CHAPTER | 1 Hﬂt?duclfﬂﬂ and
overview

Our goal in this book is to illustrate, in concrete ways that you will be
able to replicate on your own, properties of connectionist models
which we believe are particularly relevant to developmental issues.
Owr emphasis on the principles and functional characteristics of these
models is what sets this book apart from many of the other excellent
introductions to neural networks (some of which the reader may wish
to consult to get a broader view of architectures and techniques not
covered in this volume).

In Chapters 3 through 12 we explore a set of simulations which
focus on various aspects of comnectionist models. However, we are
aware that our readers will vary widely with regard to the knowledge
and experience they bring with them. Before leaping into the simula-
tions, therefore, there are several things we think it will be useful to
do. The first three chapters therefore provide an overview of some of
the technical aspects of doing simulations. In this chapter we intro-
duce some of the terminological and notational conventions which
will be used in this book, and provide a brief overview of network
dynamics and learning. Our intent is modest here; we want to give the
reader enough of an understanding of network mechanics so that he or
she will understand what actions are being done by the simulator that
is used in the subsequent exercises. Qur goal in Chapter 2 is to make
explicit the assumptions which underlie the simulation methodology
we will be using. It is easy to do simulations; it’s not as easy to do
them well and to good purpose! In Chapter 3 we describe the software
which will be used in this book. These first three chapters thus contain
introductory material, some of which the experienced reader might
wish to skip (although we urge that it at least be skimmed to ensure
nothing vital is missed).

s CHAPTER |

Nodes and connections

Neural networks are actually gquite simple. They are made up of a few
basic building blocks: nodes and connecrions. Figure 1.1 shows sev-

(a) e}
t)

FIGURE 1.1 Vanous (ypes of connectionist architeciures. (a) A fally recurrent
network; (b a three-layer fecdforward network; (¢} a compléx
network consisting of several modules, Arrows indicate direction
of flow of excitation or inhibition,

eral sample networks, where nodes are shown as filled circles and
connections as lines between them.

Nodes are simple processing units. They are often likened to neu-
rons. Like neurons, they receive inputs from other sources. These
inputs may be excitatory or inhibitory. In the case of the neuron, exci-
tatory inputs tend to increase the neuron's rate of fining, while inhibi-
tory inputs decrease the firing rate. This notion of firing rate is
captured in nodes by giving them a real-valued number which is
called their activation. (We might think of higher activation values as
corresponding to greater firing rates, and lower activation values to
lower firing rates.)

The input to a given node comes either from other nodes or from
some external source, and travels along connection lines. In most con-
nectionist models, it is useful to allow connections between different
nodes to have different potency, or connection strengths. The strength
of a connection may also be represented by a real-valued number, and
iz uswally called the connection weight. The input which flows from
one node to another is multiplied by the connection weight. If the con-

Inrroduction and overview £

nection weight from one node to another is a negative number, then
the input from the first 1o the second node may be thought of as being
inhibitory: if positive, it is excitatory,

If we looked in more detail ot a node, we might wish (o represent
it as in Figure 1.2, This shows the node as a cirele, with input connec-

—| 2 |f(net)
oiher nodes ofher nodes

FIGURE1.2 Detailed look al a single node. Inputs io the node are typically
summed (indicated by the symbol X on the left); the net input is
then passed ihrough an activation funcrion (shown as finer))
which yiclds the node’s sctivation. This value is then sent on o
other nodes,

tions feeding into i, and output connections leading from it. Each
input line or connection represents the flow of activity perhaps from
some other neuron or from some external source (such as light falling
on some pholosensitive retinal cell).

For most of the nodes that you will meet in this book, the cell
body performs two operations. The first is the simple adding together
of the net inpuls to the unit. Each input (from different nodes) is itsell
a number, which can be calculated by multiplying the activation value
of the sending node by the weight on the connection from the sending
to receiving node (note that connections between nodes may be asym-
metric). If we use the letter 1o index the receiving node, a; 1o index
the activation of those nodes which send to node i, and wy; to refer to
the weights on the connections from nodes j to node 4, then we may
calculate the net input to node { as

net;, = Ew”aj (EQ1.1)
T

4 CHAPTER I

What does T mean? What does f(net) mean?

