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Abstract

We present an application of ambigu-
ity packing and stochastic disambiguation
techniques for Lexical-Functional Gram-
mars (LFG) to the domain of sentence
condensation. Our system incorporates
a linguistic parser/generator for LFG, a
transfer component for parse reduction
operating on packed parse forests, and
a maximum-entropy model for stochas-
tic output selection. Furthermore, we pro-
pose the use of standard parser evaluation
methods for automatically evaluating the
summarization quality of sentence con-
densation systems. An experimental eval-
uation of summarization quality shows a
close correlation between the automatic
parse-based evaluation and a manual eval-
uation of generated strings. Overall sum-
marization quality of the proposed system
is state-of-the-art, with guaranteed gram-
maticality of the system output due to the
use of a constraint-based parser/generator.

1 Introduction

Recent work in statistical text summarization has put
forward systems that do not merely extract and con-
catenate sentences, but learn how to generate new
sentences from 〈Summary, Text〉 tuples. Depend-
ing on the chosen task, such systems either gener-
ate single-sentence “headlines” for multi-sentence
text (Witbrock and Mittal, 1999), or they provide

a sentence condensation module designed for com-
bination with sentence extraction systems (Knight
and Marcu, 2000; Jing, 2000). The challenge for
such systems is to guarantee the grammaticality and
summarization quality of the system output, i.e. the
generated sentences need to be syntactically well-
formed and need to retain the most salient informa-
tion of the original document. For example a sen-
tence extraction system might choose a sentence
like:

The UNIX operating system, with implementations
from Apples to Crays, appears to have the advan-
tage.

from a document, which could be condensed as:

UNIX appears to have the advantage.

In the approach of Witbrock and Mittal (1999),
selection and ordering of summary terms is based
on bag-of-words models and n-grams. Such mod-
els may well produce summaries that are indica-
tive of the original’s content; however, n-gram mod-
els seem to be insufficient to guaranteee gram-
matical well-formedness of the system output. To
overcome this problem, linguistic parsing and gen-
eration systems are used in the sentence conden-
sation approaches of Knight and Marcu (2000) and
Jing (2000). In these approaches, decisions about
which material to include/delete in the sentence
summaries do not rely on relative frequency infor-
mation on words, but rather on probability models
of subtree deletions that are learned from a corpus
of parses for sentences and their summaries.



A related area where linguistic parsing systems
have been applied successfully is sentence simplifi-
cation. Grefenstette (1998) presented a sentence re-
duction method that is based on finite-state tech-
nology for linguistic markup and selection, and
Carroll et al. (1998) present a sentence simplifica-
tion system based on linguistic parsing. However,
these approaches do not employ statistical learning
techniques to disambiguate simplification decisions,
but rather iteratively apply symbolic reduction rules,
producing a single output for each sentence.
The goal of our approach is to apply the

fine-grained tools for stochastic disambiguation in
Lexical-Functional Grammar parsing to the task of
sentence condensation. The system presented in this
paper is conceptualized as a tool that can be used as a
standalone system for sentence condensation or sim-
plification, or in combination with sentence extrac-
tion for text-summarization beyond the sentence-
level. In our system, to produce a condensed ver-
sion of a sentence, the sentence is first parsed us-
ing a broad-coverage LFG grammar for English. The
parser produces a set of functional (f )-structures
for an ambiguous sentence in a packed format. It
presents these to the transfer component in a sin-
gle packed data structure that represents in one place
the substructures shared by several different inter-
pretations. The transfer component operates on these
packed representations and modifies the parser out-
put to produce reduced f -structures. The reduced
f -structures are then filtered by the generator to
determine syntactic well-formedness. A stochastic
disambiguator using a maximum entropy model is
trained on parsed and manually disambiguated f -
structures for pairs of sentences and their conden-
sations. Using the disambiguator, the string gener-
ated from the most probable reduced f -structure
produced by the transfer system is chosen. In con-
trast to the approaches mentioned above, our system
guarentees the grammaticality of generated strings
through the use of a constraint-based generator for
LFG which uses a slightly tighter version of the
grammar than is used by the parser. As shown in an
experimental evaluation of the system output, sum-
marization quality of our system is high, due to the
combination of linguistically fine-grained analysis
tools and expressive stochastic disambiguation mod-
els.

