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Abstract

Standard genetic association tests using case-control
data are based on certain assumptions about the popula-
tion from which study subjects were sampled. Two types
of departure from these assumptions have been studied:
population stratification and cryptic relatedness. Both
types of departure have been called population structure.
Each can lead to erroneous inferences due to differences
between a test statistic’s actual null distribution and the
nominal one valid only for populations without structure.
The differences can reflect either confounding bias or vari-
ance distortion. For each type of structure, adjusted test
statistics have been proposed whose actual null distribu-
tions, in the presence of the structure, equal the nominal
ones appropriate for unstructured populations. This pa-
per reviews models for population stratificationand cryp-
tic relatedness, and uses them to examine the effects of
each on the Armitage trend test for case-control data.
Specifically, population stratification can cause confound-
ing bias but not variance distortion, while cryptic relat-
edness can cause variance distortion but not confounding
bias. Consequently the adjusted statistics developed for
population stratification (e.g. the latent variable meth-
ods of Pritchard et al. (1999, 2001); Satten et al. (2001);
Schork et al. (2001); Wang et al. (2005)), address poten-
tial confounding bias but not variance distortion. Con-
versely, the adjusted statistics developed for cryptic re-
latedness (e.g. the Genomic Control (GC) methods of De-
vlin and Roeder (1999), Setakis et al. (2006) and Zheng et
al. (2006)) address variance distortion but not confound-
ing bias. These differences may explain the anomalous
behavior of adjusted statistics when applied to popula-
tions with structure of a type that differs from the one
for which the method was designed. They indicate that
care is needed to specify the nature of the underlying
structure anticipated for a given population, and to use
appropriate methods to adjust for it.
Keywords: case-control studies, confounding bias,

cryptic relatedness, genomic control, latent variables,
population stratification, trend test, variance distortion

1 Introduction

Large-scale association studies offer substantial
promise for unraveling the genetic basis of common

human diseases. A problem with such studies is that the
null distributions of standard test statistics may differ
from their assumed nominal forms. This may occur when
the population from which study subjects are sampled
has some form of structure. Then incorrect inferences can
occur due to discrepancies between the tests’ actual and
nominal type-1 error rates.

Two models for population structure have been pro-
posed: a population stratification model and a cryptic
relatedness model. Both assume that the population of
interest can be decomposed into disjoint subpopulations
whose memberships are unobserved. In the population
stratification model, the unobserved subpopulations have
different allele frequencies for a polymorphism of interest.
If the subpopulations also differ in disease risk, inferences
based on the full population are vulnerable to confound-
ing bias. Several authors have proposed latent variable
methods that produce adjusted test statistics having the
nominal null distribution in the presence of confounding
bias from population stratification (Pritchard et al., 1999,
2001; Satten et al., 2001; Schork et al., 2001; Wang et al.,
2005). In the cryptic relatedness model, in contrast, the
unobserved subpopulations have the same allele frequen-
cies at the marker of interest; however their members
share alleles IBD at any given marker. This IBD sharing
induces correlation among the genotypes of different indi-
viduals, which in turn distorts the nominal null variance
of test statistics. The Genomic Control (GC) methods
provide adjusted test statistics having the nominal null
distribution in the presence of such cryptic relatedness
(Devlin and Roeder, 1999; Reich and Goldstein, 2001;
Setakis et al., 2006; Zheng et al., 2006).

This paper reviews the population stratification and
cryptic relatedness models. It shows that population
stratification can cause confounding bias but not vari-
ance distortion, while cryptic relatedness can cause vari-
ance distortion but not confounding bias. Consequently
the adjusted statistics using latent variable methods have
the nominal null distribution in the presence of confound-
ing bias due to population stratification, but not in the
presence of variance distortion. Conversely, the adjusted
statistics using GC methods have the nominal null dis-
tribution in the presence of variance distortion due to
cryptic relatedness, but not in the presence of confound-
ing bias. These differences may explain the erratic per-



Figure 1: Distribution of genotypes and disease status among individuals in a hypothetical population containing
40% and 60% of its individuals in subpopulations 1 and 2, respectively.

formance of GC adjustment methods when applied to
data simulated from stratified populations (Marchini et
al., 2004; Campbell et al., 2005). The paper concludes
with a discussion of diagnostics to assess the magnitude
of both confounding bias and variance distortion.

2 The Population Stratification Model

A stratified population is defined to be one consist-
ing of J ≥ 2 subpopulations such that: 1) conditional on
subpopulation membership, an individual’s homologous
marker alleles are independent of each other and of the
alleles of other individuals; and 2) at least two subpop-
ulations have different allele frequencies at one or more
markers (Crow and Kimura, 1970, p 54; Elandt-Johnson,
1971, p 228).

To illustrate this type of structure, consider the sub-
populations and genotypes shown in Figure 1. Here, the
polymorphism of interest has two alleles, A and a, and
the population consists of two subpopulations comprising
40% and 60% of the individuals. Let y = 1 if a chromo-
some bears allele A, with y = 0 otherwise, and let g = 0, 1
or 2 denote an individual’s genotype (the sum of the y-
values for his two homologous chromosomes). Given the
subpopulations j and j′ of two unrelated individuals, the
indicators y for any pair of their chromosomes are as-
sumed to be independent Bernoulli variables with means
pj and pj′ and variances pjqj and pj′qj′ , respectively. Here
pj = 1−qj is the frequency of allele A on chromosomes in
subpopulation j, with 0 < pj < 1, j = 1, . . . , J . (For the
J = 2 subpopulations in Figure 1, p1 = 0.1 and p2 = 0.4.)
The conditional distribution of an individual’s genotype
g, given his membership in subpopulation j, is binomial
with parameters 2 and pj . Its mean is 2pj and its variance
is 2pjqj . Thus Hardy-Weinberg (HW) genotype frequen-

cies hold within each subpopulation.
Although the conditional distribution of an individual’s

genotype, given his subpopulation, is binomial, the ob-
served data allow inference only for its marginal distribu-
tion, averaged over the J subpopulations. This distribu-
tion is a mixture of J binomials. Its mean is

E [g] = 2
J∑

j=1

ajpj ≡ 2P, (1)

where aj is the proportion of the population in subpop-
ulation j. Its variance is

σ2 =
J∑

j=1

aj (2pjqj) + 4
J∑

j=1

ajp
2
j −4P 2 = 2PQ+ 2s2, (2)

where

s2 =
J∑

j=1

ajp
2
j − P 2. (3)

In equation (3) s2 represents both the inter-
subpopulation variance of allele A, and the marginal
covariance between alleles on the chromosomes of a
single individual.

