=j

{Qi(t
−) = Qj(t

−) = 0}. (7)
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Analogous to (4) we define SM(t) as

SM(t) =
M

∑

i=1

f M
i (t)Xi (t) (8)

and show that as r → ∞, SM
r (t) = SM(r + t)1{r+t>0} converges weakly to the process

PM(t) =
M

∑

i=1

f M
i (t)Xi (t) + f M

0 (t)Y(t), (9)

where Y(t) is a Poisson process of rate λ independent of Xi (t), i ∈ {1, 2, 3, . . . , M} as r→∞.

Lemma 3. (M-input case.) If Xi (t), i ∈ {1, 2, . . . , M} and Y(t) are independent Poisson
processes of rate λ, then PM(t) = ∑M

i=1 f M
i (t)Xi (t)+f M

0 (t)Y(t) is a Poisson process of rate
λ, where f M

i (t) i ∈ {1, 2, . . . , M} and f M
0 (t) are defined in (6).

Proof. Similar to the proof of Lemma 2.

In the next lemma we show that the chance that more than one buffer is empty goes to zero
eventually. This is used in Theorem 2 in the same way as null-recurrence of Q(t) was used in
Theorem 1.

Lemma 4. With f M
0 (t) defined as in (6), limt→∞ E[f M

0 (t)] = 0.

Proof. Since E[f M
0 (t)] = P(f M

0 (t) = 1), from (7) we see that it suffices to show that
∑

i *=j P({Qi(t
−) = Qj(t

−) = 0}) → 0, as t → ∞. Letting Bt
ij = {Qi(t

−) = Qj(t
−) = 0},

it suffices to show that P[Bt
ij ] → 0 for every i, j . Define Qij (t) = Qi(t) − Qj(t) = Ni(t) −

Ns(t) − (Nj (t) − Ns(t)) = Ni(t) − Nj(t). Then, Qij (t) is a null-recurrent birth-death chain.
Since Bt

ij ⊂ {Qij (t
−) = 0}, P[Qij (t

−) = 0] → 0 implies that P [Bt
ij ] → 0 for each i, j .

Theorem 2. (M-input case.) The synchronization of M independent Poisson processes viewed
from time r onwards,

SM
r (t) =

M
∑

i=1

f M
i (r + t)Xi (r + t)1{r+t>0},

converges weakly to a Poisson process as r → ∞.

Proof. As in Theorem 1, let the function f be continuous with support in [0, N]. This time
set xr =

∫ N
0 f (t) d(f M

0 (r + t)Y(r + t)), yr =
∫ N

0 f (t) dSM
r (t), zr =

∫ N
0 f (t) dPM(r + t) and

z =
∫ N

0 f (t) dPM(t) and use the fact (from Lemma 4) that E[f M
0 (r + t)] → 0 as r → ∞ to

conclude that xr goes to zero in distribution. The rest follows from the method of Theorem 1.

2.3. Convergence and coupling
A point process X(t) is said to couple in finite time with another point process Y(t), if there

is a random time τ < ∞, such that X(s) = Y(s) for all s > τ almost surely. This is exactly
what happens under the conditions of Lemma 1. A natural question that arises is whether the
synchronization, SM(t), of independent Poisson processes of equal rate couples in finite time
with some other Poisson process Z(t). This will strengthen the results of Theorems 1 and 2.
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Unfortunately, as Theorem 3 shows, such a coupling is not possible. This negative result further
characterizes the convergence mode of the synchronization process.

The basic idea of the proof is this: if the synchronization process SM(·) couples with a
Poisson process, say Z(·), then the epochs of the two processes coincide after a finite random
time. But the inter-epoch times of Z(·) are exponentially distributed, and are always strictly
stochastically dominated by the inter-epoch times of SM(·), and hence a coupling between Z(·)
and SM(·) cannot occur. We argue as follows. It is clear that the inter-epoch times of SM(·)
are at least exponentially long because we are always waiting for one component token to
arrive at the synchronization buffers. And almost surely, given any T , there is a time t > T at
which more than one synchronization buffer is empty. When this happens the time to the next
synchronization is the sum of more than one exponential time. This causes the strict stochastic
dominance and the resulting lack of coupling.

Theorem 3. When synchronizing M independent Poisson processes of rate λ, coupling the
synchronization process SM(t) in finite time with a Poisson process of rate λ is impossible.