A second goal of our approach is to apply the
standard evaluation methods for parsing to an auto-
matic evaluation of summarization quality for sen-
tence condensation systems. Instead of deploying
costly and non-reusable human evaluation, or using
automatic evaluation methods based on word error
rate or n-gram match, summarization quality can be
evaluated directly and automatically by matching re-
duced f -structures produced by the system against
manually selected f -structures of a set of manually
created condensations. Such an evaluation only re-
quires human labor for the construction and manual
structural disambiguation of a reusable gold stan-
dard test set. Matching against the test set can be
done automatically and rapidly, and is repeatable for
development purposes and system comparison. As
shown in an experimental evaluation, a close corre-
spondence can be established for rankings produced
by the proposed f -structure based automatic evalu-
ation and a manual evaluation of generated strings.

2 Statistical Sentence Condensation in the
LFG Framework

In the following, each of the system components will
be described in more detail.

2.1 Parsing and Transfer
In this project, a broad-coverage LFG gram-
mar and parser for English was employed (see
Riezler et al. (2002)). The parser produces a set
of context-free constituent (c-)structures and as-
sociated functional (f -)structures for each in-
put sentence, represented in packed form (see
Maxwell and Kaplan (1989)). For sentence conden-
sation we are only interested in the predicate-
argument structures encoded in f -structures. For ex-
ample, Fig. 1 shows an f -structure manually se-
lected out of the 40 f -structures for the sentence:

A prototype is ready for testing, and Leary hopes to
set requirements for a full system by the end of the
year.

The transfer component for the sentence con-
densation system is based on a component previ-
ously used in a machine translation system (see
Frank (1999)). In this application, it consists of an
ordered set of rules that rewrite one f -structure into
another. Structures are broken down into flat lists of



"A prototype is ready for testing , and Leary hopes to set requirements for a full system by the end of the year."

’be<[93:ready]>[30:prototype]’PRED
’prototype’PRED

countGRAINNTYPE

’a’PRED
DET−FORM a, DET−TYPE indefDETSPEC

CASE nom, NUM sg, PERS 330

SUBJ

’ready<[30:prototype]>’PRED
[30:prototype]SUBJ

ADEGREE positive, ATYPE predicative93
XCOMP

’for<[141:test]>’PRED
’test’PRED

gerundGRAINNTYPE
CASE acc, NUM sg, PERS 3, PFORM for, VTYPE main141

OBJ

ADV−TYPE vpadv, PSEM unspecified, PTYPE sem125

ADJUNCT

MOOD indicative, PERF −_, PROG −_, TENSE presTNS−ASP
PASSIVE −, STMT−TYPE decl, VTYPE copular

[252:hope]>s73

’hope<[235:Leary], [280:set]>’PRED
’Leary’PRED

properGRAIN
namePROPERNSEMNTYPE

ANIM +, CASE nom, NUM sg, PERS 3235

SUBJ

’set<[235:Leary], [336:requirement], [355:for]>’PRED
[235:Leary]SUBJ

’requirement’PRED
unspecifiedGRAINNTYPE

CASE acc, NUM pl, PERS 3336
OBJ

’for<[391:system]>’PRED
’system’PRED

’full’PRED
ADEGREE positive, ADJUNCT−TYPE nominal, ATYPE attributive398

ADJUNCT

unspecifiedGRAINNTYPE

’a’PRED
DET−FORM a, DET−TYPE indefDETSPEC

CASE acc, NUM sg, PERS 3, PFORM for391

OBJ

PSEM unspecified, PTYPE sem355

OBL

’by<[469:end]>’PRED
’end’PRED

’of<[519:year]>’PRED
’year’PRED

countGRAINNTYPE

’the’PRED
DET−FORM the, DET−TYPE defDETSPEC

CASE acc, NUM sg, PERS 3, PFORM of519

OBJ

ADJUNCT−TYPE nominal, PSEM unspecified, PTYPE sem512

ADJUNCT

countGRAINNTYPE

’the’PRED
DET−FORM the, DET−TYPE defDETSPEC

CASE acc, NUM sg, PERS 3, PFORM by469

OBJ

ADV−TYPE vpadv, PSEM unspecified, PTYPE sem451

ADJUNCT

PERF −_, PROG −_TNS−ASP
INF−FORM to, PASSIVE −, VTYPE main280

XCOMP

MOOD indicative, PERF −_, PROG −_, TENSE presTNS−ASP
PASSIVE −, STMT−TYPE decl, VTYPE main252