In summary, the population stratification model im-
plies that the marginal distribution of one person’s geno-
type is not binomial. (For the population in Figure 1 with
J = 2, the genotype of an individual in the population
has mean 0.56 and extra-binomial variance σ2 = 0.5032.)
However the genotypes of two unrelated individuals are
marginally independent.

3 The Cryptic Relatedness Model

Cryptic relatedness occurs when a population consists
of J ≥ 2 subpopulations with the following properties: 1)



conditional on subpopulation membership, marker alle-
les of all individuals in the same subpopulation are cor-
related, with correlation coefficient f > 0; 2) marker al-
leles of individuals in different subpopulations are inde-
pendent; and 3) all subpopulations have the same allele
frequencies pj = p (Devlin and Roeder, 1999; Crow and
Kimura, 1970, p 64; Elandt-Johnson 1971, p 213).

This model implies that within each subpopulation,
an individual’s genotype g is the sum of two correlated
Bernoulli variables. Its conditional distribution, given the
individual’s membership in subpopulation j, is

Pr(g|S = j) =


p2 + fpq g = 2

2pq − 2fpq g = 1
q2 + fpq, g = 0

, j = 1, . . . , J.

(4)
Since the distribution (4) is invariant across the subpop-
ulations, it is also the marginal distribution of an indi-
vidual’s genotype. Its mean and variance are

E [g] = 2p, (5)

and

σ2 = var (y1 + y2) = 2var (y1) + 2cov(y1, y2)
= 2pq + 2fpq = 2pq(1 + f). (6)

The covariance of genotypes of two individuals, condi-
tional on their membership in the same subpopulation, is
4fpq. The marginal covariance of the genotypes g, g′ of
any two individuals is

cov(g, g′) =

∑
j

a2
j

 (4fpq) . (7)

To compare the two types of structure, we rewrite ex-
pression (2) as σ2 = 2PQ(1 + F ), where F = s2/PQ.
Then we compare the resulting expressions (1) and (2)
and their parameters (P,Q, F ) to expressions (5) and (6)
and their parameters (p, q, f). We see that the marginal
mean and variance of individual genotypes have the same
forms under the two structure models, and that in both
cases, the binomial variance of genotypes is inflated. How-
ever while genotypes of two individuals are uncorrelated
under the population stratification model, they have pos-
itive covariance (7) under the cryptic relatedness model.
Because of this difference, the two models have quite dif-
ferent implications for confounding bias and variance dis-
tortion.

4 Population Consequences

To investigate how the models for population stratifica-
tion and cryptic relatedness affect the distribution of test
statistics for a given population, we begin by reviewing
the notions of confounding bias and variance distortion.

4.1 Confounding bias

An observational study of association between a dis-
ease and an exposure faces potential confounding by any
attribute that is correlated with both disease and expo-
sure (Kelsey et al., 1996, p 11). Suppose, for example,
that the disease is emphysema, the exposure is alcohol
consumption, and the measure of association is the ra-
tio of emphysema odds among drinkers to that in non-
drinkers. Cigarette smoking is a potential confounding
factor for the association between emphysema and alco-
hol, since it is positively correlated with both emphysema
risk and alcohol consumption. Confounding of the asso-
ciation by cigarette smoking occurs when the odds-ratio
has the same value in smokers and nonsmokers, but a
different value in the total population.

In the present setting, an individual’s “exposure” is
his genotype for the genetic variant of interest, and the
potential confounding factor is subpopulation member-
ship. A classic example of such confounding is given
by Knowler et al. (1988) in a study of noninsulin-
dependent diabetes mellitus (NIDDM) and immunoglob-
ulin haplotypes among residents of the Gila River In-
dian Community. The subpopulations of this population
comprise individuals with varying degrees of Caucasian
(vs. Amerindian) heritage. The authors found an in-
verse association between NIDDM risk and the haplotype
Gm3,5,13,14. However this haplotype was more prevalent
among the largely Causasian subpopulations than among
the largely Amerindian ones. Moreover NIDDM preva-
lence was lower in the Caucasian than the Amerindian
subpopulations. When Knowler et al. (1988) adjusted for
heritage, the inverse association disappeared.

The hypothetical population of Figure 1 is another
example in which the association between disease and
a polymorphism is confounded by population stratifica-
tion. Within each of the two subpopulations, the poly-
morphism is unassociated with the disease, since dis-
ease prevalence is the same among individuals with all
three genotypes. In the total population, however, dis-
ease prevalence is positively associated with carrier status
of allele A. To verify the total population disease preva-
lences in Figure 1, note that the overall prevalence of
disease among AA homozygotes is

Pr(D|AA) = Pr(pop 1|AA) (.06) + Pr(pop 2|AA)(.18).

Here the proportion of AA homozygotes who belong to
population 1 is

Pr(pop 1|AA) =
(.4) (.01)

(.4) (.01) + (.6) (.16)
= .04.

Thus disease prevalence in homozygotes is

Pr(D|AA) = (.04) (.06) + Pr(.96)(.18) = .18.