Proof. Arguing by contradiction, suppose that there is a rate λ Poisson process Z(t) and
a finite random time τ < ∞, such that SM(s) = Z(s) for all s > τ almost surely. Define
Nz(t) = ∑∞

n=0 1{0<tzn≤t} to be the number of points of Z(t) in (0, t], where the tzn are the epoch
times for Z(t). By the Central Limit Theorem

Nz(t) − λt√
λt

D−→ N (0, 1), (10)

where N (0, 1) is the Gaussian distribution with zero mean and unit variance. Now, τ < ∞
implies that Nz(τ ) < ∞ almost surely, which further implies that Nz(τ )/

√
λt → 0 almost

surely, as t → ∞. Thus,

Nz(t) − Nz(τ ) − λt√
λt

= Nz(t) − λt√
λt

+ Nz(τ )√
λt

D−→ N (0, 1),

and for any ε > 0 we have

lim
t→∞ P(Nz(t) − Nz(τ ) ≥ λt + ε

√
λt) = lim

t→∞ P
(

Nz(t) − Nz(τ ) − λt√
λt

≥ ε

)

= %(ε), (11)

where %(ε) = 1√
2π

∫ ∞
ε e−x2/2 dx. We now observe that given a K ∈ R+, in order to have at

least K synchronizations in [0, t], we must have at least K arrivals to each of the M buffers in
[0, t], so

{Ns(t) ≥ K} ⊂
M
⋂

i=1

{Ni(t) ≥ K}.

Taking K = λt + ε
√
λt , we get

P(Ns(t) ≥ λt + ε
√
λt) ≤ P

( M
⋂

i=1

{Ni(t) ≥ λt + ε
√
λt}

)

=
M
∏

i=1

P(Ni(t) ≥ λt + ε
√
λt)

= (P(N1(t) ≥ λt + ε
√
λt))M,
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since the Poisson processes Ni(t) are independent with equal rates. Applying the Central Limit
Theorem to N1(t), we get

lim
t→∞ P(N1(t) ≥ λt + ε

√
λt) = %(ε).

Thus,

lim
t→∞ P(Ns(t) ≥ λt + ε

√
λt) ≤ lim

t→∞(P(N1(t) ≥ λt + ε
√
λt))M = (%(ε))M < %(ε), (12)

since %(ε) < 1. On the other hand, since we have supposed that the coupling exists, we have
that SM(s) = Z(s) for all s > τ almost surely, so Ns(t) − Ns(τ ) = Nz(t) − Nz(τ ) for every
t > τ . Moreover, since Ns(τ ) < ∞, we have Ns(τ )/

√
λt → 0 almost surely. Therefore, as

t → ∞
Ns(t) − λt√

λt
− Ns(τ )√

λt
= Ns(t) − Ns(τ ) − λt√

λt
= Nz(t) − Nz(τ ) − λt√

λt

D−→ N (0, 1).

Thus,
lim

t→∞ P(Ns(t) ≥ λt + ε
√
λt) = %(ε),

which contradicts (12). Therefore, no such coupling exists.

2.4. The case of finite buffers
We next consider the synchronization of Poisson processes which arrive at buffers of finite

capacity. The queue-length process -Q(t) = (Q1(t), Q2(t), . . . , QM(t)) is a finite state Markov
chain and therefore has a stationary distribution. Consider the 2-input case first. Let tokens
arriving according to independent Poisson processes of rates λ1 and λ2 be queued into buffers
of sizes N1 and N2 respectively. Tokens arriving at full buffers are blocked and rejected. The
state space, S, of the Markov chain is the set {(0, N2), . . . , (0, 1), (0, 0), (1, 0), . . . , (N1, 0)}.
The corresponding equilibrium distribution, {π(i, j), (i, j) ∈ S}, is given by π(i, j) = caibj ,
where a = λ1/λ2, b = λ2/λ1 and c is a normalizing constant. Note that the stationary
distribution is product-form in the 2-input case.

