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Outline

* Neural networks
- McCulloch Pitts Neuron
- Perceptron
- Delta rule
- Error Back Propagation

* Machine learning
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Neural networks history

+ 1943: McCulloch Pitts simplified model of
the neuron as a computing element

- Described in terms of propositional logic
» Inspired by work of Turing

* In turn, inspired work by Kleene (1951) on
finite automata and regular expressions.

* Not trained (no learning mechanism)
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Neural networks history

* Hebbian Learning (1949)

- Concept that information is stored in the connections
- Learning rule for adjusting synaptic connections

1958: Perceptron (Rosenblatt)

- Weight neural inputs with a learning rule

1960: Adaline (Widrow Hoff 1960 at stanford):

- adaptive linear elemnt with a learning rule

1969: Minsky and Papert show problems with
perceptrons
- Famous "XOR" problem
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Neural networks history

1974-1986 Various people solve the problems with
perceptrons:

- Algorithms for training feedforward multilayered
perceptrons

- Error Back Propagation (Rumelhart et al 1986)
1990: Support Vector Machines

* Current: neural networks seen as just one of
many tools for machine learning.
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McCulloch-Pitts Neuron

-+ 1943
* Neuron produces a binary output (0/1)

+ A specific number of inputs must be
excited to fire

* Any nonzero inhibatory input prevents firing
* Fixed network structure (no learning)
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McCulloch-Pitts Neuron

. X; - 1nput
X, :+ w* - excitatory input (w > 0)
- w- - inhibitory input (w < 0)
X3 0 - firing threshold
x w y  -output

y =1 1if sum of excitatory inputs >= 0 and no inhibitory input
y = 0 1f sum of excitatory inputs < 0 or inhibitory input
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MP Neuron examples
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MP Example 1

* Logic Functions: AND

x1

X2

AND

True=1, False=0

If both inputs true, output true
Else, output false

Threshold(Y)=2

= 1O 0|0

AND Function
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MP Example 2

x1

X2

* Logic Functions: OR
* True=1, False=0

If either of inputs true, output true
Else, output false

Threshold(Y)=2

|—s|—s|—so

OR Function
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Problems with MP neuron

* Only models binary input
» Structure doesn't change
* Weights are set by hand

- No learning!!

- But nonetheless is basis for all future
work on neural nets
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Perceptrons

Input Synaptic
Signals Weights
Xp="+1 > W, =b Activation
X, > W, v Function
X, > W, (%) +—> Ou;put
X > W

V=ijxj=>v=5éT°ﬁ/ y=¢lin(v)
7=
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INnput to unit 4:
© 30+14+42:0+(-05+1)

=2.5

Input pattern
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Adding a threshold ("Squashing

Input pattern
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A graphical metaphor

-
+ If you graph the possible
inputs
- on different axes
- With pluses for firing
- And minus for not firing

- The weights for the
perceptron make up the
equation of a line that
separates the pluses and the
minuses

WX, T, LT, T T b =0
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Problems with Perceptrons

57 0 ot
I, and I, ) I, or I,

Figure 19.9  Linear separability in perceptrons.
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Linearly Separable Data

« Which of these datasets are separable by a
linear boundary?

+ - )

- + | -

a) b)
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Linearly Separable Data

* Which of these datasets are separable by a
linear boundary?

T +
+ _ - B
T + | - w Not
- Linearly
a) b) Separable!
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Solution to perceptron problem

- —
* Multi-layer perceptrons

- Hidden layer
» Can now represent more complex problems
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Artificial Neural Networks

fﬁ/«\%\

fully connected

-l /4
S

@ ‘I‘ sparsely connected
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Feedforward ANN Architectures

+ Information flow unidirectional

- Static mapping: y=Ax)

* Multi-Layer Perceptron (MLP)
 Radial Basis Function (RBF)

- Kohonen Self-Organising Map (SOM)
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Recurrent ANN Architectures

- Feedback connections

- Dynamic memory:
y(t+1)=A(x(T),y(T),s(T)) TE(F,+-1,...)

» Jordan/Elman ANNs
- Hopfield
- Adaptive Resonance Theory (ART)
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Activation functions

I [
Linear y=Xx
. o N 1
S Sigmoid y =
1 +exp(—x)

_ exp(x) —exp(-x)
- exp(x) + exp(—x)

Hyperbolic tangent  y
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How does a perceptron learn?