Similar calculations show that the prevalences of disease
among Aa heterozygotes and aa homozygotes are .16 and
.11, respectively. So although there is no association be-
tween genotype and disease in each subpopulation, we



Table 1: Distributions of Diseased and Disease-free Individuals according to Genotype and Subpopulation, for the
Example of Figure 1

Diseased (13.2%) Disease-free (86.8%)
Genotype

Subpop 1 Subpop 2 Total Subpop 1 Subpop 2 Total
AA .002 .131 .133 .004 .091 .095
Aa .033 .393 .426 .078 .272 .350
aa .147 .294 .441 .351 .204 .555

Total .182 .818 1.0 .433 .567 1.0

find one in the total population. Notice that this associ-
ation is spurious, due entirely to differences between the
two subpopulations in prevalence of both disease and of
genotype. In this example, allele A and disease are both
more common in subpopulation 2 than subpopulation 1.
This leads to a positive association in the whole popula-
tion in the absence of one in each subpopulation. Exam-
ples also can be constructed in which there is a positive
association in each subpopulation but not in the whole
population.

The key conditions for such confounding are differences
among the subpopulations with respect to both:

• A) frequencies of genotypes for the variant of inter-
est;

• B) disease prevalence

(Clayton and Hills, 1994; Kelsey et al., 1996, p 11;
Pritchard and Rosenberg, 1999). Note that condition (2)
of the population stratification model ensures that con-
founding condition (A) is satisfied for some markers.
Therefore population stratification can cause confound-
ing for some polymorphisms and some diseases. In con-
trast, comparison of condition (A) with the cryptic re-
latedness property (3) shows that condition (A) fails to
hold. Thus confounding by population structure does not
occur under the model for cryptic relatedness.

4.2 Variance distortion

Consider a linear combination Z =
∑n

i=1 cigi of geno-
types for n individuals in a population, where the ci are
fixed constants. The variance of Z is

var(Z) =
n∑

i=1

c2i var (gi) +
∑
i �=i′

cici′cov(gi, gi′). (8)

We have seen that under the population stratification
model, the genotypes of any pair of unrelated individ-
uals are marginally independent; thus their covariances
are zero, and var(Z) =

(∑
i c

2
i

)
σ2, where σ2 is given

by (2). Thus correct specification of σ2 is enough to cor-
rectly specify var(Z). Since consistent estimates of σ2

are available (Sasieni, 1997), var (Z) can be estimated
consistently in the presence of population stratification.
In the presence of cryptic relatedness, however, equation
(7) shows that the genotypes of any two individuals are
positively correlated. Estimates for var (Z) used to con-
struct standard test statistics are based on the assump-
tion that genotypes are uncorrelated, and thus they are
biased in the presence of cryptic relatedness. The dif-
ference between the nominal variance in the absence of
correlation and the actual one in its presence is referred
to as variance distortion.

5 Implications for Case-control Studies

We now consider the consequences of population strat-
ification and cryptic relatedness on the null distributions
of test statistics based on case-control data. Because case-
control studies sample the genotype distributions of dis-
eased and disease-free individuals in the population, we
begin by considering the impact of the two forms of struc-
ture on the population mean genotypes of diseased and
disease-free individuals.

5.1 Population parameters

Suppose we wish to conduct a case-control study
by sampling the population of Figure 1. This would
involve sampling the genotype distributions shown in
columns 4 and 7 of Table 1. These distributions are
(.133, .426, .441) for the diseased and (.095, .350, .550)
for the disease-free. (To verify the entries of Table 1,
note first from Figure 1 that the diseased group com-
prises [(.4) (.06) + (.6) (.18)] × 100 = 13.2% of the pop-
ulation. Thus, based on the subpopulation-specific geno-
type prevalences in Figure 1, we find that the fraction of
diseased individuals in subpopulation 1 who carry geno-
type AA is (.4) (.01) (.06) / (.132) = .002. The remaining
entries are calculated similarly.)

Table 2 gives notation for the population parameters
in a general version of Table 1. In this table, πdjg denotes
the prevalence of genotype g among diseased (d = 1) or
disease-free (d = 0) individuals in subpopulation j, j =
1, 2. (For the data in Table 1, for example, the genotype



Table 2: Distributions of Diseased and Disease-free Individuals according to Genotype and Subpopulation, for a
Diallelic Polymorphism and Two Subpopulations

Diseased (d = 1) Disease-free (d = 0)
Genotype

Subpop 1 Subpop 2 Total Subpop 1 Subpop 2 Total
AA a11π112 a12π122 a11π112 + a12π122 a01π012 a02π022 a01π012 + a02π022
Aa a11π111 a12π121 a11π111 + a12π121 a01π011 a02π021 a01π011 + a02π021
aa a11π110 a12π120 a11π110 + a12π120 a01π010 a02π020 a01π010 + a02π020

Total a11 a12 1 a01 a02 1

prevalences in subpopulation 1 are (πd10, πd11, πd12) =
(.01, .18, .81), independent of disease status d.)

To compare the genotype prevalences π1jg and π0jg in
the two disease groups, we need a model for the relation
between genotype and disease risk. We shall assume an
additive logistic model that gives disease risk, conditional
on genotype and subpopulation membership, as

logit P (d = 1|g, S = j) = αj + βg, g = 0, 1, 2, j = 1, 2.
(9)

This model specifies that the heterozygote odds-ratio eβ

is constant over all subpopulations. Absence of associa-
tion (the null hypothesis) occurs when β = 0. Although
β often is used to quantify the magnitude of the asso-
ciation, it will be more convenient to quantify it here
by the difference δ in mean genotypes between diseased
and disease-free individuals. When β = 0, diseased and
disease-free individuals in a specific subpopulation j have
the same genotype frequencies π1jg = π0jg, g = 0, 1, 2.
Thus, conditional on subpopulation, they have the same
mean genotypes µdj = 2πdj2 + πdj1, and so the differ-
ence µ1j − µ0j in mean genotypes between diseased and
disease-free groups is zero. In the presence of confound-
ing, however, the two disease groups may have different
marginal mean genotypes in the entire population. For
example, the prevalences in Table 1 imply that, within
each of the two subpopulations, the mean genotype is in-
dependent of disease status (the common mean for indi-
viduals in subpopulation 1 is [2(.002) + .033] / (.182) =
[2 (.004) + .078] / (.433) = .20, and the corresponding
common mean for those in subpopulation 2 is .80). In
the overall population, however, diseased and disease-free
groups have mean genotypes 2 (.133) + .426 = .692 and
2 (.095) + .350 = .540, respectively, giving a difference
of δ = .692 − .540 = .152. Conversely, examples can
be constructed in which diseased and disease-free groups
have unequal mean genotypes within each subpopulation
(β �= 0), but equal ones in the population as a whole.

