
5/26/05 Symbolic Systems 100 Spring 2005 1

SYMBOLIC SYSTEMS 100:
Introduction to Cognitive Science

Dan Jurafsky and Daniel Richardson
Stanford University

Spring 2005

May 24, 2005: Neural Networks and
Machine Learning

IP Notice: Slides stolen shamelessly from all sorts of people including Jim
Martin, Frank Keller, Greg Grudick, Ricardo Vilalta, Mateen Rizki,
cprogramming.com, and others.

5/26/05 SYMBSYS 100 Spring 2005 2

Outline

• Neural networks
– McCulloch Pitts Neuron
– Perceptron
– Delta rule
– Error Back Propagation

• Machine learning

5/26/05 SYMBSYS 100 Spring 2005 3

Neural networks history

• 1943: McCulloch Pitts simplified model of
the neuron as a computing element

• Described in terms of propositional logic
• Inspired by work of Turing
• In turn, inspired work by Kleene (1951) on

finite automata and regular expressions.
• Not trained (no learning mechanism)

5/26/05 SYMBSYS 100 Spring 2005 4

Neural networks history

• Hebbian Learning (1949)
– Concept that information is stored in the connections
– Learning rule for adjusting synaptic connections

• 1958: Perceptron (Rosenblatt)
– Weight neural inputs with a learning rule

• 1960: Adaline (Widrow Hoff 1960 at stanford):
– adaptive linear elemnt with a learning rule

• 1969: Minsky and Papert show problems with
perceptrons
– Famous “XOR” problem

5/26/05 SYMBSYS 100 Spring 2005 5

Neural networks history

• 1974-1986 Various people solve the problems with
perceptrons:
– Algorithms for training feedforward multilayered

perceptrons
– Error Back Propagation (Rumelhart et al 1986)

• 1990: Support Vector Machines
• Current: neural networks seen as just one of

many tools for machine learning.

5/26/05 SYMBSYS 100 Spring 2005 6

McCulloch-Pitts Neuron

• 1943
• Neuron produces a binary output (0/1)
• A specific number of inputs must be

excited to fire
• Any nonzero inhibatory input prevents firing
• Fixed network structure (no learning)

5/26/05 SYMBSYS 100 Spring 2005 7

McCulloch-Pitts Neuron

5/26/05 SYMBSYS 100 Spring 2005 8

MP Neuron examples

5/26/05 SYMBSYS 100 Spring 2005 9

MP Example 1

• Logic Functions: AND
• True=1, False=0
• If both inputs true, output true
• Else, output false
• Threshold(Y)=2

111
001

010
000
ANDx2x1

AND Function

1

1X1

X2

Y

5/26/05 SYMBSYS 100 Spring 2005 10

MP Example 2

• Logic Functions: OR
• True=1, False=0
• If either of inputs true, output true
• Else, output false
• Threshold(Y)=2

111

101

110

000
ORx2x1

OR Function

2

2X1

X2

Y

5/26/05 SYMBSYS 100 Spring 2005 11

Problems with MP neuron

• Only models binary input
• Structure doesn’t change
• Weights are set by hand

– No learning!!

• But nonetheless is basis for all future
work on neural nets

5/26/05 SYMBSYS 100 Spring 2005 12

Perceptrons

5/26/05 SYMBSYS 100 Spring 2005 13

5/26/05 SYMBSYS 100 Spring 2005 14

5/26/05 SYMBSYS 100 Spring 2005 15

Adding a threshold (“Squashing
function”)

5/26/05 SYMBSYS 100 Spring 2005 16

A graphical metaphor

• If you graph the possible
inputs
– on different axes
– With pluses for firing
– And minus for not firing
– The weights for the

perceptron make up the
equation of a line that
separates the pluses and the
minuses

5/26/05 SYMBSYS 100 Spring 2005 17

Problems with Perceptrons

5/26/05 SYMBSYS 100 Spring 2005 18

5/26/05 SYMBSYS 100 Spring 2005 19

5/26/05 SYMBSYS 100 Spring 2005 20

Solution to perceptron problem

• Multi-layer perceptrons
• Hidden layer
• Can now represent more complex problems