This is "supervised training” ("teacher signal™)
So we know the desired output

And we know what output our network produces
before learning (perhaps random weights)
Simple intuition:

- Change the weight by an amount proportional to the

difference between the desired output and the actual
output

- Change in weight I = Current value of input I x (Desired
Output - Current Output)
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How does a perceptron learn?

- Change in weight I = Current value of input I x (Desired
Output - Current Output)
- We'll add one more thing: a learning rate
- Aw; = 1 * (Target-Output) * Input
- Where
* 1 is learning rate

- Finally, let's call the difference between desired output
(target) and current output delta (5):

- AW, - T]X,5
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Delta Rule

—
A=learning coefficient

_ d w;=connection from neuron X; toy;
€e=d;, -, X=(X,,Xy,..-,X,) ANN input
y=(y,,¥5,---,¥,) ANN output
AwW.=A€e " x. d=(d,,d,,...,d,) desired output
Y J (%,d) training example
e=ANN error

Least Mean Squares
Widrow-Hoff iterative delta rule
Gradient descent of the error surface

Guaranteed to find minimum error
configuration in single layer ANNs
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Perceptron Learning

* Error Back Propagation

+ Just a generalization of the delta rule for
multilayer networks

* The error (and weight changes) are propagated
back through the network from the outputs back
through the hidden layers.
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Machine Learning

* Mitchell (1997)

- A computer program is said to learn from some
experience E with respect to some class of
tasks T and performance measure P if its
performance at tasks in T, as measured by P,
improves with experience E.

- Witten and Frank (2000)

- Things learn when they change their behavior in
a way that makes them perform better in the
future
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Motivating Example

* Fictional data set that describes the
weather conditions for playing some
unspecified game




Terminology

- Instance: single example in a data set. Example:
each of the rows in preceding table

 Feature: an aspect of an instance. Example:
outlook, temperature, humidity, windy. Can take
categorical or numeric values

* Value: category that an attribute can take.
Example: sunny, overcast, rainy.

* Concept: thing to be learned. Example: a
classification of the instances into play and no
play.
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Learned Rules

Example set of rules learned from the example
data set:

- This is a decision list:
- Use first rule first, if doesn't apply, use 2nd rule, etc

- These are classification rules that assign an

neQutput class (play or not) to each instance



Visualization

Class of Tasks T — > Computer .——> Performance P

Learning

Algorithm

¥

Experience E
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Class of Tasks

—> Computer .——>

Learning

Algorithm

¥

Experience E
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Class of Tasks

The activity on which the system will learn to
improve its performance. Examples:

Leseaing to
Play: chiess
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Experience and Performance

Class of Tasks T — > Computer _——*

Learning

Algorithm

¥
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Experience and Performance

Experience: What has been recorded in the past
Performance: A measure of the quality of the response or action.
Example:

Handwritten recognition using Neural Networks

Experience: a database of handwritten images
with their correct classification
Performance: Accuracy in classifications
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Designing a Learning System

Class of Tasks T — > Computer ——  performance P

¥

Experience E

5/26/05 SYMBSYS 100 Spring 2005 38



Designing a Learning System

1. Define the knowledge to learn
2. Define the representation of the target knowledge

3. Define the learning mechanism

Example:

Handwritten recognition using Neural Networks

1. A function to classify handwritten images
2. A linear combination of handwritten features

3. A linear classifier
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The Knowledge To Learn

Supervised learning: A function to predict the class of new examples

Let X be the space of possible examples
Let Y be the space of possible classes
Leatn F: X——Y

Example:
In learning to play chess the following are possible interpretations:
X : the space of board configurations
Y : the space of legal moves
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Representation of the

Targe’r Knowledge

Example: Diagnosing a patient coming into the hospital.

Features:
X1: Temperature
X2: Blood pressure
X3: Blood type

X4: Age Given a new example X =<xI, x2, ..., xn >

X5: Weight

Etc. F(X)=wlx1 +w2x2 + w3x3 = ... + wnxn
If F(X) > T predict

otherwise predict
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The Learning Mechanism

Machine learning algorithms abound:
Decision Trees
Rule-based systems
Neural networks
Nearest-neighbor
Support-Vector Machines
Bayesian Methods
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Kinds of Learning

|
- Supervised
- (And Semi-Supervised)

 Reinforcement
* Unsupervised

- (These are really kinds of feedback)
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Supervised Learning: Induction
I
- General case:

- Given a set of pairs (x, f(x)) discover the
function f.