Now consider the M-queue case (M ≥ 3). Let Xi (t), i ∈ {1, 2, . . . , M} be independent rate
λ Poisson processes, arriving at buffers of size Ni . Since at least one queue is empty at any
given time, we see that the rate matrix R of -Q(t) has just two types of entries. The first type is

R((y1, . . . , yj , . . . , yk, . . . , yM), (y1, . . . , yj , . . . , yk + 1, . . . , yM)) = λk

for yj = 0 and yk = 0, . . . , Nk − 1, k *= j , corresponding to the case that the j th queue is
empty and there is an arrival in the kth one (k *= j ). The second type is

R((y1, . . . , yj , . . . , yk, . . . , yM), (y1 − 1, . . . , yj , . . . , yk − 1, . . . , yM − 1)) = λj

for yj = 0 and yk > 0, k *= j , corresponding to the case that only the j th queue is empty and
there is an arrival to that queue, triggering a synchronized departure from all queues. In light of
the result for the 2-input case one wonders whether the stationary distribution is product-form.
Unfortunately, as simple examples show, this is not true.

A consequence of the null-recurrence or transience of the joint queue-size process of infinite-
buffer synchronization is this: when synchronizing independent Poisson processes of equal rate
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at finite buffers, the synchronized process can be made to be as close to a Poisson process in
distribution as desired, by making the buffers suitably large. The details are as follows.

Suppose that we are synchronizing M independent Poisson processes Xi (t), i ∈ {1, 2, . . . ,

M}, of rate equal toλ. All the synchronization buffers are assumed to be of capacity k. Therefore
the joint queue-size process -Qk(·) = (Qk

1(·), Qk
2(·), . . . , Qk

M(·)) is a positive recurrent Markov
chain. Define the functions gk

i (t), i = 0, 1, 2, . . . , M as follows

gk
i (t) =

{

1 if Qk
i (t

−) = 0 and Qk
j (t

−) > 0 for every j *= i,

0 otherwise

gk
0(t) = 1 −

M
∑

i=1

gk
i (t).

The synchronized process, SM,k(t), is given by

SM,k(t) =
M

∑

i=1

gk
i (t)Xi (t).

We are interested in the asymptotic distribution of the process SM,k(t) as k → ∞.
For each finite k there is an equilibrium distribution for -Qk(t). Arguing as in Lemma 4, we

get that limk→∞ E(gk
0(t)) = limk→∞ P(gk

0(t) = 1) = 0. And an argument similar to Lemma 3
shows that the process

PM,k(t) =
M

∑

i=1

gk
i (t)Xi (t) + gk

0(t)Y(t)

is Poisson, where Y(t) is a rate λ Poisson process independent of all the other processes. Given
that limk→∞ E(gk

0(t)) = 0, it follows in a manner similar to the proof of Theorem 2 that SM,k(t)

converges weakly to a Poisson process as k → ∞.

3. Generalized Jackson networks of service and synchronization nodes

In this section we show how synchronization operations may be included in queueing
networks, extending the classical Jackson network model and its associated properties.

For the sake of completeness, we recall a few basic facts about Jackson networks. In their
standard form, such networks [6,13,15,18] consist of independent exponential service nodes,
where arriving tokens (jobs) are served and then Bernoulli-routed to other nodes (or back to
the same one). The net input process at a node is the superposition of all token flows that arrive
(either from outside or after being routed) at that node. All exogenous arrivals are independent
Poisson processes. The overall queue-length process is a Markov chain. When the total average
arrival rate is less than the service rate at every node of the network, the queue-length process
admits a product-form stationary distribution. Moreover, in stationarity, the flows of tokens
departing from the network are independent Poisson processes.

An example of a generalized Jackson network, including synchronization operations, is
shown in Figure 2. After being served or synchronized, tokens are Bernoulli-routed to various
nodes. The net input process at each node is the superposition of all arriving processes, syn-
chronized or otherwise. In Figure 2, for example, the net input into node 5 is a synchronization
of outputs from nodes 1 and 2 superposed with an output flow from node 4. Exogenous arrivals
are Poisson, and the buffers of all nodes have infinite capacity.
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Figure 3: A network with an acyclic synchronization skeleton. Local networks of only service nodes
may be non-acyclic.

It is easy to see that the generalized Jackson network model retains its Markovian nature
with respect to a system state consisting of the queue-length processes of all nodes (service
and synchronization). However, the synchronization queues are transient or null-recurrent and,
hence, induce the same behavior on the overall Markov chain. Under stability conditions on the
service nodes, we are interested in determining whether the distribution of the queue-lengths
at these nodes (exclusively) is asymptotically product-form. We find this to be true when the
synchronization skeleton is acyclic.

