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Outline

• Neural networks
– McCulloch Pitts Neuron
– Perceptron
– Delta rule
– Error Back Propagation

• Machine learning
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Neural networks history

• 1943: McCulloch Pitts simplified model of
the neuron as a computing element

• Described in terms of propositional logic
• Inspired by work of Turing
• In turn, inspired work by Kleene (1951) on

finite automata and regular expressions.
• Not trained (no learning mechanism)
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Neural networks history

• Hebbian Learning (1949)
– Concept that information is stored in the connections
– Learning rule for adjusting synaptic connections

• 1958: Perceptron (Rosenblatt)
– Weight neural inputs with a learning rule

• 1960: Adaline (Widrow Hoff 1960 at stanford):
– adaptive linear elemnt with a learning rule

• 1969: Minsky and Papert show problems with
perceptrons
– Famous “XOR” problem
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Neural networks history

• 1974-1986 Various people solve the problems with
perceptrons:
– Algorithms for training feedforward multilayered

perceptrons
– Error Back Propagation (Rumelhart et al 1986)

• 1990: Support Vector Machines
• Current: neural networks seen as just one of

many tools for machine learning.
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McCulloch-Pitts Neuron

• 1943
• Neuron produces a binary output (0/1)
• A specific number of inputs must be

excited to fire
• Any nonzero inhibatory input prevents firing
• Fixed network structure (no learning)
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McCulloch-Pitts Neuron
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MP Neuron examples
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MP Example 1

• Logic Functions: AND
• True=1, False=0
• If both inputs true, output true
• Else, output false
• Threshold(Y)=2
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MP Example 2

• Logic Functions: OR
• True=1, False=0
• If either of inputs true, output true
• Else, output false
• Threshold(Y)=2
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Problems with MP neuron

• Only models binary input
• Structure doesn’t change
• Weights are set by hand

– No learning!!

• But nonetheless is basis for all future
work on neural nets
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Perceptrons
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Adding a threshold (“Squashing
function”)
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A graphical metaphor

• If you graph the possible
inputs
– on different axes
– With pluses for firing
– And minus for not firing
– The weights for the

perceptron make up the
equation of a line that
separates the pluses and the
minuses
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Problems with Perceptrons



5/26/05 SYMBSYS 100 Spring 2005 18



5/26/05 SYMBSYS 100 Spring 2005 19



5/26/05 SYMBSYS 100 Spring 2005 20

Solution to perceptron problem

• Multi-layer perceptrons
• Hidden layer
• Can now represent more complex problems
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Artificial Neural Networks

Output layer

Input layer

Hidden layers

fully connected

sparsely connected
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Feedforward ANN Architectures

• Information flow unidirectional
• Static mapping: y=f(x)
• Multi-Layer Perceptron (MLP)
• Radial Basis Function (RBF)
• Kohonen Self-Organising Map (SOM)
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Recurrent ANN Architectures

• Feedback connections
• Dynamic memory:

y(t+1)=f(x(τ),y(τ),s(τ))   τ∈(t,t-1,...)
• Jordan/Elman ANNs
• Hopfield
• Adaptive Resonance Theory (ART)
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Activation functions

-10 -8 -6 -4 -2 0 2 4 6 8 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-10 -8 -6 -4 -2 0 2 4 6 8 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Linear

Sigmoid

Hyperbolic tangent

xy =

)exp(1

1

x
y

!+
=

)exp()exp(

)exp()exp(

xx

xx
y

!+

!!
=

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20



5/26/05 SYMBSYS 100 Spring 2005 25

How does a perceptron learn?

• This is “supervised training” (“teacher signal”)
• So we know the desired output
• And we know what output our network produces

before learning (perhaps random weights)
• Simple intuition:

– Change the weight by an amount proportional to the
difference between the desired output and the actual
output

– Change in weight I = Current value of input I x (Desired
Output - Current Output)
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How does a perceptron learn?

– Change in weight I = Current value of input I x (Desired
Output - Current Output)

– We’ll add one more thing: a learning rate
– Δwi = η * (Target-Output) * Input
– Where

• η is learning rate
– Finally, let’s call the difference between desired output

(target) and current output delta (δ):
– Δwi = ηxiδ
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Delta Rule

• Least Mean Squares

• Widrow-Hoff iterative delta rule

• Gradient descent of the error surface

• Guaranteed to find minimum error
configuration in single layer ANNs

jij
xew !!=" #

ii yde !=

λ=learning coefficient
wij=connection from neuron xj to yi
x=(x1,x2,...,xn) ANN input
y=(y1,y2,...,yn) ANN output
d=(d1,d2,...,dn) desired output
(x,d) training example
e=ANN error

w11 w12 w13 w14

y1 y2 y3

x1 x2 x3 x4
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Perceptron Learning

• http://www.qub.ac.uk/mgt/intsys/perceptr.html
• Error Back Propagation
• Just a generalization of the delta rule for

multilayer networks
• The error (and weight changes) are propagated

back through the network from the outputs back
through the hidden layers.
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Machine Learning

• Mitchell (1997)
– A computer program is said to learn from some

experience E with respect to some class of
tasks T and performance measure P if its
performance at tasks in T, as measured by P,
improves with experience E.