Let δj = µ1j −µ0j denote the difference in mean geno-
types between diseased and disease-free individuals in
subpopulation j, j = 1, 2. The overall difference in mean

genotypes between the two groups can be written

δ =
∑

j

a1jµ1j −
∑

j

a0jµ0j = δ + ∆. (10)

Here
δ = a11δ1 + a12δ2 (11)

denotes the average of the subpopulation-specific differ-
ences, weighted by the proportions a1j of diseased indi-
viduals in the subpopulations. Also the bias term

∆ = (µ02 − µ01) (a01 − a11) (12)

is the product of two factors: 1) the difference µ02 − µ01
in mean genotypes of disease-free individuals in subpop-
ulations 2 and 1; and 2) the difference a01 − a11 in sub-
population 1 membership between disease-free and dis-
eased individuals. Confounding occurs when ∆ �= 0. In
this case, confounding can cause rejection of the null hy-
pothesis even when the average difference δ = 0. (This is
the case for the example of Figure 1 and Table 1, where
δ = 0 and ∆ = (.368) (.257) = .092). Moreover if δ and
∆ are both nonzero and have opposite sign, confounding
can cause loss of power.

We can now restate the conclusions of the preceding
section in terms of the genotypes of diseased and disease-
free individuals. Equation (12) shows that a necessary
condition for confounding is that µ01 �= µ02 (mean geno-
types in the disease-free group differ within the two sub-
populations). For rare diseases, confounding condition
(A), which stipulates different subpopulation genotype
frequencies overall, implies different frequencies among
the disease-free, which is necessary for a difference µ01 �=
µ02 in their mean genotypes within subpopulations. The
population stratification model satisfies condition (A)
and therefore this form of structure poses a potential
confounding problem. In contrast, the cryptic relatedness
model fails to satisfy condition (A), and hence this form
of structure cannot cause confounding.

Equation (12) also gives a second requirement for con-
founding, namely that a11 �= a01 (diseased and disease-
free individuals are distributed differently within the
two subpopulations). Stated differently, this requirement
states that the two subpopulations must differ in disease
prevalence, which is confounding condition (B).



5.2 The distributions of test statistics

We now explore how population stratification and
cryptic relatedness affect the distribution of a commonly
used test statistic for case-control data, the Armitage
trend statistic (Armitage, 1955). Suppose that N diseased
cases and N disease-free controls have been genotyped for
a polymorphism of interest. Let Gdi denote the genotype
of the ith individual in group d, d = 0, 1, i = 1, . . . , N ,
and let

Z = N−1/2

(
N∑

i=1

G1i −
N∑

i=1

G0i

)

denote the (scaled) mean difference in genotype counts
between cases and controls. The (squared) Armitage
trend statistic for testing the null hypothesis of no
disease-genotype association is

X2 =
Z2

2σ̂2 , (13)

where

σ̂2 =
1

2N

1∑
d=0

N∑
i=1

G2
di −

(
1

2N

1∑
d=0

N∑
i=1

Gdi

)2

. (14)

(Armitage, 1955; Devlin and Roeder, 1999).Significance
levels are obtained by referring X2 to a central chi-square
distribution on one degree of freedom: X2 ∼ χ2

1 (0).
In the presence of population stratification, Z has

marginal mean

E [Z] = N1/2 (δ + ∆
)
,

where δ and ∆ are given by equation (10). We have seen
in Section 2 that for this model genotypes of different
individuals are uncorrelated. Thus the variance of Z is

v1 = 2var(G) = 2σ2,

where σ2 is given by equations (2) and (3). Since σ̂2 of
(14) is consistent for σ2 under the null hypothesis δ = 0
and in the absence of confounding (∆ = 0), the trend
statistic (13) is distributed asymptotically as X2 ∼ χ2

1 (0)
in this circumstance. In general, the distribution of X2 is
approximately χ2

1 (φ) , with noncentrality parameter

φ =
N
(
δ + ∆

)2
2σ2 . (15)

Expression (15) indicates that for large sample sizes, even
a small amount of confounding, as reflected in the mag-
nitude of ∆, could lead to appreciable inflation of the
type-1 error rate when δ = 0, or loss of power when δ �= 0
and δ and ∆ have opposite sign.

In the presence of cryptic relatedness, Z has marginal
mean equal to N1/2δ. As shown by Devlin and Roeder

(1999), the null marginal variance of Z is

Nvar (Z) =
N∑

i=1

[var (G1i) + var (G0i)]

+
∑

1≤i<i′≤N

[cov (G1i, G1i′) + cov (G0i, G0i′)]

−2
N∑

i=1

N∑
i′=1

cov (G1i, G0i′) .

Equations (6) and (7) show that var (Gdi) = 2pq (1 + f) ,
and cov (Gdi, Gdi′) =

∑2
j=1 a

2
dj (4fpq) , i �= i′, d = 0, 1.

Also, cov (G1i, G0i′) =
∑2

j=1 a0ja1j (4fpq) . Thus for
large N, var (Z) is approximately,

v2 = 4pq (1 + f) + 8fNpq(a11 − a01)2.