- Classifier case:

- Given a set of pairs (x, y) where y is a label,
discover a function that correctly assigns the
correct labels to the x.

5/26/05 SYMBSYS 100 Spring 2005 44



Supervised Learning: Induction
- —
- Simpler Classifier Case:

- Given a set of pairs (x, y) where x is an object
and vy is either a + if x is the right kind of
thing or a - if it isn't. Discover a function that
assigns the labels correctly.
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Error Analysis: Simple Case

; f‘nF_F,e ~4
—|— W \J b\ | -— ..
Correct False Positive

Chosen
False Negative |Correct
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Learning as Search
- —
+ Everything is search...

- A hypothesis is a guess at a function that can
be used to account for the inputs.

- A hypothesis space is the space of all possible
candidate hypotheses.

- Learning is a search through the hypothesis
space for a good hypothesis.
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Hypothesis Space
- —
+ The hypothesis space is defined by the
representation used to capture the
function that you are trying to learn.

+ The size of this space is the key to the
whole enterprise.
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What are the data for learning?

- Instances
- Features

- values

+ A set of such instances paired with
answers, constitutes a fraining set.
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The Simple Approach

+ Take the training data, put it in a table
along with the right answers.

* When you see one of them again retrieve
the answer.
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Neighbor-Based Approaches

* Build the table, as in the table-based
approach.

* Provide a distance metric that allows you
compute the distance between any pair of
objects.

* When you encounter something not seen
before, return as an answer the label on
the nearest neighbor.
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Decision Trees

- A decision tree is a tree where

- Each internal node of the tree tests a single
feature of an object

- Each branch follows a possible value of each
feature

- The leaves correspond to the possible labels on
the objects
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Example Decision Tree

Patrons?
None Some Full
No Yes WaitEstimate?
>60 30-60 10-30 0-10
No Alternate? Hungry? Yes
IVXes No Yes
Reservation? Fri/Sat? Yes Alternate?
NWes Nmes No Yes
Bar? Yes No Yes Yes Raining?
Nmes NWes
No Yes No Yes
SYMBSYS 100 Spring 2005

53



Decision Tree Learning

* Given a training set find a tree that
correctly assigns labels (classifies) the
elements of the training set.

+ Sort of..there might be lots of such
trees. In fact some of them look a lot
like tables.
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Training Set

Attributes Goal
Example
Alt | Bar | Fri | Hun | Pat | Price | Rain| Res Dpe Est Will Wait
Xi Yes | No| No | Yes | Some | $$8 | No | Yes | French | 0+10 Yes
Xz Yes | No | No | Yes | Full $ No | No Thai 30+60 No
X3 No | Yes| No | No | Some $ | No| No | Burger | 0£10 Yes
Xa Yes | No | Yes | Yes | Full $ No | No Thai 10+30 Yes
Xs Yes | No | Yes| No | Full | $$8 | No | Yes | French >60 No
Xs No | Yes| No | Yes | Some $8 | Yes | Yes | Italian 0+10 Yes
X7 No | Yes| No | No | None $ Yes | No | Burger | 0+10 No
X3 No | No | No | Yes | Some $§ | Yes | Yes Thai 0+£10 Yes
Xo No | Yes | Yes | No | Full $ Yes | No | Burger | >60 No
Xio Yes | Yes | Yes | Yes | Full | $$8 | No | Yes | Italian | 10+30 No
X1 No | No | No | No | None $ No | No Thai 0+10 No
X2 Yes | Yes | Yes | Yes Full $ No | No | Burger | 30+60 Yes
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Decision Tree Learning

+ Start with a null tree.

- Select a feature to test and put it in tree.

- Split the training data according to that test.
- Recursively build a tree for each branch

-+ Stop when a test results in a uniform label or you
run out of tests.
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Well

- What makes a good tree?
- Trees that cover the training data

- Trees that are small...

- How should features be selected?
- Choose features that lead to small trees.

- How do you know if a feature will lead to a
small tree?
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Information Gain
-
* Roughly...