3.1. Generalized Jackson networks with acyclic synchronization skeleton

Throughout this section we assume that a token cannot visit a synchronization node twice,
almost surely, although it may visit a service node any number of times. Consider a queueing
network N consisting of M exponential server nodes and N synchronization nodes. Given is a
set of routeing probabilities {pij }1≤i,j≤M+N where pij is the probability that a token joins node
j immediately after leaving node i (i and j can be either of the service or synchronization types).
Nodes i and j are said to be connected by a route if there is a strictly positive probability of a
token arriving at j after leaving i, either directly or through a series of intermediate nodes (note
that the route is directed from i to j ). Otherwise, nodes i and j are said to be disconnected. We
impose the following key condition: every synchronization node is disconnected from itself,
and hence the synchronization skeleton is acyclic.

We say that a service node j is an offspring of a synchronization node i if there is a route
from i to j . The acyclicity of the synchronization skeleton partitions the service nodes into
stages Sk , k = 0, 1, 2, . . . , where Sk consists of service nodes that are the offspring of precisely
k synchronization nodes. Thus the network N can be decomposed into stages of smaller
Jackson subnetworks of service nodes only (possibly with feedback), which interface through
the synchronization nodes. A K-stage network is one in which at least one service node is
the offspring of K synchronization nodes. The example of Figure 3 is a 3-stage network. It
is composed of the subnetworks N1, N2, N3, N4, N5 and N6 each consisting of service nodes
only. Each Ni is a standard Jackson network in itself. For this example, S0 = N1 ∪ N2 ∪ N3,
S1 = N4 ∪ N5 and S2 = N6. Note that all the synchronization nodes have been arranged on
the boundaries between the service subnetworks.
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We discuss the stability of a service node before stating the main theorem of this section.
Service nodes that are not the offspring of any synchronization node are stable if the net input
flow (exogenous arrivals and tokens routed from this or other nodes) has an average rate that
is strictly smaller than the service rate of the node. In considering the stability of service
nodes whose input may contain a synchronized process, the acyclicity of the synchronization
skeleton allows us to treat the synchronized process as an exogenous input. Further, (8) and
(9) imply that a synchronized flow process is stochastically dominated by a Poisson process of
asymptotically equal rate. Hence, we may replace the synchronized process by its associated
Poisson process as far as stability is concerned. Accordingly, a service node which is the
offspring of a synchronization node is said to be stable if the net input process (consisting of
exogenous arrivals, synchronized or otherwise, and routed tokens) has an average rate strictly
smaller than the service rate of the node.

The following theorem, which is the main result of this section, concerns the behavior of the
network N under independent Poisson inputs. For ease of exposition, we state and prove the
theorem assuming that the network N consists of precisely two stages. The acyclicity of the
synchronization skeleton allows one to generalize the results to an arbitrary number of stages
by induction.

Theorem 4. Consider a 2-stage generalized Jackson network N consisting of M service nodes
and N synchronization nodes subject to independent Poisson inputs at time 0, having been
empty prior to that time. Let

-Q(t) = (Q1(t), Q2(t), . . . , QM(t))

be the joint queue-size process at the service nodes and let

-D(t) = (D1(t), D2(t), . . . , DL(t))

be the vector of departure processes from N at time t > 0. If all the service nodes of the network
N are stable, then as t→∞,

(i) -Q(t) converges to a product-form distribution with geometrically distributed marginals
and

(ii) -D(r+·), the vector of network departure processes viewed from time r onwards, converges
in distribution to a vector of independent Poisson processes as r→∞.

Proof. Decompose the service nodes of N into the two stages S0 and S1 depending on whether
they are the offspring of a synchronization node or not. Since S0 forms a classical Jackson
network that is assumed to be stable, both parts of the theorem follow easily for nodes in S0.
In particular, the departure processes of S0 couple with independent Poisson processes after a
finite random τ [18]. Now, some of these departure processes are input to S1, either directly
or through synchronization nodes. One can now see that in order to complete the proof of
the theorem we first need to establish two separate results: (i) the queue-size process at an
exponential server queue with synchronized inputs converges to a geometric distribution and
the corresponding departure process converges to a Poisson process, and (ii) the joint queue-size
process at service nodes in S0 and S1 is asymptotically product-form.

These two results, which are interesting in their own right, are proved in the next two
subsections (Theorems 5 and 6). The proof of Theorem 4 is completed at the end of Section 3.3.
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Figure 4: The SM/M/1 queue (on the left) with two synchronized independent Poisson inputs and an
exponential server. On the right, the modified system used to analyze the SM/M/1 queue is shown, in

which ‘ghost tokens’ (represented by empty circles) are injected to the service queue.