COORD +_, COORD−FORM and, COORD−LEVEL ROOT197

Figure 1: F -structure for non-condensed sentence.

facts, and rules may add, delete, or change individ-
ual facts. Rules may be optional or obligatory. In the
case of optional rules, transfer of a single input struc-
ture may lead to multiple alternate output structures.
The transfer component is designed to operate on
packed input from the parser and can also produce
packed representations of the condensation alterna-
tives, using methods adapted from parse packing.1
An example rule that (optionally) removes an ad-

junct is shown below:
+adjunct(X,Y), in-set(Z,Y) ?=>
delete-node(Z,r1), rule-trace(r1,del(Z,X)).

This rule eliminates an adjunct, Z, by deleting the
fact that Z is contained within the set of adjuncts,
Y, associated with the expression X. The + before
the adjunct(X,Y) fact marks this fact as one
that needs to be present for the rule to be applied,
but which is left unaltered by the rule application.
The in-set(Z,Y) fact is deleted. Two new facts

1The packing feature of the transfer component could not
be employed in these experiments since the current interface
to the generator and stochastic disambiguation component still
requires unpacked representations.

are added. delete-node(Z,r1) indicates that
the structure rooted at node Z is to be deleted, and
rule-trace(r1,del(Z,X)) adds a trace of
this rule to an accumulating history of rule applica-
tions. This history records the relation of transferred
f -structures to the original f -structure and is avail-
able for stochastic disambiguation.
Rules used in the sentence condensation transfer

system include the optional deletion of all adjuncts
except negatives (e.g., He slept in the bed. can be-
come He slept., but He did not sleep. cannot become
He did sleep. or He slept.), the optional deletion
of parts of coordinate structures (e.g., They laughed
and giggled. can become They giggled.), and simpli-
fications (e.g. It is clear that the earth is round. can
become The earth is round.). For example, one pos-
sible post-transfer output of the sentence in Fig. 1 is
shown in Fig. 2.

"A prototype is ready for testing."

’be<[93:ready]>[30:prototype]’PRED
’prototype’PRED

countGRAINNTYPE

’a’PRED
DET−FORM a, DET−TYPE indefDETSPEC

CASE nom, NUM sg, PERS 330

SUBJ

’ready<[30:prototype]>’PRED
[30:prototype]SUBJ

ADEGREE positive, ATYPE predicative93
XCOMP

’for<[141:test]>’PRED
’test’PRED

gerundGRAINNTYPE
CASE acc, NUM sg, PERS 3, PFORM for, VTYPE main141

OBJ

ADV−TYPE vpadv, PSEM unspecified, PTYPE sem125

ADJUNCT

MOOD indicative, PERF −_, PROG −_, TENSE presTNS−ASP
PASSIVE −, STMT−TYPE decl, VTYPE copular73

Figure 2: Gold standard f -structure reduction.

2.2 Stochastic Selection and Generation

The transfer rules are independent of the grammar
and are not constrained to preserve the grammatical-
ity or well-formedness of the reduced f-structures.
Some of the reduced structures therefore may not
correspond to any English sentence, and these are
eliminated from future consideration by using the
generator as a filter. The filtering is done by running
each transferred structure through the generator to
see whether it produces an output string. If it does
not, the structure is rejected. For example, for the
f -structure in Fig. 1, the transfer system proposed
32 possible reductions. After filtering these struc-
tures by generation, 16 reduced f -structures com-



prising possible condensations of the input sentence
survive. The 16 well-formed structures correspond
to the following strings that were outputted by the
generator (note that a single structure may corre-
spond to more than one string and a given string may
correspond to more than one structure):

A prototype is ready.
A prototype is ready for testing.
Leary hopes to set requirements for a full system.
A prototype is ready and Leary hopes to set require-
ments for a full system.
A prototype is ready for testing and Leary hopes to
set requirements for a full system.
Leary hopes to set requirements for a full system by
the end of the year.
A prototype is ready and Leary hopes to set require-
ments for a full system by the end of the year.
A prototype is ready for testing and Leary hopes to
set requirements for a full system by the end of the
year.