- Start with a pure guess the majority strategy.
If T have a 50/50 split (y/n) in the training,
how well will T do if I always guess yes?

- Ok so now iterate through all the available
features and try each at the top of the tree.
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Information Gain

- .
* Then guess the majority label in each of
the buckets at the leaves. How well will I
do?

- Well it's the weighted average of the majority
distribution at each leaf.

- Pick the feature that results in the best
predictions.
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Training Set

Attributes Goal
Example
Alt | Bar | Fri | Hun | Pat | Price | Rain| Res Dpe Est Will Wait
Xi Yes | No| No | Yes | Some | $$8 | No | Yes | French | 0+10 Yes
Xz Yes | No | No | Yes | Full $ No | No Thai 30+60 No
X3 No | Yes| No | No | Some $ | No| No | Burger | 0£10 Yes
Xa Yes | No | Yes | Yes | Full $ No | No Thai 10+30 Yes
Xs Yes | No | Yes| No | Full | $$8 | No | Yes | French >60 No
Xs No | Yes| No | Yes | Some $8 | Yes | Yes | Italian 0+10 Yes
X7 No | Yes| No | No | None $ Yes | No | Burger | 0+10 No
X3 No | No | No | Yes | Some $§ | Yes | Yes Thai 0+£10 Yes
Xo No | Yes | Yes | No | Full $ Yes | No | Burger | >60 No
Xio Yes | Yes | Yes | Yes | Full | $$8 | No | Yes | Italian | 10+30 No
X1 No | No | No | No | None $ No | No Thai 0+10 No
X2 Yes | Yes | Yes | Yes Full $ No | No | Burger | 30+60 Yes
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Patrons

* Picking Patrons at the top takes the initial
50/50 split and produces three buckets

- None: O Yes, 2 No
- Some: 4 Yes, O No
- Full: 2 Yes, 4 No
+ How well does guessing do?
- 2+4+4 = 10 right, 0+0+2 = 2 wrong
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Iterate

I
- Do that for each feature, select the one

that gives the best result, put that at the
top of the tree.

* Recurse
- Split the training data according to the values

of the first feature
- Build the tree recursively in the same manner
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Training and Evaluation

+ Given a fixed size training set, we need a
way to
- Organize the training

- Assess the learned system'’s likely performance
on unseen data
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Test Sets and Training Sets

Divide your data into three sets:
- Training set
- Development test set
- Test set

1. Train on the training set
2. Tune using the dev-test set
3. Test on withheld data
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Cross-Validation

What if you don't have enough training data for
that?

1. Divide your data into N sets and put one set aside
(leaving N-1)

Train on the N-1 sets

Test on the set aside data

Put the set aside data back in and pull out another set
Go to 2

Average all the results

o0k wN
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Performance Graphs

+ Its useful to know the performance of the system
as a function of the amount of training data.

Proportion correct on test set
=
~
I

0.6 -
N Decision tree ——+—
0.5 & Naive Bayes — < B
0.4 N I | | | N
0 20 40 60 80 100

Training set size
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Support Vector Machines

+ Can be viewed as a generalization of
neural networks

- Two key ideas
- The notion of the margin

- Support vectors

- Mapping to higher dimensional spaces

- Kernel functions
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Best Linear Separator?
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Best Linear Separator?
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Best Linear Separator?
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Why is this good?
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Find Closest Points in Convex
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Plane Bisect Support Vectors
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Higher Dimensions

+ That assumes that there is a linear
classifier that can separate the data.
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One Solution

+ Well, we could just search in the space of
non-linear functions that will separate the
data

- Two problems
- Likely to overfit the data

- The space is too large
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Kernel Trick

* Map the objects to a higher dimensional space.
+ Book example

- Map an object in two dimensions (x1 and x2) into a three
dimensional space

- F1 = x172, F2 = x2"2, and F3 = Sqrt(2*x1*x2)

* Points not linearly separable in the original space
will be separable in the new space.
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But

- —

* In the higher dimensional space, there are

gazillion hyperplanes that will separate the
data cleanly.

- How to choose among them?

 Use the support vector idea
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Conclusion

- —
* Machine learning

- Supervised
* Neural networks
* Decision trees
* Decision list
- SVM
- Bayesian classifiers, efc etc

- Unsupervised
- Reinforcement (reward) learning
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