3.2. The SM/M/1 queue: synchronized poisson inputs with exponential service

Consider the canonical model shown in the left-hand side of Figure 4. X1(t) and X2(t) are
independent Poisson processes of rates λ1 and λ2 respectively and S(t) is their synchronization,
as defined in Section 2. S(t) forms the input to an exponential server queue of service rate µ.
Q1(t) and Q2(t) are the number of tokens in the two queues of the synchronization node,
while Q(t) is the number of tokens in the service queue. This is the simplest possible network,
consisting of a synchronization node and an exponential service node in tandem. We call it the
SM/M/1 queue. It can also be viewed as a resequencing queue (see [4]) with non-integrable
delay sequence. We are interested in the asymptotic distribution of the queue size at the service
node and in the statistics of the departure process D(t). The following result easily extends to
the M-input case; for the sake of simplicity and clarity of exposition we state and prove it for
the 2-input case of Figure 4.

Theorem 5. Consider the queue-size process, Q(t), of an SM/M/1 queue with service rate
µ. If ρ = λ/µ < 1, where λ = min{λ1, λ2}, then

lim
t→∞ P(Q(t) = k) = (1 − ρ)ρk,

and the departure process D(t) from the service node converges weakly (when λ1 = λ2, and
strongly otherwise), to a Poisson process as t → ∞.

Proof. If λ1 > λ2, then S(t) = X2(t) almost surely after some finite random time. Theorem 5
follows trivially since the service queue becomes a standard M/M/1 queue, and Q(t) couples
in finite time almost surely with the queue-length process of a standard M/M/1 queue fed by
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the Poisson process X2(t) alone. Thus, the output process from the service node converges
strongly to a Poisson process.

The more interesting case of λ = λ1 = λ2 is easier studied by the introduction of the
modification shown in the right-hand side of Figure 4. The essential difference is that the net
input process to the exponential server queue, A(t), is now a superposition of the output process
S(t) of the synchronization node and a spurious process Y(t)1{Q1(t−)=0,Q2(t−)=0}, where Y(t)

is a rate λ Poisson process, independent of X1(·) and X2(·) and of the service process. The
analysis of the modified system provides a solution to the original problem as follows.

We color the tokens of A(t) blue or yellow depending on whether they originate from S(t)

or Y(t). From Lemma 2, A(t) is a rate λ Poisson process, independent of the server. Thus,
the service node is a standard M/M/1 queue, and its queue-length process Q′(t), consisting
of both blue and yellow tokens, converges in total variation to a geometric distribution with
parameter ρ = λ/µ [16,18]. Since we are interested in showing that Q(t), the number of blue
tokens, converges to a geometric distribution with parameter ρ, and Q(t) = Q′(t) − QY (t), it
suffices to show that limt→∞ P(QY (t) ≥ 1) = 0.

Due to the memoryless property of the exponential server, we may stipulate that blue tokens
take absolute priority over yellow tokens for service. Specifically, if an arriving blue token finds
a yellow token in service, then it gets the remainder of the service owed to the yellow token
(which is again exponential, independent of past service times). After the blue token departs
the yellow token is served from the beginning, so long as there are no other blue tokens in the
queue. Therefore, the yellow tokens are invisible to the blue tokens in the sense that they do
not alter the dynamics of the blue tokens. We will occasionally refer to the yellow tokens as
ghost-tokens. In Figure 4 yellow (ghost) tokens are represented by circles, and blue tokens are
represented by discs.

We show that limt→∞ P(QY (t) ≥ 1) = 0 in three steps. Steps 1 and 2 ensure that yellow
tokens do not remain in the system indefinitely, and Step 3 shows that the number of fresh
yellow arrivals is dwindling. Together, all three imply the desired result. Thus, at large times
the ghost-tokens get ‘exorcized’ and the queue is left with the blue (real) tokens.

Step 1. Given ε > 0 we can find a large enough M ∈ Z+ and t1 ∈ R such that
P(Q′(t) ≤ M) > 1 − ε for all t > t1.

Proof of Step 1. Since limt→∞ P(Q′(t) ≤ M) = ∑M
k=1(1 − ρ)ρk , we may first choose M

and then t1 with the desired properties.

Step 2. For ε and t1 as in Step 1, we have that for every t > t1 there exists a large enough
N ∈ Z+, such that P(Q′(s) = 0 for some s ∈ [t, t + N ]) > 1 − 2ε.