5/26/05 SYMBSYS 100 Spring 2005 21

Artificial Neural Networks

Output layer

Input layer

Hidden layers

fully connected

sparsely connected

5/26/05 SYMBSYS 100 Spring 2005 22

Feedforward ANN Architectures

• Information flow unidirectional
• Static mapping: y=f(x)
• Multi-Layer Perceptron (MLP)
• Radial Basis Function (RBF)
• Kohonen Self-Organising Map (SOM)

5/26/05 SYMBSYS 100 Spring 2005 23

Recurrent ANN Architectures

• Feedback connections
• Dynamic memory:

y(t+1)=f(x(τ),y(τ),s(τ)) τ∈(t,t-1,...)
• Jordan/Elman ANNs
• Hopfield
• Adaptive Resonance Theory (ART)

5/26/05 SYMBSYS 100 Spring 2005 24

Activation functions

-10 -8 -6 -4 -2 0 2 4 6 8 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-10 -8 -6 -4 -2 0 2 4 6 8 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Linear

Sigmoid

Hyperbolic tangent

xy =

)exp(1

1

x
y

!+
=

)exp()exp(

)exp()exp(

xx

xx
y

!+

!!
=

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

5/26/05 SYMBSYS 100 Spring 2005 25

How does a perceptron learn?

• This is “supervised training” (“teacher signal”)
• So we know the desired output
• And we know what output our network produces

before learning (perhaps random weights)
• Simple intuition:

– Change the weight by an amount proportional to the
difference between the desired output and the actual
output

– Change in weight I = Current value of input I x (Desired
Output - Current Output)

5/26/05 SYMBSYS 100 Spring 2005 26

How does a perceptron learn?

– Change in weight I = Current value of input I x (Desired
Output - Current Output)

– We’ll add one more thing: a learning rate
– Δwi = η * (Target-Output) * Input
– Where

• η is learning rate
– Finally, let’s call the difference between desired output

(target) and current output delta (δ):
– Δwi = ηxiδ

5/26/05 SYMBSYS 100 Spring 2005 27

Delta Rule

• Least Mean Squares

• Widrow-Hoff iterative delta rule

• Gradient descent of the error surface

• Guaranteed to find minimum error
configuration in single layer ANNs

jij
xew !!=" #

ii yde !=

λ=learning coefficient
wij=connection from neuron xj to yi
x=(x1,x2,...,xn) ANN input
y=(y1,y2,...,yn) ANN output
d=(d1,d2,...,dn) desired output
(x,d) training example
e=ANN error

w11 w12 w13 w14

y1 y2 y3

x1 x2 x3 x4

5/26/05 SYMBSYS 100 Spring 2005 28

Perceptron Learning

• http://www.qub.ac.uk/mgt/intsys/perceptr.html
• Error Back Propagation
• Just a generalization of the delta rule for

multilayer networks
• The error (and weight changes) are propagated

back through the network from the outputs back
through the hidden layers.

5/26/05 SYMBSYS 100 Spring 2005 29

Machine Learning

• Mitchell (1997)
– A computer program is said to learn from some

experience E with respect to some class of
tasks T and performance measure P if its
performance at tasks in T, as measured by P,
improves with experience E.

• Witten and Frank (2000)
– Things learn when they change their behavior in

a way that makes them perform better in the
future

5/26/05 SYMBSYS 100 Spring 2005 30

Motivating Example

• Fictional data set that describes the
weather conditions for playing some
unspecified game

5/26/05 SYMBSYS 100 Spring 2005 31

Terminology

• Instance: single example in a data set. Example:
each of the rows in preceding table

• Feature: an aspect of an instance. Example:
outlook, temperature, humidity, windy. Can take
categorical or numeric values

• Value: category that an attribute can take.
Example: sunny, overcast, rainy.

• Concept: thing to be learned. Example: a
classification of the instances into play and no
play.