When vou see this symbol (called “sigma”] it means This is read “f of net. " It means we have some opera-
that something is going fo be added. Here we use it by tion or set of operations which we want to carry out
itself to indicate that all the inpuis will be summed on the guantity contained in the variable named "ner™
tegether, Another example might be (which we wse to deote the net input fo a node). We
Z“i call these aperations a function, and say thai we are

. applving the function = to the :‘.I.I'lmrm"_?l' “net” (Note
This means thai we have some number of a’% fo be L b e el Sy

siwmmned. We use [as a counter, beginning with § equeal function is.)

fo O (by convention). We s the first a (agh, the sec-
ond, (a;), efc., Wl we have counted through all “i” af
fheen,

What a node actually does with that net input is another matter. In the
simplest case the node’s activation is the same as its input. In this case
the activation function (ffrer)) is just the identity function. But one
can easily imagine cases where the activation of a node (its output)
might require a certain amount of “juice” before it actwally starts to

This equation tells us how o calenlate the weal input
cevRing info some node. We call that node § so thar the
procedure can be general. Lets asoome here we are
dealing with rode 5, 5o [equals 5. We Rave already
satd that the T means to add some things together;
the subscript under the sigmea (j) rells ws how many
things need Io be added. The things o be added are
indicated by the letters that follow—the Wi and the
a;. By convention, two adjacent variables mean the
nimbers they represent are o be multiplied first, 5o,
how do we calewlare all of this?

TEN

We Begin by setfing owr courter () to O jagain, by
convention). That means a; is ag or the activation of
the Oth node (whatever it .‘llcwcm to be). wy becomes
the wg g o the weight going o nade 3 from node 0, We
mudriply these two munbers together and save the
result. Then we set the counier j fo !, and calculare
the product of ay (the activation of node 1) times wy
(the weight to node 5 fromn node 1), We save that
result,. We continge 6ill we have gone through all of
the j's. Finally, we add them wp (the sigmal This
epreretion is eften called a “sam of produces, ™

fire. This is in fact typical of real neurons: In order to begin firing, the
input must exceed a certain threshold.

In many neural networks, the activation function is nonlinear
function of the input, resembling a sigmoid. In the networks we will

Introduction and overview 5
be using here, nodes’ activations are given by the logistic function
shown in

1

1+ '_-Ilfll

(EQ 1.2)

(where a; refers to the activation (output) of node;, mer; is the net acti-
vation flowing into node;, and e is the exponential). This equation
tells us what the output of a node will be, for any given net input. If
we graph this relationship, as we have done in Figure 1.3, we get a

0= T T T
108 6 4202 46 8 10
Net Input

FIGURE 1.3 The sigmoid activation function often used for nodes in neural
networks,
better idea of how a node's output is related to its input.

We see that over a wide range of inputs (roughly, inputs greater
than 4.0, or less than -4.0), such nodes exhibit an all-or-nothing
response—they are either fully “on”™ (output their maximum values of
1.0) or “off” (output their minimum values of 0.0). Within the range
of -4.0 1o 4.0, on the other hand, the nodes show a greater sensitivity
and their output is capable of making fine discriminations between
different inputs. This nonlinear response lies at the heart of much af
what makes such networks interesting.

6 CHAPTER |

A concrete example

Although the dynamics of node activations are fairly straightforward,
it is easy 1o be confused between the input which a node receives, and
its ourpur. Calculating these quantities is one of the things a simulator
does, but these can also be calculated by hand and it is useful to do
this a few times to be sure you understand what is going on.

To place things in context, let us first assemble a simple network.
A neural network consists of a collection of nodes of the sort that we
discussed in the previous section. When we talk aboul the architeciure
of a network we are referring to the particular way in which that net-
work is assembled, or its pattern of connectivity. There are many
types of architectures, and we shall consider a number of them in this
book.

A very common architecture is one in which nodes are connected
to each other in a layered fashion. For example, consider the neural
network depicted in Figure 1.4, This network consists of four nodes

Input nodes

FIGURE 1.4 A two-layered feedforward network.

organized into two layers: an input layer and an output layer. Within
the input layer, all the nodes have connections which project to the
output layer. There are no connections between nodes within a layer
{no infra-level connections). Furthermore, in this architecture the
nodes do not possess recurrent connections, i.e., they do not have
connections which project back to themselves or to lower levels.
Thus, in this network, the flow of activity is in one direction only,
from the input layer to the output layer. We call these types of net-
works “feedforward networks.” In contrast, “recurrent networks” may
possess both intra- and inter-level connections as well as feedback
connections from one level to an earlier level.