After filtering by the generator, the remaining
f -structures were weighted by the stochastic dis-
ambiguation component. Similar to stochastic dis-
ambiguation for constraint-based parsing (Johnson
et al., 1999; Riezler et al., 2002), an exponential
(a.k.a. log-linear or maximum-entropy) probability
model on transferred structures is estimated from a
set of training data. The data for estimation consists
of pairs of original sentences y and gold-standard
summarized f -structures s which were manually se-
lected from the transfer output for each sentence. For
training data {(sj , yj)}m

j=1 and a set of possible sum-
marized structures S(y) for each sentence y, the ob-
jective was to maximize a discriminative criterion,
namely the conditional likelihood L(λ) of a summa-
rized f -structure given the sentence. Optimization
of the function shown below was performed using a
conjugate gradient optimization routine:

L(λ) = log
m∏

j=1

eλ·f(sj)

∑
s∈S(yj)

eλ·f(s)
.

At the core of the exponential probability model is a
vector of property-functions f to be weighted by pa-
rameters λ. For the application of sentence conden-
sation, 13,000 property-functions of roughly three
different categories were used:

• Property-functions indicating attributes, attri-
bute-combinations, or attribute-value pairs for
f -structure attributes (≈ 1,000 properties)

• Property-functions indicating cooccurences of
verb stems and subcategorization frames (≈
12,000 properties)

• Property-functions indicating transfer rules
used to arrive at the reduced f - structures (≈
60 properties).

A trained probability model is applied to un-
seen data by selecting the most probable transferred
f -structure, yielding the string generated from the
selected structure as the target condensation. The
transfered f -structure chosen for our current exam-
ple is shown in Fig. 3.

"A prototype is ready."

’be<[93:ready]>[30:prototype]’PRED
’prototype’PRED

countGRAINNTYPE

’a’PRED
DET−FORM a, DET−TYPE indefDETSPEC

CASE nom, NUM sg, PERS 330

SUBJ

’ready<[30:prototype]>’PRED
[30:prototype]SUBJ

ADEGREE positive, ATYPE predicative93
XCOMP

MOOD indicative, PERF −_, PROG −_, TENSE presTNS−ASP
PASSIVE −, STMT−TYPE decl, VTYPE copular73

Figure 3: Transferred f -structure chosen by system.

This structure was produced by the following set
of transfer rules, where var refers to the indices in
the representation of the f -structure:
rtrace(r13,keep(var(98),of)),
rtrace(r161,keep(system,var(85))),
rtrace(r1,del(var(91),set,by)),
rtrace(r1,del(var(53),be,for)),
rtrace(r20,equal(var(1),and)),
rtrace(r20,equal(var(2),and)),
rtrace(r2,del(var(1),hope,and)),
rtrace(r22,delb(var(0),and)).

These rules delete the adjunct of the first conjunct
(for testing), the adjunct of the second conjunct (by
the end of the year), the rest of the second conjunct
(Leary hopes to set requirements for a full system),
and the conjunction itself (and).

3 A Method for Automatic Evaluation of
Sentence Summarization

Evaluation of quality of sentence condensation sys-
tems, and of text summarization and simplification
systems in general, has mostly been conducted as
intrinsic evaluation by human experts. Recently, Pa-
pineni et al.’s (2001) proposal for an automatic eval-



uation of translation systems by measuring n-gram
matches of the system output against reference ex-
amples has become popular for evaluation of sum-
marization systems. In addition, an automatic eval-
uation method based on context-free deletion deci-
sions has been proposed by Jing (2000). However,
for summarization systems that employ a linguistic
parser as an integral system component, it is pos-
sible to employ the standard evaluation techniques
for parsing directly to an evaluation of summariza-
tion quality. A parsing-based evaluation allows us
to measure the semantic aspects of summarization
quality in terms of grammatical-functional informa-
tion provided by deep parsers. Furthermore, human
expertise was necessary only for the creation of
condensed versions of sentences, and for the man-
ual disambiguation of parses assigned to those sen-
tences. Given such a gold standard, summarization
quality of a system can be evaluated automatically
and repeatedly by matching the structures of the sys-
tem output against the gold standard structures. The
standard metrics of precision, recall, and F-score
from statistical parsing can be used as evaluation
metrics for measuring matching quality: Precision
measures the number of matching structural items
in the parses of the system output and the gold stan-
dard, out of all structural items in the system out-
put’s parse; recall measures the number of matches,
out of all items in the gold standard’s parse. F-score
balances precision and recall as (2 × precision ×
recall)/(precision + recall).
For the sentence condensation system presented