5/26/05 SYMBSYS 100 Spring 2005 32

Learned Rules

• Example set of rules learned from the example
data set:

• This is a decision list:
– Use first rule first, if doesn’t apply, use 2nd rule, etc

• These are classification rules that assign an
output class (play or not) to each instance

5/26/05 SYMBSYS 100 Spring 2005 33

Visualization

Experience Experience EE

ComputerComputer
LearningLearning

AlgorithmAlgorithm

Class of Tasks Class of Tasks TT PerformancePerformance PP

5/26/05 SYMBSYS 100 Spring 2005 34

Class of Tasks

Experience Experience EE

ComputerComputer
LearningLearning

AlgorithmAlgorithm

Class of Tasks Class of Tasks TT PerformancePerformance PP

5/26/05 SYMBSYS 100 Spring 2005 35

Class of Tasks

The activity on which the system will learn to The activity on which the system will learn to
improve its performance. Examples: improve its performance. Examples:

Learning to Learning to
Play chess Play chess

 Recognizing Recognizing
Images of Images of

Handwritten Handwritten
WordsWords

 Diagnosing Diagnosing
patientspatients

coming into thecoming into the
 hospital hospital

5/26/05 SYMBSYS 100 Spring 2005 36

Experience and Performance

Experience Experience EE

ComputerComputer
LearningLearning

AlgorithmAlgorithm

Class of Tasks Class of Tasks TT PerformancePerformance PP

5/26/05 SYMBSYS 100 Spring 2005 37

Experience and Performance

 ExperienceExperience: What has been recorded in the past: What has been recorded in the past

 PerformancePerformance: A measure of the quality of the response or action. : A measure of the quality of the response or action.

Example:Example:

Handwritten recognition using Neural NetworksHandwritten recognition using Neural Networks

ExperienceExperience: a database of handwritten images : a database of handwritten images
 with their correct classification with their correct classification

PerformancePerformance: Accuracy in classifications: Accuracy in classifications

5/26/05 SYMBSYS 100 Spring 2005 38

Designing a Learning System

Experience Experience EE

ComputerComputer
LearningLearning

AlgorithmAlgorithm

Class of Tasks Class of Tasks TT PerformancePerformance PP

5/26/05 SYMBSYS 100 Spring 2005 39

Designing a Learning System

1.1. Define the knowledge to learnDefine the knowledge to learn
2.2. Define the representation of the target knowledgeDefine the representation of the target knowledge
3.3. Define the learning mechanismDefine the learning mechanism

Example:Example:

Handwritten recognition using Neural NetworksHandwritten recognition using Neural Networks

1.1. A function to classify handwritten imagesA function to classify handwritten images
2.2. A linear combination of handwritten featuresA linear combination of handwritten features
3.3. A linear classifierA linear classifier

5/26/05 SYMBSYS 100 Spring 2005 40

The Knowledge To Learn

Supervised learningSupervised learning: A function to predict the class of new examples : A function to predict the class of new examples

Let X be the space of possible examplesLet X be the space of possible examples
Let Y be the space of possible classesLet Y be the space of possible classes
Learn F : X YLearn F : X Y

Example:Example:
 In learning to play chess the following are possible interpretations: In learning to play chess the following are possible interpretations:
 X : the space of board configurations X : the space of board configurations
 Y : the space of legal moves Y : the space of legal moves

5/26/05 SYMBSYS 100 Spring 2005 41

Representation of the
Target Knowledge

Example: Diagnosing a patient coming into the hospital.Example: Diagnosing a patient coming into the hospital.

Features:Features:
 X1: TemperatureX1: Temperature
 X2: Blood pressureX2: Blood pressure
 X3: Blood typeX3: Blood type
 X4: AgeX4: Age
 X5: WeightX5: Weight
 Etc.Etc.