Proof of Step 2. Let the random variable TM denote the time needed for the service queue
to become empty, given that it starts at time t with M or fewer tokens in its buffer. By the
stationarity of the arrival and service processes, the distribution of TM is independent of the
starting time t . Since the queue is stable, TM < ∞ almost surely [16, 18]. Thus, there
exists a large enough N such that P(TM < N) > 1 − ε. Moreover, from Step 1 we have
P(Q′(t) ≤ M) > 1− ε for every t > t1. Since {Q′(t) ≤ M; TM < N} ⊂{ Q′(s) = 0 for some
s ∈ [t, t + N ]}, it follows that P(Q′(s) = 0 for some s ∈ [t, t + N ]) > 1 − 2ε.

Step 3. Given ε > 0, there exists a t2 such that P(NY [t, t + N ] ≥ 1) < ε for all t > t2, where
NY [t, t + N ] is the number of yellow (ghost) arrivals to the service queue in [t, t + N ].
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Proof of Step 3. By Chebyshev’s inequality and the definition of stochastic intensity, we get

P(NY [t, t + N ] ≥ 1) ≤ E(NY [t, t + N ]) = E
[

∫ t+N

t
d(Y(s)1{Q1(s−)=0=Q2(s−)})

]

= λE
[

∫ t+N

t
1{Q1(s−)=0=Q2(s−)} ds

]

= λ

[
∫ t+N

t
P(Q1(s

−) = 0 = Q2(s
−)) ds

]

.

Using the dominated convergence theorem and the null-recurrence of (Q1(·), Q2(·)), we see
that the last expression goes to zero as t → ∞, implying the desired result.

The fact that limt→∞ P(QY (t) ≥ 1) = 0 now follows easily from the previous three steps.
Indeed, note that {NY [t, t+N ] = 0}∩{Q′(s) = 0 for some s ∈ [t, t+N ]} ⊆ {QY (t+N) = 0}.
Therefore, Steps 1, 2 and 3 imply that, for any time t > max(t1, t2), we have P(QY (t +N) ≥ 1)

< 3ε. Thus, as t→∞, the chance that there are yellow (ghost) tokens in the service queue
becomes arbitrarily very small, fading away to zero. This concludes the proof of the first part
of the theorem.

To show the second part, let D′(t) = D(t) + DY (t) be the overall departure process of the
service node, consisting of both blue and yellow (ghost) tokens. In order to prove that D(t)

converges weakly to a Poisson process, it is enough to show that for any bounded, continuous
function f with compact support

∫

f (s) d(DY (t + s)) → 0 (13)

in distribution as t → ∞ ( [8], Section 4.4), since we already know that D′(t) converges in
total variation (and hence weakly) to a Poisson process. But this follows from the fact that

E
[
∣

∣

∣

∣

∫

f (s) d(DY (t + s))

∣

∣

∣

∣

]

≤ |f |max E
[

∫

d(DY (t + s))

]

= |f |max µE
[

∫

1{QY ((t+s)−)>0;Q((t+s)−)=0} ds

]

,

the equality following from the fact that the stochastic intensity of DY (t) with respect to the
history of the service queue (including that of blue and yellow tokens) is µ1{QY (t−)>0;Q(t−)=0}
(see [7]). Using the dominated convergence theorem and the fact that P(QY (t) > 0) goes to
zero (from the first part of this proof), we see that the last term in the previous expression goes
to zero, implying (13). This completes the proof of the theorem.

It is clear that the same proof also works when three or more independent Poisson arrival
processes are synchronized before arriving at an exponential server queue.

3.3. Interfacing service stages through synchronization queues
The next step is to interface stages of service nodes through synchronization queues. The

study is centered on a representative simple network shown in Figure 5, but the arguments
extend naturally to the general case. In Figure 5, X1(t) and X2(t) are independent Poisson
processes of rates λ1 and λ2 arriving at independent exponential service queues 1 and 2 with
rates µ1 and µ2 respectively, such that both M/M/1 queues are stable (λ1 < µ1, λ2 < µ2).
The input X3(t) to service queue 3 is the synchronization of the departures from nodes 1 and 2.
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Figure 5: Interfacing service queues through synchronization ones. In the modified system the controlled
flow Y1(t) injects ‘ghost tokens’ into the flow X3, making the latter Poisson by accounting for the deficit

of actual tokens.

