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Abstract

We present new training methods that aim to
mitigate local optima and slow convergence in
unsupervised training by using additional im-
perfect objectives. In its simplest form,lateen
EM alternates between the two objectives of
ordinary “soft” and “hard” expectation max-
imization (EM) algorithms. Switching objec-
tives when stuck can help escape local optima.
We find that applying a single such alternation
already yields state-of-the-art results for En-
glish dependency grammar induction. More
elaborate lateen strategies trackboth objec-
tives, with each validating the moves proposed
by the other. Disagreements can signal earlier
opportunities to switch or terminate, saving it-
erations. De-emphasizing fixed points in these
ways eliminates some guesswork from tuning
EM. An evaluation against a suite of unsu-
pervised dependency parsing tasks, for a vari-
ety of languages, showed that lateen strategies
significantly speed up training of both EM al-
gorithms, and improve accuracy for hard EM.

1 Introduction

Expectation maximization (EM) algorithms (Demp-
ster et al., 1977) play important roles in learning
latent linguistic structure. Unsupervised techniques
from this family excel at core natural language pro-
cessing (NLP) tasks, including segmentation, align-
ment, tagging and parsing. Typical implementations
specify a probabilistic framework, pick an initial
model instance, and iteratively improve parameters
using EM. A key guarantee is that subsequent model
instances are no worse than the previous, according
to training data likelihood in the given framework.

Another attractive feature that helped make EM
instrumental (Meng, 2007) is its initial efficiency:
Training tends to begin with large steps in a param-
eter space, sometimes bypassing many local optima
at once. After a modest number of such iterations,
however, EM lands close to an attractor. Next, its
convergence rate necessarily suffers: Disproportion-
ately many (and ever-smaller) steps are needed to
finally approach this fixed point, which is almost in-
variably a local optimum. Deciding when to termi-
nate EM often involves guesswork; and finding ways
out of local optima requires trial and error. We pro-
pose several strategies that address both limitations.

Unsupervised objectives are, at best, loosely cor-
related with extrinsic performance (Pereira and Sch-
abes, 1992; Merialdo, 1994; Liang and Klein, 2008,
inter alia). This fact justifies (occasionally) devi-
ating from a prescribed training course. For exam-
ple, sincemultipleequi-plausible objectives are usu-
ally available, a learner could cycle through them,
optimizing alternatives when the primary objective
function gets stuck; or, instead of trying to escape, it
could aim to avoid local optima in the first place, by
halting search early if an improvement to one objec-
tive would come at the expense of harming another.

We test these general ideas by focusing on non-
convex likelihood optimization using EM. This set-
ting is standard and has natural and well-understood
objectives: the classic, “soft” EM; and Viterbi, or
“hard” EM (Kearns et al., 1997). The name “la-
teen” comes from the sea — triangularlateensails
can take wind on either side, enabling sailing ves-
sels totack (see Figure 1). As a captain can’t count
on favorable winds, so an unsupervised learner can’t
rely on co-operative gradients: soft EM maximizes



Figure 1: A triangular sail atop a traditional Arab sail-
ing vessel, thedhow(right). Older square sails permitted
sailing only before the wind. But the efficientlateensail
worked like a wing (with high pressure on one side and
low pressure on the other), allowing a ship to go almost
directly into a headwind. Bytacking, in a zig-zag pattern,
it became possible to sail in any direction, provided there
was some wind at all (left). For centuries seafarers ex-
pertly combined both sails to traverse extensive distances,
greatly increasing the reach of medieval navigation.1

likelihoods of observed data across assignments to
hidden variables, whereas hard EM focuses on most
likely completions.2 These objectives are plausible,
yet both can be provably “wrong” (Spitkovsky et al.,
2010a,§7.3). Thus, it is permissible for lateen EM
to maneuver between their gradients, for example by
tacking around local attractors, in a zig-zag fashion.

2 The Lateen Family of Algorithms

We propose several strategies that use a secondary
objective to improve over standard EM training. For
hard EM, the secondary objective is that of soft EM;
and vice versa if soft EM is the primary algorithm.