above, the structural items to be matched consist of
relation(predicate, argument) triples. For example,
the gold-standard f -structure of Fig. 2 corresponds
to 23 dependency relations, the first 14 of which are
shared with the reduced f -structure chosen by the
stochastic disambiguation system:
tense(be:0, pres),
mood(be:0, indicative),
subj(be:0, prototype:2),
xcomp(be:0, ready:1),
stmt_type(be:0, declarative),
vtype(be:0, copular),
subj(ready:1, prototype:2),
adegree(ready:1, positive),
atype(ready:1, predicative),
det(prototype:2, a:7),
num(prototype:2, sg),
pers(prototype:2, 3),
det_form(a:7, a),

det_type(a:7, indef),
adjunct(be:0, for:12),
obj(for:12, test:14),
adv_type(for:12, vpadv),
psem(for:12, unspecified),
ptype(for:12, semantic),
num(test:14, sg),
pers(test:14, 3),
pform(test:14, for),
vtype(test:14, main).

Matching these f -structures against each other cor-
responds to a precision of 1, recall of .61, and F-
score of .76.
The fact that our method does not rely on a com-

parison of the characteristics of surface strings is a
clear advantage. Such comparisons are bad at han-
dling examples which are similar in meaning but
differ in word order or vary structurally, such as in
passivization or nominalization. Our method han-
dles such examples straightforwardly. Fig. 4 shows
two serialization variants of the condensed sentence
of Fig. 2. The f -structures for these examples are
similar to the f -structure assigned to the gold stan-
dard condensation shown in Fig. 2 (except for the re-
lations ADJUNT-TYPE:parenthetical versus
ADV-TYPE:vpadv versus ADV-TYPE:sadv).
An evaluation of summarization quality that is based
on matching f -structures will treat these exam-
ples equally, whereas an evaluation based on string
matching will yield different quality scores for dif-
ferent serializations.
In the next section, we report experimental re-

sults of an automatic evaluation of the sentence con-
densation system described above, and show a close
correspondence between the automatically produced
evaluation results and human judgments on the qual-
ity of generated condensed strings.

4 Experimental Evaluation
The sentences and condensations we used
are taken from data for the experiments of
Knight and Marcu (2000), which were provided to
us by Daniel Marcu. These data consist of pairs
of sentences and their condensed versions that
have been extracted from computer-news articles
and abstracts of the Ziff-Davis corpus. Out of
these data, we parsed and manually disambiguated
500 sentence pairs. These included a set of 32
sentence pairs that were used for testing purposes
in Knight and Marcu (2000). In order to control for



"A prototype, for testing, is ready."

’be<[221:ready]>[30:prototype]’PRED
’prototype’PRED

countGRAINNTYPE

’a’PRED
DET−FORM a, DET−TYPE indefDETSPEC

CASE nom, NUM sg, PERS 330

SUBJ

’ready<[30:prototype]>’PRED
[30:prototype]SUBJ

ADEGREE positive, ATYPE predicative221
XCOMP

’for<[117:test]>’PRED
’test’PRED

gerundGRAINNTYPE
CASE acc, NUM sg, PERS 3, PFORM for, VTYPE main117

OBJ

ADJUNCT−TYPE parenthetical, PSEM unspecified, PTYPE sem73

ADJUNCT

MOOD indicative, PERF −_, PROG −_, TENSE presTNS−ASP
PASSIVE −, STMT−TYPE decl, VTYPE copular201

"For testing, a prototype is ready."