fetroduciion and overview 7

Notice that the input nodes in Figure 1.4 have only a single con-
nection projecting into them. Similarly, the output nodes have only a
single connection projecting out from them. Again, this portrayal is a
gross simplification in comparison to biological neural networks. Real
neural networks are likely to receive inputs from multiple sources and
send outputs to multiple destinations. Of course, there will be some
biological neurons that receive only a single input. For example, reti-
nal photoreceptors might be thought as newrons with just a single
input—in this case, the light source that fires the neuron. More gener-
ally, though, it is appropriate to think of the single input to an input
neuron in Figure 1.4 as summarizing the input from multiple sources,
and the single output from an output neuron as summarizing the out-
put to multiple destinations.

We can now begin to consider just how the neural network per-
forms its task. First, let's assume that each input node has a certain
level of activity associated with it. Our goal is to determine how the
activity of the input neurons influence the output nodes. To simplify
the explanation, we shall consider the process from the point of view
of just one output unit, the lefi-hand output in Figure 1.4, This is
highlighted in Figure 1.5. We refer the two input nodes as node, and

b raachees:

FIGURE 1.5 The activation of the lefi-hand output unit from Figure 1.4

node;, and to the two output nodes as node; and node ;. The activation
values of the input nodes are denoted a;, and a,. respectively, Our
goal is to calculate the activation of the left-most output node, a, .
From Figure 1.2 we see that one of the computations that the neu-
ron performs is to calculate its net input from other neurons. The out-
put neuron in Figure 1.5 receives input from twe input neurons,
namely a, and a,. These two input neurons communicate with the
output neurons via independent connections. We also said earlier that

b CHAPTER |

exactly how much input was received along a given connection
depended on the activation values of the sending wnits (in this exam-
ple. a; and a,), but also the weights on the connections. These
weights serve as multipliers. In Figure 1.5 we have denoted the
weight from input nodey to output node; with the symbol w., . using
the convention that a weight labeled w,, refers to the connection to
node; from node;. Note that since activity flows in only one direction
along the connections, the value of the weightw,, is not the same as
Wgz - In fact, the connectionw,, does not exist in the network depicted
in Figure 1.5.

In the example above, the only inputs to node; come from the two
input nodes. Each input is the product of the activation of the sender
unit times the weight; the total input 1o node; is simply given by the
sum of these two products, i.e., wy,a, +w,,a, .

Exercise 1.I%

To make the example concrete, assume our network has
the weights shown, and the input nodes have the activa-
tions shown,

Input Noces

1. What will be the inpur which is received by node ;7

The net input by itself does not determine the activity of
the output node. We also need o know the activation
function of the node. Let us assume our nodes have acti-
vation functions as given in Equation 1.2 (and shown
graphically in Figure 1.3). In the table below we give
sample inputs and the activations they produce, assum-
ing a logistic activation function.

Introduction and overview ¥

Exercise I.1*

INPUT ACTIVATION
-3 . 00 0.119
-1.75% 0.148
=1,50 0.183
=1.3% 0.323
-1.00 0.269
-0.7% 0,321
-0.50 0.378
=0, 2% 0.438

0. 00 0.500
0.25 0.562
0.50 0.622
0.75 0.679
1.00 6.731
1.2% 0.777
1.50 0.818
1.75 0. 8523
2.00 $.881

2 What will be the activation of node,, assuming the
input you just caleulated?

In many networks, it is also uscful to allow nodes to have what
amounts 1o a default activation. Note that in the absence of any input
(which means an input of 0.0), our nodes will have an output of 0.5
(see Exercise 1.1). Suppose we want a node to be “off"—have an out-
put of 0.0—in the absence of input. Or we might wish its default state
to be on.

We can accomplish this by adding one additional node to our net-
work. This node receives no inputs, but is always fully activated and
outputs a 1.0. The node can be connecied to whatever other nodes in
the network we wish: we often connect this node to all nodes except
the input nodes. Finally, we allow the weights on the connections
from this node to its receiving nodes to be different.

This effectively guarantees that all the receiving nodes will have
some input, even if all the other nodes are off. Since the extra node’s

o CHAPTER |

output is always 1.0, the input it sends to any other node is just
1.0 % wy —or the value of the weight itself.