• Witten and Frank (2000)
– Things learn when they change their behavior in

a way that makes them perform better in the
future
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Motivating Example

• Fictional data set that describes the
weather conditions for playing some
unspecified game
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Terminology

• Instance: single example in a data set. Example:
each of the rows in preceding table

• Feature: an aspect of an instance. Example:
outlook, temperature, humidity, windy. Can take
categorical or numeric values

• Value: category that an attribute can take.
Example: sunny, overcast, rainy.

• Concept: thing to be learned. Example: a
classification of the instances into play and no
play.
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Learned Rules

• Example set of rules learned from the example
data set:

• This is a decision list:
– Use first rule first, if doesn’t apply, use 2nd rule, etc

• These are classification rules that assign an
output class (play or not) to each instance
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Visualization

Experience Experience EE

ComputerComputer
LearningLearning

AlgorithmAlgorithm

Class of Tasks Class of Tasks TT PerformancePerformance  PP
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Class of Tasks
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AlgorithmAlgorithm

Class of Tasks Class of Tasks TT PerformancePerformance  PP
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Class of Tasks

The activity on which the system will learn to The activity on which the system will learn to 
improve its performance. Examples: improve its performance. Examples: 

Learning to Learning to 
Play chess Play chess 

 Recognizing  Recognizing 
Images of Images of 

Handwritten Handwritten 
WordsWords

  Diagnosing   Diagnosing 
patientspatients

coming into thecoming into the
 hospital hospital
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Experience and Performance

Experience Experience EE

ComputerComputer
LearningLearning

AlgorithmAlgorithm

Class of Tasks Class of Tasks TT PerformancePerformance  PP
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Experience and Performance

  ExperienceExperience: What has been recorded in the past: What has been recorded in the past

  PerformancePerformance: A measure of the quality of the response or action. : A measure of the quality of the response or action. 

Example:Example:

Handwritten recognition using Neural NetworksHandwritten recognition using Neural Networks

ExperienceExperience: a database of handwritten images : a database of handwritten images 
      with their correct classification       with their correct classification 

PerformancePerformance: Accuracy in classifications: Accuracy in classifications
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Designing a Learning System

Experience Experience EE

ComputerComputer
LearningLearning

AlgorithmAlgorithm

Class of Tasks Class of Tasks TT PerformancePerformance  PP
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Designing a Learning System

1.1. Define the knowledge to learnDefine the knowledge to learn
2.2. Define the representation of the target knowledgeDefine the representation of the target knowledge
3.3. Define the learning mechanismDefine the learning mechanism

Example:Example:

Handwritten recognition using Neural NetworksHandwritten recognition using Neural Networks

1.1. A function to classify handwritten imagesA function to classify handwritten images
2.2. A linear combination of handwritten featuresA linear combination of handwritten features
3.3. A linear classifierA linear classifier
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The Knowledge To Learn

Supervised learningSupervised learning: A function to predict the class of new examples : A function to predict the class of new examples 

Let X be the space of possible examplesLet X be the space of possible examples
Let Y be the space of possible classesLet Y be the space of possible classes
Learn F : X          YLearn F : X          Y

Example:Example:
      In learning to play chess the following are possible interpretations:      In learning to play chess the following are possible interpretations:
               X : the space of board configurations X : the space of board configurations
        Y : the  space of legal moves        Y : the  space of legal moves
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Representation of the
Target Knowledge

Example:  Diagnosing a patient coming into the hospital.Example:  Diagnosing a patient coming into the hospital.

Features:Features:
 X1: TemperatureX1: Temperature
 X2: Blood pressureX2: Blood pressure
 X3: Blood typeX3: Blood type
 X4: AgeX4: Age
 X5: WeightX5: Weight
 Etc.Etc.

Given a new example X = < x1, x2, Given a new example X = < x1, x2, ……, , xn xn >>

F(X) = w1x1 + w2x2 + w3x3 = F(X) = w1x1 + w2x2 + w3x3 = …… +  + wnxnwnxn

If F(X) > T predict If F(X) > T predict heart diseaseheart disease  
otherwise predict otherwise predict no heart diseaseno heart disease
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The Learning Mechanism

Machine learning algorithms abound:Machine learning algorithms abound:
 Decision Trees Decision Trees 
 Rule-based systemsRule-based systems
 Neural networksNeural networks
 Nearest-neighborNearest-neighbor
 Support-Vector MachinesSupport-Vector Machines
 Bayesian MethodsBayesian Methods
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Kinds of Learning

• Supervised
– (And Semi-Supervised)

• Reinforcement
• Unsupervised

• (These are really kinds of feedback)
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Supervised Learning: Induction

• General case:
– Given a set of pairs (x, f(x)) discover the

function f.