’be<[177:ready]>[131:prototype]’PRED
’prototype’PRED

countGRAINNTYPE

’a’PRED
DET−FORM a, DET−TYPE indefDETSPEC

CASE nom, NUM sg, PERS 3131

SUBJ

’ready<[131:prototype]>’PRED
[131:prototype]SUBJ

ADEGREE positive, ATYPE predicative177
XCOMP

’for<[27:test]>’PRED
’test’PRED

gerundGRAINNTYPE
CASE acc, NUM sg, PERS 3, PFORM for, VTYPE main27

OBJ

ADV−TYPE sadv, PSEM unspecified, PTYPE sem11

ADJUNCT

MOOD indicative, PERF −_, PROG −_, TENSE presTNS−ASP
PASSIVE −, STMT−TYPE decl, VTYPE copular83

Figure 4: F -structure for word-order variants of gold
standard condensation.

the small corpus size of this test set, we randomly
extracted an additional 32 sentence pairs from the
500 parsed and disambiguated examples as a second
test set. The rest of the 436 randomly selected
sentence pairs were used to create training data.
For the purpose of discriminative training, a gold-
standard of transferred f -structures was created
from the transfer output and the manually selected
f -structures for the condensed strings. This was
done automatically by selecting for each example
the transferred f -structure that best matched the
f -structure annotated for the condensed string.
In the automatic evaluation of f -structure match,

three different system variants were compared.
Firstly, randomly chosen transferred f -structures
were matched against the manually selected f -
structures for the manually created condensations.
This evaluation constitutes a lower bound on the
F-score against the given gold standard. Secondly,
matching results for transferred f -structures yield-
ing the maximal F-score against the gold stan-
dard were recorded, giving an upper bound for the
system. Thirdly, the performance of the stochastic
model within the range of the lower bound and up-

per bound was measured by recording the F-score
for the f -structure that received highest probability
according to the learned distribution on transferred
structures.
In order to make our results comparable to the

results of Knight and Marcu (2000) and also to in-
vestigate the correspondence between the automatic
evaluation and human judgments, a manual evalua-
tion of the strings generated by these system vari-
ants was conducted. Two human judges were pre-
sented with the uncondensed surface string and five
condensed strings that were displayed in random
order for each test example. The five condensed
strings presented to the human judges contained
(1) strings generated from three randomly selected
f -structures, (2) the strings generated from the f -
structures which were selected by the stochastic
model, and (3) the manually created gold-standard
condensations extracted from the Ziff-Davis ab-
stracts. The judges were asked to judge summariza-
tion quality on a scale of increasing quality from 1
to 5 by assessing how well the generated strings re-
tained the most salient information of the original
uncondensed sentences. Grammaticality of the sys-
tem output is optimal and not reported separately.
Results for both evaluations are reported for two
test corpora of 32 examples each. Testset I contains
the sentences and condensations used to evaluate the
system described in Knight and Marcu (2000). Test-
set II consists of another randomly extracted 32 sen-
tence pairs from the same domain, prepared in the
same way.
Fig. 5 shows evaluation results for a sentence

condensation run that uses manually selected f -
structures for the original sentences as input to the
transfer component. These results demonstrate how
the condenstation system performs under the opti-
mal circumstances when the parse chosen as input
is the best available. Fig. 6 applies the same eval-
uation data and metrics to a sentence condensation
experiment that performs transfer from packed f -
structures, i.e. transfer is performed on all parses
for an ambiguous sentence instead of on a single
manually selected parse. Alternatively, a single input
parse could be selected by stochastic models such
as the one described in Riezler et al. (2002). Such a
separate phase of parse disambiguation, and perhaps
the effects of any errors that this might introduce,



testset I lower
bound

system
selection

upper
bound

F-score 58% 67.3% 77.2 %
sum-quality 2.0 3.5 4.4
compr. 50.2% 60.4% 54.9%

testset II lower
bound

system
selection

upper
bound

F-score 59% 65.4% 83.3%
sum-quality 2.1 3.4 4.6
compr. 52.7% 65.9% 56.8%

Figure 5: Sentence condensation from manually se-
lected f -structure for original uncondensed sen-
tences.