Under the null hypothesis δ = 0, the asymptotic distri-
bution of X2 has the mean of a χ2

1 (0) variable but not
its variance. As noted by Devlin and Roeder (1999)the
variable λ−1X2 has a χ2

1 (0) distribution, where

λ =
v2

v1
= 1 +

2fN
1 + f

(a11 − a01)2

is the ratio of variances under the cryptic relatedness and
stratification models. To correct the trend statistic X2

for possible biased estimation of v2, the GC method esti-
mates λ using genotypes at other unlinked markers, and
then scales X2 as λ̂−1X2. Thus the GC method corrects
for potential variance misspecification due to cryptic re-
latedness, but not for potential confounding bias due to
population stratification.

This distinction is illustrated in Figure 2, which shows
the distribution of the trend statistic X2 for 1000 cases
and 1000 controls in the presence and absence of an as-
sociation between the disease and the variant, and in the
presence and absence of confounding due to stratification
into two subpopulations of equal size. The disease risk in
the whole population is fixed at K = 5%, and normal ho-
mozygotes in subpopulation 2 are assumed to have three
times the risk of those in subpopulation 1. In all pan-
els of the figure the true value of λ is one, so that the
GC-adjusted statistic is asymptotically equivalent to the
trend statistic.

Panel A shows the distribution of X2 in the absence of
both association and confounding. In this case X2 has a
central χ2

1 (0) distribution, and so the probability that X2

exceeds the critical value 3.84 (or 10.83) corresponding to
a type-1 error rate α = .05 (or α = .001) has its correct
value α.

Panel B shows the distribution of X2 in the absence
of causal association but in the presence of confound-
ing. Also shown are the actual type-1 error rates corre-
sponding to nominal rates of α = .05 and α = .001. Now
X2 has a noncentral chi-squared distribution χ2

1 (φ), with



Figure 2: Actual distribution of trend statistic X2 for 1000 cases and 1000 controls, with and without a true causal
association and with and without confounding by population stratification. Graphs show chi-square distributions on
one degree of freedom with noncentrality parameters given by: A) 0; B) 2.47; C) 11.30; and D) 3.48.

noncentrality parameter φ = N∆2/
(
2σ2
)
. The magni-

tude and sign of the confounding parameter ∆ are de-
termined by the difference in variant allele frequencies in
the two subpopulations, as described in the Appendix.
The value φ = 2.47 in Panel B results when the variant
has frequency 5% and 10% in subpopulations 1 and 2,
respectively. Comparison of panels A and B shows that
confounding can cause substantial inflation of the type-1
error rate α, and that the inflation factor increases as α
decreases.

Panel C of Figure 2 shows the chi-squared distribution
of X2 in the presence of a causal association and in the
absence of confounding. Here the noncentrality parame-
ter is φ = Nδ

2
/
(
2σ2
)
. Its value φ = 11.30 corresponds

to a common variant frequency of 5% and a common het-
erozygote relative risk of 1.5 in the two subpopulations
(see Appendix). Panel C also shows the power of the trend
test with type-1 error rates α = .05 and α = .001. The
power is 92% for a test of size α = .05 and 43% for a test
of size α = .001.

Panel D shows the distribution of X2 in the presence
of both confounding and association, with a heterozygote
relative risk of 1.5 in each of the subpopulations. Here the
noncentrality parameter is φ = N

(
δ + ∆

)2
/
(
2σ2
)
. Its

value φ = 3.48 is lower than the one for Panel C because
δ and ∆ have opposite sign. This occurs when, compared
to subpopulation 1, subpopulation 2 has higher disease
prevalence but lower frequency of the variant. (Here the
variant has frequency 10% in subpopulation 1 but only
5% in subpopulation 2.) Comparison of panels C and D
shows that such “negative” confounding can cause appre-
ciable power loss, with the percentage loss increasing as

the type-1 error rate becomes more stringent.

These examples support the assertions of Marchini, et
al. (2004) and Helgason et al., (2005) that confound-
ing should not be dismissed in case-control studies using
large sample sizes to detect small effects. Since the exam-
ples were constructed for the circumstance that the trend
statistic and the GC-adjusted statistic are asymptotically
equivalent, they also show that GC adjustment methods
do not correct for confounding bias due to population
stratification.

6 Implications for Family Studies

Study designs that compare phenotypes of diseased in-
dividuals to those of their unaffected siblings or to un-
transmitted parental genotypes are matched with respect
to subpopulation membership. Therefore these designs
avoid confounding bias due to population stratification.
However discordant sibling designs are vulnerable to vari-
ance distortion arising from cryptic relatedness. This dis-
tortion can occur because discordant sibling test statis-
tics are based on the assumption that genotypes of in-
dividuals in distinct sibships are uncorrelated, in vio-
lation of the positive correlation specified by the cryp-
tic relatedness model. In contrast, the transmission dise-
quilibrium test (TDT) statistic avoids both confounding
bias and variance distortion by conditioning on observed
parental genotypes or by other statistical methods (Ra-
binowitz and Laird, 2000; Rabinowitz, 2002; Whittemore
and Halpern, 2003).



7 Guidelines for Case-Control Analysis

Cryptic relatedness may be appreciable in populations
with extensive nonrandom mating, such as diseased indi-
viduals who inherit a common mutation, or small endoga-
mously mating populations. (In fact, variance distortion
due to cryptic relatedness can occur even without sub-
division of the population into subpopulations.) While
cryptic relatedness could, in principle, be a serious source
of incorrect inference, recent work suggests that this is
unlikely to be the case for outbred populations. Specifi-
cally, since allelic correlation reflects identity-by-descent
of chromosomal segments, the magnitude of such correla-
tion in two randomly selected chromosomes from a given
population depends on the average number of prior gen-
erations leading back to a common ancestor. Voight and
Pritchard (2005) proposed a coalescent model for cryp-
tic relatedness, and estimated the model parameters in
both inbred and outbred populations. They concluded
that while cryptic relatedness may be troublesome for
inbred populations, it is less important in outbred ones.
Accordingly, this section focuses on how to deal with con-
founding bias due to population stratification.