• Classifier case:
– Given a set of pairs (x, y) where y is a label,

discover a function that correctly assigns the
correct labels to the x.
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Supervised Learning: Induction

• Simpler Classifier Case:
– Given a set of pairs (x, y) where x is an object

and y is either a + if x is the right kind of
thing or a – if it isn’t. Discover a function that
assigns the labels correctly.
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Error Analysis: Simple Case

CorrectFalse Negative

False PositiveCorrect
Correct

Chosen

+

-

+ -
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Learning as Search

• Everything is search…
– A hypothesis is a guess at a function that can

be used to account for the inputs.
– A hypothesis space is the space of all possible

candidate hypotheses.
– Learning is a search through the hypothesis

space for a good hypothesis.
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Hypothesis Space

• The hypothesis space is defined by the
representation used to capture the
function that you are trying to learn.

• The size of this space is the key to the
whole enterprise.
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What are the data for learning?

• Instances
– Features
– values

• A set of such instances paired with
answers, constitutes a training set.
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The Simple Approach

• Take the training data, put it in a table
along with the right answers.

• When you see one of them again retrieve
the answer.
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Neighbor-Based Approaches

• Build the table, as in the table-based
approach.

• Provide a distance metric that allows you
compute the distance between any pair of
objects.

• When you encounter something not seen
before, return as an answer the label on
the nearest neighbor.
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Decision Trees

• A decision tree is a tree where
– Each internal node of the tree tests a single

feature of an object
– Each branch follows a possible value of each

feature
– The leaves correspond to the possible labels on

the objects
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Example Decision Tree
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Decision Tree Learning

• Given a training set find a tree that
correctly assigns labels (classifies) the
elements of the training set.

• Sort of…there might be lots of such
trees.  In fact some of them look a lot
like tables.
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Training Set



5/26/05 SYMBSYS 100 Spring 2005 56

Decision Tree Learning

• Start with a null tree.
• Select a feature to test and put it in tree.
• Split the training data according to that test.
• Recursively build a tree for each branch
• Stop when a test results in a uniform label or you

run out of tests.
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Well

• What makes a good tree?
– Trees that cover the training data
– Trees that are small…

• How should features be selected?
– Choose features that lead to small trees.
– How do you know if a feature will lead to a

small tree?
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Information Gain

• Roughly…
– Start with a pure guess the majority strategy.

If I have a 50/50 split (y/n) in the training,
how well will I do if I always guess yes?

– Ok so now iterate through all the available
features and try each at the top of the tree.
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Information Gain

• Then guess the majority label in each of
the buckets at the leaves. How well will I
do?
– Well it’s the weighted average of the majority

distribution at each leaf.

• Pick the feature that results in the best
predictions.
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Training Set
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Patrons

• Picking Patrons at the top takes the initial
50/50 split and produces three buckets
– None: 0 Yes, 2 No
– Some: 4 Yes, 0 No
– Full: 2 Yes, 4 No

• How well does guessing do?
– 2+4+4 = 10 right, 0+0+2 = 2 wrong
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Iterate

• Do that for each feature, select the one
that gives the best result, put that at the
top of the tree.

• Recurse
– Split the training data according to the values

of the first feature
– Build the tree recursively in the same manner
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Training and Evaluation

• Given a fixed size training set, we need a
way to
– Organize the training
– Assess the learned system’s likely performance

on unseen data
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Test Sets and Training Sets

• Divide your data into three sets:
– Training set
– Development test set
– Test set

1. Train on the training set
2. Tune using the dev-test set
3. Test on withheld data
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Cross-Validation

• What if you don’t have enough training data for
that?

1. Divide your data into N sets and put one set aside
(leaving N-1)

2. Train on the N-1 sets
3. Test on the set aside data
4. Put the set aside data back in and pull out another set
5. Go to 2
6. Average all the results
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Performance Graphs

• Its useful to know the performance of the system
as a function of the amount of training data.
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Support Vector Machines

• Can be viewed as a generalization of
neural networks

• Two key ideas
– The notion of the margin

• Support vectors

– Mapping to higher dimensional spaces
• Kernel functions
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Best Linear Separator?
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Best Linear Separator?
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Best Linear Separator?
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Why is this good?
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Find Closest Points in Convex
Hulls

c

d
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Plane Bisect Support Vectors

d
c
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Higher Dimensions

• That assumes that there is a linear
classifier that can separate the data.
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One Solution

• Well, we could just search in the space of
non-linear functions that will separate the
data

• Two problems
– Likely to overfit the data
– The space is too large
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Kernel Trick

• Map the objects to a higher dimensional space.
• Book example

– Map an object in two dimensions (x1 and x2) into a three
dimensional space

• F1 = x1^2, F2 =  x2^2, and F3 = Sqrt(2*x1*x2)

• Points not linearly separable in the original space
will be separable in the new space.
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But

• In the higher dimensional space, there are
gazillion hyperplanes that will separate the
data cleanly.
– How to choose among them?

• Use the support vector idea
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Conclusion

• Machine learning
– Supervised

• Neural networks
• Decision trees
• Decision list
• SVM
• Bayesian classifiers, etc etc

– Unsupervised
– Reinforcement (reward) learning