Given a new example X = < x1, x2, Given a new example X = < x1, x2, ……, , xn xn >>

F(X) = w1x1 + w2x2 + w3x3 = F(X) = w1x1 + w2x2 + w3x3 = …… + + wnxnwnxn

If F(X) > T predict If F(X) > T predict heart diseaseheart disease
otherwise predict otherwise predict no heart diseaseno heart disease

5/26/05 SYMBSYS 100 Spring 2005 42

The Learning Mechanism

Machine learning algorithms abound:Machine learning algorithms abound:
 Decision Trees Decision Trees
 Rule-based systemsRule-based systems
 Neural networksNeural networks
 Nearest-neighborNearest-neighbor
 Support-Vector MachinesSupport-Vector Machines
 Bayesian MethodsBayesian Methods

5/26/05 SYMBSYS 100 Spring 2005 43

Kinds of Learning

• Supervised
– (And Semi-Supervised)

• Reinforcement
• Unsupervised

• (These are really kinds of feedback)

5/26/05 SYMBSYS 100 Spring 2005 44

Supervised Learning: Induction

• General case:
– Given a set of pairs (x, f(x)) discover the

function f.

• Classifier case:
– Given a set of pairs (x, y) where y is a label,

discover a function that correctly assigns the
correct labels to the x.

5/26/05 SYMBSYS 100 Spring 2005 45

Supervised Learning: Induction

• Simpler Classifier Case:
– Given a set of pairs (x, y) where x is an object

and y is either a + if x is the right kind of
thing or a – if it isn’t. Discover a function that
assigns the labels correctly.

5/26/05 SYMBSYS 100 Spring 2005 46

Error Analysis: Simple Case

CorrectFalse Negative

False PositiveCorrect
Correct

Chosen

+

-

+ -

5/26/05 SYMBSYS 100 Spring 2005 47

Learning as Search

• Everything is search…
– A hypothesis is a guess at a function that can

be used to account for the inputs.
– A hypothesis space is the space of all possible

candidate hypotheses.
– Learning is a search through the hypothesis

space for a good hypothesis.

5/26/05 SYMBSYS 100 Spring 2005 48

Hypothesis Space

• The hypothesis space is defined by the
representation used to capture the
function that you are trying to learn.

• The size of this space is the key to the
whole enterprise.

5/26/05 SYMBSYS 100 Spring 2005 49

What are the data for learning?

• Instances
– Features
– values

• A set of such instances paired with
answers, constitutes a training set.

5/26/05 SYMBSYS 100 Spring 2005 50

The Simple Approach

• Take the training data, put it in a table
along with the right answers.

• When you see one of them again retrieve
the answer.

5/26/05 SYMBSYS 100 Spring 2005 51

Neighbor-Based Approaches

• Build the table, as in the table-based
approach.

• Provide a distance metric that allows you
compute the distance between any pair of
objects.

• When you encounter something not seen
before, return as an answer the label on
the nearest neighbor.

5/26/05 SYMBSYS 100 Spring 2005 52

Decision Trees

• A decision tree is a tree where
– Each internal node of the tree tests a single

feature of an object
– Each branch follows a possible value of each

feature
– The leaves correspond to the possible labels on

the objects

5/26/05 SYMBSYS 100 Spring 2005 53

Example Decision Tree

5/26/05 SYMBSYS 100 Spring 2005 54

Decision Tree Learning

• Given a training set find a tree that
correctly assigns labels (classifies) the
elements of the training set.

• Sort of…there might be lots of such
trees. In fact some of them look a lot
like tables.

5/26/05 SYMBSYS 100 Spring 2005 55

Training Set

5/26/05 SYMBSYS 100 Spring 2005 56

Decision Tree Learning

• Start with a null tree.
• Select a feature to test and put it in tree.
• Split the training data according to that test.
• Recursively build a tree for each branch
• Stop when a test results in a uniform label or you

run out of tests.

5/26/05 SYMBSYS 100 Spring 2005 57

Well

• What makes a good tree?
– Trees that cover the training data
– Trees that are small…

• How should features be selected?
– Choose features that lead to small trees.
– How do you know if a feature will lead to a

small tree?

5/26/05 SYMBSYS 100 Spring 2005 58

Information Gain

• Roughly…
– Start with a pure guess the majority strategy.