Because of what it does, this extra node is called the bias node
(only one is needed per network). What it does is similar to giving
each node a variable threshold. A large negative bias means that the
node will be off (have activations close to 0.0) unless it receives suf-
ficient positive input from other sources to compensate. Conversely,
if the bias is very positive, then the receiving node will by default be
on and will require negative input from other nodes to turn it off.
Allowing individual nodes to have different defaulis turns out to be
very useful,

Learning

S0 far we have discussed simple networks that have been pre-wired.
In Exercise 1.1 we gave as an example a network whose weights were
determined by us. For some other problem, we might wish the net-
work to learn what those weights should be.

In this book we will be using a learning algorithm called “back-
propagation of error” (Rumelhart, Hinton, & Williams, 1986; see also
Le Cun, 1985; Werbos, 1974). Backpropagation is also referred to as
the ‘generalized delta rule’. (This algorithm is described fully in the
paper by Rumelhart et al. (1986) and the reader is urged to consult
that paper for a more detailed explanation.)

The basic strategy employed by “backprop™ is to begin with a net-
work which has been assigned initial weights drawn at random, usu-
ally from a uniform distribution with a mean of 0.0 and some user-
defined upper and lower bounds (frequently £1.0). The user also has a
set of training data, which come in the form of input/output pairs. The
goal of training is to learn a single set of weights such that any input
pattern will produce the correct output pattern. Often it is also desired
that those weights will allow the network to generalize to novel data
not encountered during training.

The training regime involves several steps. First, an input/output
pattern is selected, usually at random. The input pattern is used to
activate the network, and activation values for output nodes are calcu-
lated. (Note that in the example in Figure 1.4 our network has only

Introducrion and overview i

input nodes and output nodes. We could just as easily have additional
nodes between these two layers, and in fact there are good reasons 1o

}[plmmd'fpm#nﬁ“jhk_ﬁm The error term ﬁ,F iz fust the product of the aerual
we of the node’s activation function. This is error on the oulput node and the derivative of the
Just the siope of the activation function, The activation nede’s activation function, For large valuwes af net
Junction, the sigmoid, is defined mathemarically in input to the node (both positive and negative) the
(EQ1.2) and depicted graphically in Figure 1.3, derivative is small. Conseguently, Brp will be small,
Notice that the slope is sieepest around the middle of Net input to a node tends fo be large when the connec-

:-mm.!:;hrmnm}.{n tions feeding into the node are strong. Conversely,

the sigmoid activation function is weak connections fend fo yield a small input to a
wma,’u-%i.m& nu&.“ﬁhnﬁﬂfwﬂuesqfneﬂnpw,n&cdtﬁmﬁuqf

the activation function is large {see Figure 1.6) and
E,F can be large—provided the owtput error is large.
—

— -
wish to have such “hidden nodes”™; see the companion volume
Rethinking Innateness, Chapter | and Chapter 3, this volume.)

Because the weights of the network have been chosen at random,
the outputs that are generated at the outset of training will typically
not be those that go with the input pattern we have chosen; the outputs
are more likely to be garbage than anything else. In the second step of
training, we compare the network’s output with the desired output
(which we call the reacher pattern). These two patterns are compared
on a node-by-node basis so that for each output node we can calculate
its error. This error is simply the difference in value between the tar-
get for node; on training pattern p (we will call this target Iip) and the
actual output for that node on that pattern (o,). multiplied by the
derivative of the output node’s activation function given its input.
We'll call that error &, (& is pronounced “delta™):

Bip = (=0, (mer,) = (1, -0, e, (]) (EQ 1.3)

S0 the problem now is how to apportion credit or blame to each of the
connections in the network. We know, for each output node, how far
off the target value it is. What we necd to do is to adjust the weights
on the connections which feed into it in such a way as to reduce that
error. That is, we want to change the weight on the connections from
every node; coming into our current node; in such a way that we will

[2 CHAPTER |

reduce the error on this pattern. This change in weight is calculated
a2

-_‘ih'u = —T'LE;E (EQ 1.4)

This is what is called a partial derivative. What it If we knew this, then we would know how 1o change

actually straighgforward and can be the weight (the A symbol—also pronounced
ffnm hluiﬁw!‘:wwﬂm knowing calculus. “della™—eon the lefi of Eguation |4 means
Basically, this term measures how the guansity on the © “1in onder 1o decrease the error, where error

top changes when the quantity on the bottom is will mean the

discrepancy
changed. In this particular case, we wan! io know is outpurting, compared with whai we want it o be
how the error (E) 15 affected by changing the weights ourpudting.