The standard way to control confounding in case-
control studies is to construct an adjusted test statistic
by matching or stratifying on levels of the confounding
variable, or by modelling the joint dependence of disease
status on exposure and confounder (Breslow and Day,
1980). However these methods require knowledge about
the subpopulation to which study subjects belong. Sev-
eral investigators have proposed latent variable methods
for inferring subpopulation membership, so that standard
methods can be used (e.g. Pritchard et al. (1999, 2001),
Satten et al. (2001), Schork et al. (2001)). Satten et al.
(2001) use a likelihood-based method and the EM algo-
rithm, treating the population membership of study sub-
jects as missing data. These authors use simulated data to
evaluate the efficacy of this approach. They note that the
large number of parameters involved creates difficulties
in finding global maxima for the likelihood function, and
recommend a principal components approach to choos-
ing good initial values for the algorithm. Recently Wang
et al. (2005) proposed a stratified analysis conditional on
genotypes of a single null marker unlinked to the locus of
interest, effectively using these genotypes as surrogates
for subpopulation membership. All the latent variable
methods are vulnerable to misspecification of subpopu-
lation membership and consequent residual confounding.
They also involve unverifiable assumptions, and most in-
volve many unknown parameters. There is need for fur-
ther evaluation of their performance with data that are
confounded by population structure. The few available
results suggest that some of them may not do well (Mar-
chini et al., 2004; Campbell et al., 2005; Pritchard and
Donnelly, 2001).

A strategy that avoids the use of adjusted test statistics
would instead use a sensitivity analysis based on crude
assumptions about the extent of confounding plausible

in a given study (Wacholder et al., 2000). For example,
the Appendix provides a formula for the noncentrality
parameter φ of (15) for the null distribution of the Ar-
mitage trend statistic, in the presence of confounding due
to stratification into two subpopulations of equal size.
φ is given in terms of the number N of cases and con-
trols, the allele frequencies p1 and p2 of the deleterious
allele in subpopulations 1 and 2, the ratio ρ of disease
risk in subpopulation 2 relative to subpopulation 1, and
the population disease prevalence K. For a given com-
bination of these parameters and a given type-1 error
level, one can compute the corresponding critical value of
the actual null distribution, and reject the null hypoth-
esis only if the test statistic exceeds this value. Table 3
shows such critical values for a range of parameter val-
ues. Tabulations such as this could be used to determine
the level of confounding needed to cast doubt on a nom-
inally significant finding, or analogously, to argue that
an observed test statistic exceeds the critical value corre-
sponding to the maximum plausible level of stratification.
In principle, sample size needs could be targeted to give
adequate power for detecting a case-control genotype dif-
ference large enough to rule out confounding of plausible
magnitudes.

Recently, Gorroochurn, et al. (2006) proposed estimat-
ing the confounding parameter ∆ for a candidate marker
by using a set of L unlinked diallelic markers. The esti-
mate ∆̂, which is proportional to the mean case-control
difference in minor allele frequencies at the L markers,
is used to ”centralize” the chi-squared distribution of the
test statistic at the candidate marker. The utility of this
strategy involves an assumption most easily described for
a population stratified into J = 2 subpopulations. In this
case, ∆ is proportional to the inter-subpopulation differ-
ence d = p2 − p1 in variant allele frequency at the can-
didate marker (see Appendix equation (26)). In contrast,
∆̂ is proportional to the mean inter-subpopulation differ-
ence d = L−1∑L

�=1 d� in minor allele frequencies at the L
markers. Using ∆̂ to estimate ∆ involves the questionable
assumption that d = d.

8 Discussion

The preceding arguments have shown that, loosely
speaking, population stratification can distort the mean
of the Armitage trend statistic but not its variance, while
cryptic relatedness can distort its variance but not its
mean. This difference has two consequences. First, the
methods proposed for dealing with cryptic relatedness do
not adjust for confounding bias due to population strat-
ification. Indeed, as noted above, this bias cannot be ad-
dressed reliably by using a panel of markers unlinked to
the locus of interest, a strategy that underlies these meth-
ods. This is because bias depends on inter-subpopulation
differences in allele frequencies specifically at the marker
of interest, which cannot reliably be estimated from dif-
ferences at other markers. This local specificity has been



Table 3: Critical Values of Actual Null Distribution of the Armitage Trend Statistica with Stratification into Two
Subpopulations of Equal Size

Significance Level
.05 .01 .001

No Confounding 3.84 6.63 10.83

Confounding
deleterious allele frequency ratio of disease prevalence in
subpop 1 subpop 2 subpop 1 to that in subpop 2b

.01 .02 2 4.61 7.86 12.64
3 5.48 9.09 14.25

.03 2 5.96 9.73 15.06
3 8.01 12.34 18.28

.05 .10 2 7.26 11.39 17.13
3 10.35 15.20 21.74

.15 2 12.03 17.23 24.15
3 19.19 25.63 33.95

.10 .20 2 10.14 14.94 21.43
3 15.63 21.48 29.14

.30 2 18.80 25.17 33.42
3 32.28 40.49 50.79

.15 .30 2 13.01 18.39 25.52
3 21.04 27.76 36.39

.45 2 25.98 33.39 42.80
3 46.55 56.31 68.36

a) based on 1000 cases and 1000 controls
b) assuming an overall disease prevalence of .05

demonstrated in a population of European-Americans
(Campbell et al., 2005). Second, family-based designs
such as discordant sib pairs, which match cases to con-
trols with respect to subpopulation membership, control
for confounding by population stratification, but they do
not adjust for variance distortion due to cryptic related-
ness.