If I have a 50/50 split (y/n) in the training,
how well will I do if I always guess yes?

– Ok so now iterate through all the available
features and try each at the top of the tree.

5/26/05 SYMBSYS 100 Spring 2005 59

Information Gain

• Then guess the majority label in each of
the buckets at the leaves. How well will I
do?
– Well it’s the weighted average of the majority

distribution at each leaf.

• Pick the feature that results in the best
predictions.

5/26/05 SYMBSYS 100 Spring 2005 60

Training Set

5/26/05 SYMBSYS 100 Spring 2005 61

Patrons

• Picking Patrons at the top takes the initial
50/50 split and produces three buckets
– None: 0 Yes, 2 No
– Some: 4 Yes, 0 No
– Full: 2 Yes, 4 No

• How well does guessing do?
– 2+4+4 = 10 right, 0+0+2 = 2 wrong

5/26/05 SYMBSYS 100 Spring 2005 62

Iterate

• Do that for each feature, select the one
that gives the best result, put that at the
top of the tree.

• Recurse
– Split the training data according to the values

of the first feature
– Build the tree recursively in the same manner

5/26/05 SYMBSYS 100 Spring 2005 63

Training and Evaluation

• Given a fixed size training set, we need a
way to
– Organize the training
– Assess the learned system’s likely performance

on unseen data

5/26/05 SYMBSYS 100 Spring 2005 64

Test Sets and Training Sets

• Divide your data into three sets:
– Training set
– Development test set
– Test set

1. Train on the training set
2. Tune using the dev-test set
3. Test on withheld data

5/26/05 SYMBSYS 100 Spring 2005 65

Cross-Validation

• What if you don’t have enough training data for
that?

1. Divide your data into N sets and put one set aside
(leaving N-1)

2. Train on the N-1 sets
3. Test on the set aside data
4. Put the set aside data back in and pull out another set
5. Go to 2
6. Average all the results

5/26/05 SYMBSYS 100 Spring 2005 66

Performance Graphs

• Its useful to know the performance of the system
as a function of the amount of training data.

5/26/05 SYMBSYS 100 Spring 2005 67

Support Vector Machines

• Can be viewed as a generalization of
neural networks

• Two key ideas
– The notion of the margin

• Support vectors

– Mapping to higher dimensional spaces
• Kernel functions

5/26/05 SYMBSYS 100 Spring 2005 68

Best Linear Separator?

5/26/05 SYMBSYS 100 Spring 2005 69

Best Linear Separator?

5/26/05 SYMBSYS 100 Spring 2005 70

Best Linear Separator?

5/26/05 SYMBSYS 100 Spring 2005 71

Why is this good?

5/26/05 SYMBSYS 100 Spring 2005 72

Find Closest Points in Convex
Hulls

c

d

5/26/05 SYMBSYS 100 Spring 2005 73

Plane Bisect Support Vectors

d
c

5/26/05 SYMBSYS 100 Spring 2005 74

Higher Dimensions

• That assumes that there is a linear
classifier that can separate the data.

5/26/05 SYMBSYS 100 Spring 2005 75

One Solution

• Well, we could just search in the space of
non-linear functions that will separate the
data

• Two problems
– Likely to overfit the data
– The space is too large

5/26/05 SYMBSYS 100 Spring 2005 76

Kernel Trick

• Map the objects to a higher dimensional space.
• Book example

– Map an object in two dimensions (x1 and x2) into a three
dimensional space

• F1 = x1^2, F2 = x2^2, and F3 = Sqrt(2*x1*x2)

• Points not linearly separable in the original space
will be separable in the new space.

5/26/05 SYMBSYS 100 Spring 2005 77

But

• In the higher dimensional space, there are
gazillion hyperplanes that will separate the
data cleanly.
– How to choose among them?

• Use the support vector idea

5/26/05 SYMBSYS 100 Spring 2005 78

Conclusion

• Machine learning
– Supervised

• Neural networks
• Decision trees
• Decision list
• SVM
• Bayesian classifiers, etc etc

– Unsupervised
– Reinforcement (reward) learning