Let Qi(t) be the queue-size process at service node i ∈ {1, 2, 3}. Suppose all queues are
initially empty and µ3 is larger than min{λ1, λ2} (so that service queue 3 is also stable). Let
QA(t) and QB(t) be the queue-lengths of the synchronization buffers holding departures from
nodes 1 and 2 respectively. We want to show that the joint process (Q1(t), Q2(t), Q3(t))

tends to a limit that is product-form with appropriate marginals as t → ∞, and that the output
process D3(t) converges to a Poisson process. The convergence of each of the marginals
of (Q1(t), Q2(t), Q3(t)) to the appropriate geometric distribution is quite obvious, given the
previous discussion of the SM/M/1 queue; what we need to prove is that the joint distribution
of Q1(t), Q2(t), Q3(t) is asymptotically product-form.

In classical Jackson networks the main reason leading to a product-form stationary distribu-
tion is quasi-reversibility [15, 18], which is an equilibrium property. In networks with service
and synchronization nodes no global equilibrium can be reached, due to the null-recurrence or
transience of the queue-length processes of the synchronization queues. However, the basic
idea of introducing ‘ghost tokens’ (as in the analysis of the SM/M/1 queue) to make up for a
deficit of real tokens proves useful again in showing the following result.

Theorem 6. For the network in Figure 5, we have that

lim
t→∞ P(Q1(t) = i, Q2(t) = j, Q3(t) = k) = (1 − ρ1)(1 − ρ2)(1 − ρ3)ρ

i
1ρ

j
2ρ

k
3 (14)

for i, j, k ∈ Z+, where ρ1 = λ1/µ1, ρ2 = λ2/µ2, ρ3 = min{λ1, λ2}/µ3, and the departure
process from each node converges weakly (and in special cases strongly) to a Poisson process
as t → ∞.
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Proof. If λ1 > λ2, then X3(t) = D2(t) after some finite time almost surely. Hence,
X3(t) couples in finite time with a rate λ2 Poisson process. Using standard quasi-reversibility
arguments [15, 18], it is easy to see that the distribution of (Q2(t), Q3(t)) tends to a product-
form limit as t → ∞, while the service node outputs converge in total variation to Poisson
processes. Since arrival times at node 3 coincide with departure times from node 2 after a finite
random time, node 1 is decoupled from the system and the result follows.

Next suppose that λ1 = λ2 = λ. It is clear that the limiting distribution of (Q1(t), Q2(t)) is
product-form with appropriate marginals. And, from Theorem 5, it follows that Q3(t) tends to
a geometric distribution. However, what is not immediate is that (Q1(t), Q2(t), Q3(t)) jointly
converges to a product-form distribution. We argue this as follows.

Let us modify the actual system by introducing the process Y1(t) = Y(t)1{QA(t−)=0=QB(t−)}
of ghost token arrivals, as in Figure 5. Y(t) is a Poisson process of rate λ and is independent
of all other arrival and service processes. The following steps applied to the modified system
imply the result.

Step 1. The only arrivals to the network are the tokens of the exogenous arrival processes X1(t)

and X2(t), and the ghost arrival process Y(t); all these processes are mutually independent.
Suppose that these arrivals have been coming into the network since time −∞, but there was no
synchronization operation being performed before time 0. That is, the departures on D1(t) and
D2(t) were simply allowed to exit the network, without being synchronized and going through
node 3. In this case, it is immediate that at time 0 all three service queues are in stationarity
and their joint distribution is product form. Moreover, at time 0 all three departure processes
are Poisson (rate λ) and Q3(0) consists only of yellow (ghost) tokens.

Step 2. Suppose that the synchronization operation begins at time 0; that is, departures from
service nodes 1 and 2 are synchronized and driven through node 3. We can then write

X3(t) = Y(t)1{t≤0} +{Y(t)1{QA(t−)=0=QB(t−)} +D1(t)1{QB(t−)>0} +D2(t)1{QA(t−)>0}}1{t>0}.

Since the processes D1(t) and D2(t) are Poisson (and independent) for t > 0, an application
of Lemma 2 shows that X3(t) is Poisson of rate λ. Nodes 1 and 2 are in equilibrium at any
positive time. Because of the quasi-reversibility of exponential server nodes [15,18], it follows
that (Q1(t), Q2(t)) is independent of {D1(s), D2(s)}s<t (in equilibrium, the present state is
independent of past departures). This implies (Q1(t), Q2(t)) is independent of {X3(s)}s<t

(by definition of X3(t)). Hence it is independent of Q3(t). We therefore conclude that under
the previous scenario of equilibrium at nodes 1 and 2, the quantities Q1(t), Q2(t), Q3(t) are
mutually independent for any fixed t > 0, leading to a product-form distribution.