can be avoided by transferring from all parses for
an ambiguous sentence. This approach is computa-
tionally feasible, however, only if condensation can
be carried all the way through without unpacking.
Our technology is not yet able to do this (in partic-
ular, as mentioned earlier, we have not yet imple-
mented a method for stochastic disambiguation on
packed structures). However, we conducted a pre-
liminary assessment of this possibility by unpacking
and enumerating the transferred f -structures. For
many sentences this resulted in more candidates than
we could operate on in the available time and space,
and in those cases we arbitrarily set a cut-off on the
number of transferred f -structures we considered.2
The result of this experiment, shown in Fig. 6, thus
provides a conservative estimate on the quality of the
condensations we might achieve with a full-packing
implementation.
In Figs. 5 and 6, the first row shows F-scores

for a random selection, the system selection, and
the best possible selection from the transfer output
against the gold standard. The second rows show
summarization quality scores for generations from
a random selection and the system selection, and
for the human-written condensation. The third rows

2Since the output of the transfer system is set up to pro-
duce smaller f -strucutures first, i.e. transferred f -structures are
produced according to the number of rules applied to transfer
them, a cutoff on the transfer output will keep more condensed
variants and discard less condensed ones. Furthermore, with our
current implementation, in some cases the transfer component
was also unable to operate on the packed represenation, and in
those cases we chose a parse at random, again in order to pro-
vide a conservative estimate of condensation quality.

testset I lower
bound

system
selection

upper
bound

F-score 55.2% 63.0% 72.0%
sum-quality 2.1 3.4 4.4
compres. 46.5% 61.6% 54.9%

testset II lower
bound

system
selection

upper
bound

F-score 54% 59.7% 76.0 %
sum-quality 1.9 3.3 4.6
compres. 50.9% 60.0% 56.8%

Figure 6: Sentence condensation from packed f -
structures for original uncondensed sentences.

report compression ratios. As can be seen from
these tables, the ranking of system variants pro-
duced by the automatic and manual evaluation con-
firm a close correlation between the automatic eval-
uation and human judgments. A comparison of eval-
uation results across colums, i.e. across selection
variants, shows that a stochastic selection of trans-
ferred f -structures is indeed important. Even if all
f -structures are transferred from the same linguisti-
cally rich source, and all generated strings are gram-
matical, a reduction in error rate of around 50% rela-
tive to the upper bound can be achieved by stochastic
selection. In contrast, a comparison between trans-
fer runs with and without perfect disambiguation of
the original string shows a decrease of about 5%
in F-score,3 and of only .1 points for summariza-
tion quality when transferring from packed parses
instead of from the manually selected parse. This
shows that it is more important to learn what a good
transferred f -structure looks like than to have a per-
fect f -structure to transfer from. The compression
rates associated with the systems that used stochas-
tic selection is around 60%, which is acceptable, but
not as aggressive as human-written condensations.
Overall, the summarization quality achieved by

our system is similar to the results reported in
Knight and Marcu (2000). However, the data used
in the experiments of Knight and Marcu (2000) and

3The drop in F-score for the upper bound compared to trans-
fer from a manually selected parse is due to a fall-back mech-
anism for transferring from a randomly selected parse that had
to be applied occasionally in the current experiments. Despite
these near-term system deficiencies, overall results on summa-
rization quality are still state-of-the-art.



therefore in our experiments are somewhat artifi-
cial: The human-written condensations in the data
set extracted from the Ziff-Davis corpus show
the same word order as the original sentences
and do not exhibit structural modifications such
as nominalization, which are common in human-
written summaries. Also, no additional condensa-
tions were created for the original sentences other
than the condensed versions extracted from the
human-written abstracts. This simplifies the con-
densation task strictly to the operation of dele-
tion. Clearly, it would be desirable to match each
system output against any number of independent
human-written condensations of the same origi-
nal sentence, without restrictions on word-order
or structural modifications. The idea of comput-
ing matching scores to multiple reference exam-
ples was proposed by Alshawi et al. (1998), and
later by Papineni et al. (2001) for evaluation of ma-
chine translation systems. Similar to these propos-
als, an evaluation of condensation quality could con-
sider multiple reference condensations and record
the matching score against the most similar exam-
ple. Also, an evaluation of our system on a corpus of
more diverse condensations would test our system in
a more interesting way, and is thus a desideratum for
future work. Furthermore, work on employing pack-
ing techniques not only for parsing and transfer, but
also for generation and stochastic selection is cur-
rently underway (see Geman and Johnson (2002)).
This will eventually lead to a system that completely
avoids costly unpacking of representations.
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