The models for population stratification and cryptic
relatedness are both simplified approximations to reality
and neither is apt to fully describe the population struc-
ture relevant to a particular population. It is possible to
construct more general models that combine the features
of the two models and to develop test statistics robust
against both types of population structure (see for exam-
ple Devlin et al. (2001)). However this robustness would
be gained at the price of additional analytic complexity
and potential power loss.

An alternative strategy would be to evaluate the level
of confounding needed to vitiate a positive finding, and
determine whether that level is plausible in the given pop-
ulation (see Wacholder et al. (2000) for further discus-
sion). This strategy involves the type of crude sensitivity
analysis illustrated in Table 3; further refinement of the
assumptions may be helpful. However, while the strategy
may provide some reassurance about positive findings, it

does not address the problem of false negatives due to
confounding, a source of potentially serious power loss.

In summary, a major issue for the future of genetic as-
sociation studies is the extent to which subpopulations
of the major racial/ethnic groups differ in both disease
prevalence and allele frequencies. At present little data
are available to address this question (see Helgason et
al. (2005) and Campbell et al. (2005) for exceptions).
These studies indicate that population stratification can
exist in Caucasian populations, and that it can cause con-
founding. Thus, further characterization of population
structure in major racial/ethnic groups and evaluation
of methods for dealing with it should be a major priority
for the next generation of efforts to characterize human
genetic variation.

APPENDIX: The distribution of the Armitage
trend statistic in the presence of population

stratification

We describe the distribution of the Armitage trend
statistic when applied to the genotypes of N cases and
N controls sampled from a population stratified into two
subpopulations of equal size, without cryptic relatedness.
We have seen in Section 5.2 that in this case the statistic



has asymptotically a noncentral chi-squared distribution
on one degree of freedom. Its noncentrality parameter

φ =
N
(
δ + ∆

)2
2σ2 (16)

determines the shapes of the curves in Figure 2, and the
critical values shown in Table 3. The value of φ depends
on the level of association between variant and disease
risk (measured by the parameter δ), the level of confound-
ing (measured by the parameter ∆) and the genotype
variance σ2. Our objective is to express the quantities δ,

∆ and σ2 in terms of the Hardy-Weinberg (HW) variant
allele frequencies p1 and p2 in the two subpopulations,
the disease prevalence K in the whole population, the
risk ratio ρ among normal homozygotes in subpopulation
2 relative to risk among those in subpopulation 1, and the
relative risk γ among heterozygote carriers of the variant
compared to normal homozygotes.

We assume the additive logistic model (9) for the rela-
tion between disease risk and genotype within each sub-
population. We also assume a small disease risk in each
subpopulation, so that an individual from subpopulation
j with genotype g has approximate risk

rjγ
g, where rj = eαj and γ = eβ . (17)

Under the multiplicative model (17), the disease risk in
subpopulation j can be written

Pr (D = 1| subpop j) = rj

[
p2

jγ
2 + 2pjqjγ + q2

j

]
= rj [1 + pj (γ − 1)]2 ≡ rjηj .

(18)

Hence the overall disease risk is

K = .5 (r1η1 + r2η2) = .5r1η1 (1 + ρν) ,

where ρ = r2/r1 and ν = η2/η1.We can thus write the
probabilities that a diseased individual belongs to each of
the subpopulations as

a11 =
.5r1η1

K
=

1
1 + ρν

and a12 = 1 − a11 =
ρν

1 + ρν
.

(19)
Also, the multiplicative model (17) implies that the vari-
ant allele has HW frequency pjγ/ [1 + pj (γ − 1)] among
diseased individuals in subpopulation j, j = 1, 2 (Clay-
ton, 1999). Hence the mean genotype among diseased
cases in subpopulation j is

µ1j =
2pjγ

1 + pj (γ − 1)
.

The mean genotype among disease-free individuals in the
subpopulation is approximately µ0j = 2pj , giving a dif-
ference

δj = µ1j − µ0j =
2pjqj (γ − 1)
1 + pj (γ − 1)

. (20)

Combining (11), (19) and (20), we have

δ = a11δ1 + a12δ2 =
δ1 + ρνδ2

1 + ρν

=
2 (γ − 1)
1 + ρν

[
p1q1

1 + p1 (γ − 1)
+ ρν

p2q2
1 + p2 (γ − 1)

]
.

(21)

Next we express the confounding parameter ∆ of (12)
in terms of the variant allele frequencies and disease
risks. Because disease prevalence K is low, the differ-
ence µ02 − µ01 in mean genotypes among disease-free
individuals in subpopulations 2 and 1 is approximately
2 (p2 − p1). Substituting this expression into equation
(12) gives

∆ = 2 (p2 − p1) (a01 − a11) , (22)

where a11 and a01 are the fractions of a diseased and
disease-free individuals, respectively who belong to sub-
population 1. Arguments analogous to those preceding
equations (19) give the fraction of disease-free individu-
als who belong to subpopulation 1 as

a01 =
.5
[
1 − 2K

1+ρν

]
1 − K

.

Thus, after some algebra, we find that

a01 − a11 =
.5 (ρν − 1)

(1 + ρν) (1 − K)
. (23)

Substituting (23) into (22) gives

∆ =
(p2 − p1) (ρν − 1)
(1 + ρν) (1 − K)

. (24)

Finally, we approximate the variance term in the denom-
inator of φ by its value under the null hypothesis of no
association. Using a1 = a2 = 0.5 in equations (2) and (3)
gives

σ2 = p1 + p2 − 2p1p2. (25)

In conclusion, substituting expression (21) for δ, expres-
sion (24) for ∆ and expression (25) for σ2 into (16) com-
pletes the calculation of φ.