Step 3. Finally, we need to show that Q3(t) will eventually consist of only non-yellow (real)
tokens with arbitrarily high probability, and the yellow (ghost) tokens will dwindle, restoring
the operation of the actual system. This can be proved directly by arguing as in Theorem 5.

The previous arguments show that the service node queue-lengths (Q1(t), Q2(t), Q3(t))

have a product-form stationary distribution. Moreover, if λ1 = λ2 the departure flows from all
nodes converge weakly to Poisson processes as t → ∞. On the other hand, if λ1 *= λ2 the
flows converge strongly (in total variation) to Poisson processes and hence also weakly. This
concludes the proof of the theorem.

Completion of the proof of Theorem 4. Given the preceding results, the two parts of
Theorem 4 follow immediately. First, use ghost tokens as in the proof of Theorem 6 to argue
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Figure 6: A simple network with feedback of tokens to the synchronization node. The node will eventually
stall.

that -Q(t) converges to a product-form distribution with appropriate marginals. Then, observe
that -D(t) consists of processes that are either departures from stages S0 or S1, or from the
synchronization nodes. Departures from S0 are clearly mutually independent Poisson processes.
The use of ghost tokens to make the synchronized departures be Poisson processes implies
that departures from S1 converge to Poisson processes that are mutually independent, and
independent of departures from S0. Since all routeing is assumed to be Bernoulli, if the
departures from a synchronization node are split into two or more processes, then these processes
will converge to mutually independent Poisson processes. (To make this point clear in the
context of Figure 3, the two flows that arise by a splitting of the synchronized departure process
from the 2-input synchronization node will asymptotically be independent Poisson processes.
Thus, all flows that arrive at the synchronization node feeding network N6 are asymptotically
mutually independent Poisson processes.) In conclusion, -D(t) converges to a vector of mutually
independent Poisson processes as t→∞.

4. Final remarks and conclusion

The previous results on networks assumed that the synchronization skeleton was acyclic.
For networks in which the synchronization skeleton is not acyclic, the situation is not clear.
Indeed, even for the simplest of cases, there is a problem of ‘ill-posedness’ which is related to
the problem of deadlocks in Petri nets [9]. Consider the network shown in Figure 6. The output
from the service queue is E(t), and a fraction (p ∈ (0, 1)) of it is Bernoulli-routed back to a
buffer of the synchronization queue as F(t), while the remainder forms the output flow D(t).
When trying to synchronize F(t) and X(t) we run into the following problem. If the server is
currently idle (Q(t) = 0), then it is impossible to have any new arrivals into the service node,
as there will not be any tokens getting routed back to the synchronization node. On the other
hand, for the example in Figure 7, no such problems occur and one may attempt to compute
the limiting queue-length and departure process distributions. We are exploring this line of
research since the arguments presented in this paper do not naturally extend to the case where
the synchronization skeleton is non-acyclic.

Towards the end of Section 2 we saw that with large enough finite synchronization buffers,
one can still have the synchronization process be as close to a Poisson process in distribution
as desired. This key point may be applied to the networks of Section 3 to obtain a result
of the following sort: in a generalized Jackson network with an acyclic synchronization
skeleton and finite synchronization buffers, the joint distribution of the equilibrium queue-length
process (note that equilibrium now exists) at all the exponential server nodes is asymptotically
product-form and the equilibrium departure processes converge weakly to independent Poisson
processes, as the size of the synchronization buffers goes to infinity. We assume that tokens
that arrive at full buffers are blocked and discarded.
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Figure 7: Feeding all synchronization buffers by non-feedback flows prevents stalling of the synchro-
nization node.

In conclusion, the dynamics of the synchronization node have been analyzed, both in isolation
and in networks of service and synchronization nodes with an acyclic synchronization skeleton.
The main vehicle of analysis was the introduction of ‘ghost tokens’ at synchronization nodes.
It has been shown that synchronization preserves the Poissonian nature of flows. Furthermore,
the results obtained on networks generalize those about product-form queue-size distributions
and the Poisson nature of departures in classical open Jackson networks. Networks with a
non-acyclic synchronization skeleton have not been successfully investigated.
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