Wl

That is, we want to know how changes in error are related to changes
in weights. (The 1 —pronounced “eta”—is known as the lcarning rate,
and is a small constant. Since our goal is to find a set of wcu;.’nu
which will work for all inputfoutput patterns, we should be cautious
in changing the weights too much on any given patiern.)

0.25

o
(X
1

=
—k
w

Activation Derivative
=1
-]
& -

lJ~ T T T] 1] 1
10 -8 6 4 2 0 2 4 6 8 10
Met Input

FIGURE 1.6 The denvative of the activation function

Introduction and overview i3

Of course, the real question is how we compute the expression on

the right, practically speaking. It turns out that this quantity can be
calculated as:

Aw,, = nB,,0, (EQ 1.5)

This is often called the “delta rule.” We won't explain the math behind
the derivation here; if you are interested, consult Rumelhart et al.,
1986; or Hertz, Kroagh & Palmer, 1991.

We do three things with this equation. First, we make our changes
small, s0 1 15 often set to some value less than 1.0 {e.g., 0.1 or 0.3),
We do this because, if we are updating weights after every pattern, we
don't want to have changes be too drastic. There are other patterns yet
to be encountered, and we wish to proceed cautiously so that we can
find a set of weights which will work for all the patterns, not just the
current one. Second, the change in weight depends on the error we
have for this unit, §,,, as calculated in Equation 1.3, Finally, we also
take into account the output we have received from the sending node,
oy This makes sense because the node’s error is related to how much
{mis)information it has received from another node; if the other node
is highly active and has contributed a great deal to our current activa-
tion, then it bears a large share of the responsibility for our error,

We proceed in this manner, calculating errors on all output nodes,
and weight changes on the connections coming into them (but we do
not yvet actually make the changes). Then we move down to the hidden
layer(s) (if there are any). We use the same equation, Equation 1.5, for
changing weights that lead into the hidden units from below, How-
ever, we cannot use Equation 1.3 to compute the hidden nodes” errors,
since there is no given target against which they can be compared.
Instead, we make the hidden nodes “inherit” the errors of all the nodes
they have activated, using the same principle of credit/blame. If the
nodes activated by a hidden node have large errors, then the hidden
unit shares responsibility, So we calculate its error by simply sum-
ming up the errors of the nodes which it activates (multiplied by the
weight between the nodes, since obviously if the weight is very small
the hidden node has much less responsibility). This procedure is sum-
marized in Equation 1.6 where the subscript § indicates the hidden
node, p indicates the current pattern and & indexes the output node
feeding error back to the hidden node;

14 CHAPTER !

'Ei_ﬂ' = f'{nrf‘,};ﬁhh'h lm 1'“

(As in Equation 1.3, the derivative of the hidden unit’s activation
function is also multiplied in.)

This procedure continues iteratively down through the network,
hence the name “backpropagation of error.”” When we get to the layer
above the input layer (inputs have no incoming weights), we take the
third and final step of actually imposing the weight changes.

Exercizse 1.2

1. Why do we wait until we have calculated all the &5
before making the weight changes, rather than
change weights as we go down the network?

Output nodes (a:)
0.75 0.5

Ingut nodes oo

(a)

2. Imagine we are training the single-layered network
shown above on the left. The network is shown with
a set of activation values for the input nodes and
weights connecting the input nodes to the output
node. Assume that the output node has a sigmoid
activation function (see Exercise 1.1), that the
desired output is1.0 and that the leaming rate
n = 0.1. Calculate the changes that will be made
to the two weights in the network. Hinr: You will
alse need to know the value of the derivative in
Equation 1.3. These are tabulated for different acti-
vation values below. Don't forget to calculate net
inputs to determine the activation value from the
table in Exercise 1.1.

Intreduction and overview 15

Exercise 1.2

ACTIVATION DERIVATIVE
.00
0%
16
.21
.24
.25
.24
.21
.16
.09
.00

&

L = I T = T T o T Y R o I o o
nmmqmuj—hu:—
- NI

2. Repeat the calculations for the multi-layered net-
work with hidden nodes using the same leamning rate
parameter and target activations of 1.0 on both out-
put nodes. Hint: Calculate 83 for the owtput nodes
in just the same way as you did in Exercize 1.2.1.
However, you will also need to consult Eguation 1.6
to determine & 5 for the hidden node.

4. What training conditions promote maximum weight
changes in a network? Hint: Consull Eguation 1.3
and Egquation .5 before attempting to answer this
question.