Under the null hypothesis γ = 1 of no association be-
tween variant and disease, the expressions for δ and ∆
simplify to δ = 0 and

∆ =
(p2 − p1) (ρ − 1)
(1 + ρ) (1 − K)

. (26)

ACKNOWLEDGEMENTS

This work was supported by NIH grant number
CA94069. The author is grateful to Raymond R. Balise
for technical support and to Joseph B. Keller for helpful
discussions.



REFERENCES

Armitage, P. (1955), ”Tests for linear trends in proportions and
frequencies,” Biometrics, 11, 375-386.

Breslow, N.E. and Day, N.E. (1980), ”Statistical methods in cancer
research, Volume I - The analysis of case-control studies,” IARC
Scientific Publications (32):5-338.

Campbell, C.D., Ogburn, E.L., Lunetta, K.L., Lyon, H.N.,
Freedman, M.L., Groop, L.C., Altshuler, D., Ardlie, K.G.,
Hirschhorn, J.N. (2005), “Demonstrating stratification in a Eu-
ropean American population,” Nature Genetics, 37, 868-872.

Clayton, D. (1999), ”A generalization of the transmis-
sion/disequilibrium test for uncertain-haplotype transmission,”
American Journal of Human Genetics, 65, 1170-1177.

Clayton, D. and Hills, M. (1994), Statistical Models in Epidemiol-
ogy, Oxford Science Publications.

Crow, J.F. and Kimura, H. (1970), An Introduction to Population
Genetics Theory, Burgess Publishing Co., Minneapolis, Min-
nesota.

Devlin, B. and Roeder, K. (1999), ”Genomic control for association
studies,” Biometrics, 55, 997-1004.

Devlin, B., Roeder, K., Wasserman, L. (2001), ”Genomic control, a
new approach to genetic association studies,” Theoretical Pop-
ulation Biology, 60, 156-168.

Elandt-Johnson, R.C. (1971), Probability Models and Statistical
Methods in Genetics, Wiley and Sons, New York.

Gorroochurn, P., Heiman, G.A., Hodge, S.E., Greenberg, D.A.
(2006), ”Centralizing the non-central chi-square: A new method
to correct for population stratification in genetic association
studies,” Genetic Epidemiology, 30, 277-289.

Helgason, A., Yngvadottir, B., Hrafnkelsson, B., Gulcher, J., Ste-
fansson, K. (2005), ”An Icelandic example of the impact of
population structure on association studies,” Nature Genetics,
37, 90-95.

Kelsey, J.L., Whittemore, A.S., Evans, A.S., Thompson, W.D.
(1996), Methods in Observational Epidemiology, Second Edi-
tion, Oxford University Press, New York.

Knowler, W.C., Williams, R.C., Pettitt, D.J., Steinberg, A.G.
(1988), ”GM3;5, 13, 14 and type 2 diabetes mellitus: An associ-
ation in American Indians with genetic admixture,” American
Journal of Human Genetics, 43, 520-526.

Marchini, J., Cardon, L.R., Phillips, M.S., Donnelly, P. (2004), ”The
effects of human population structure on large genetic associa-
tion studies,” Nature Genetics, 36, 512-517.

Pritchard, J.K. and Rosenberg, N.A. (1999), ”Use of unlinked ge-
netic markers to detect population stratification in association
studies,” American Journal of Human Genetics, 65, 220-228.

Pritchard, J.K., Stephens, M., Rosenberg, N.A., Donnelly, P.
(2001), ”Association mapping in structured populations,”
American Journal of Human Genetics, 67, 170-181.

Pritchard, J.K. and Donnelly, P. (2001), ”Case-control studies of
association in structured or admixed populations,” Theoretical
Population Biology, 60, 227-237.

Rabinowitz, D. (2002), ”Adjusting for population heterogeneity and
misspecified haplotype frequencies when testing nonparametric
null hypotheses in statistical genetics,” Journal of the Ameri-
can Statistical Association, 97, 742-758.

Rabinowitz, D. and Laird, N. (2000), ”A unified approach to adjust-
ing association tests for population admixture with arbitrary
pedigree structure and arbitrary missing marker information,”
Human Heredity, 50, 211-223.

Reich, D.E. and Goldstein, D.B. (2001), ”Detecting association in
a case-control study while correcting for population stratifica-
tion,” Genetic Epidemiology, 20, 4-16.

Sasieni, P.D. (1997), ”From genotypes to genes: doubling the sample
size,” Biometrics, 53, 1253-1261.

Satten, G.A., Flanders, W.D., Yang, Q. (2001), ”Accounting for
unmeasured population substructure in case-control studies of
genetic association using a novel latent-class model,” American
Journal of Human Genetics, 68, 466-477.

Schork, N.J., Fallin, D., Thiel, B., Xu, X., Broeckel, U., Jacob, H.F.,
Cohen, D. (2001), ”The future of genetic case-control studies”
(Review), Advances in Genetics, 42, 191-212.

Setakis, E., Stirnadel, H., Balding, D.J. (2006), ”Logistic regres-
sion protects against population structure in genetic association
studies,” Genome Research, 16, 290-296.

Voight, B.F., Pritchard, J.K. (2005), ”Confounding from cryptic
relatedness in case-control association studies,” PLoS Genetics,
1, e32.

Wacholder, S., Rothman, N., Caporaso, N. (2000), ”Population
stratification in epidemiologic studies of common genetic vari-
ants and cancer: Quantification of bias,” Journal of the Na-
tional Cancer Institute, 92, 1151-1158.

Wang, Y., Localio, R., Rebbeck, T.R. (2005), ”Bias correction with
a single null marker for population stratification in candidate
gene association studies,” Human Heredity, 59, 165-175.

Whittemore, A.S. and Halpern, J. (2003), ”Genetic association tests
for family data with missing parental genotypes: A compari-
son,” Genetic Epidemiology, 25, 80-91.

Zheng, G., Freidlin, B., Gastwirth, J.L. (2006), ”Robust genomic
control for association studies,” American Journal of Human
Genetics, 78, 350-356.