2.1 Algorithm #1: Simple Lateen EM

Simple lateen EM begins by running standard EM
to convergence, using a user-supplied initial model,
primary objective and definition of convergence.
Next, the algorithm alternates. A single lateen al-
ternation involves two phases: (i) retraining using
the secondary objective, starting from the previ-
ous converged solution (once again iterating until
convergence, but now of the secondary objective);

1Partially adapted fromhttp://www.britannica.com/
EBchecked/topic/331395, http://allitera.tive.org/
archives/004922.html and http://landscapedvd.com/
desktops/images/ship1280x1024.jpg.

2See Brown et al.’s (1993,§6.2) definition ofViterbi train-
ing for a succinct justification of hard EM; in our case, the cor-
responding objective is Spitkovsky et al.’s (2010a,§7.1) θ̂VIT .

and (ii) retraining using the primary objective again,
starting from the latest converged solution (once
more to convergence of the primary objective). The
algorithm stops upon failing to sufficiently improve
the primary objective across alternations (applying
the standard convergence criterion end-to-end) and
returns the best of all models re-estimated during
training (as judged by the primary objective).

2.2 Algorithm #2: Shallow Lateen EM

Same as algorithm #1, but switches back to optimiz-
ing the primary objective after asinglestep with the
secondary, during phase (i) of all lateen alternations.
Thus, the algorithm alternates between optimizing
a primary objective to convergence, then stepping
away, using one iteration of the secondary optimizer.

2.3 Algorithm #3: Early-Stopping Lateen EM

This variant runs standard EM but quits early if
the secondary objective suffers. We redefine con-
vergence by “or”-ing the user-supplied termination
criterion (i.e., a “small-enough” change in the pri-
mary objective) withanyadverse change of the sec-
ondary (i.e., an increase in its cross-entropy). Early-
stopping lateen EM doesnot alternate objectives.

2.4 Algorithm #4: Early-Switching Lateen EM

Same as algorithm #1, but with the new definition
of convergence, as in algorithm #3. Early-switching
lateen EM halts primary optimizers as soon as they
hurt the secondary objective and stops secondary op-
timizers once they harm the primary objective. This
algorithm terminates when it fails to sufficiently im-
prove the primary objective across a full alternation.

2.5 Algorithm #5: Partly-Switching Lateen EM

Same as algorithm #4, but again iterating primary
objectives to convergence, as in algorithm #1; sec-
ondary optimizers still continue to terminate early.

3 The Task and Study #1

We chose to test the impact of these five lateen al-
gorithms on unsupervised dependency parsing — a
task in which EM plays an important role (Paskin,
2001; Klein and Manning, 2004; Gillenwater et al.,
2010, inter alia). This entailed two sets of exper-
iments: In study #1, we tested whether single al-
ternations of simple lateen EM (as defined in§2.1,



System DDA (%)
(Blunsom and Cohn, 2010) 55.7

(Gillenwater et al., 2010) 53.3
(Spitkovsky et al., 2010b) 50.4

+ soft EM + hard EM 52.8 (+2.4)
lexicalized, using hard EM 54.3 (+1.5)

+ soft EM + hard EM 55.6(+1.3)

Table 1: Directed dependency accuracies (DDA) on Sec-
tion 23 of WSJ (all sentences) for recent state-of-the-art
systems and our two experiments (one unlexicalized and
one lexicalized) with a single alternation of lateen EM.

Algorithm #1) improve our recent publicly-available
system for English dependency grammar induction.
In study #2, we introduced a more sophisticated
methodology that uses factorial designs and regres-
sions to evaluate lateen strategies with unsupervised
dependency parsing in many languages, after also
controlling for other important sources of variation.

For study #1, our base system (Spitkovsky et al.,
2010b) is an instance of the popular (unlexicalized)
Dependency Model with Valence (Klein and Man-
ning, 2004). This model was trained using hard EM
on WSJ45 (WSJ sentences up to length 45) until suc-
cessive changes in per-token cross-entropy fell be-
low 2−20 bits (Spitkovsky et al., 2010b; 2010a,§4).3

We confirmed that the base model had indeed con-
verged, by running 10 steps of hard EM on WSJ45
and verifying that its objective did not change much.
Next, we applied a single alternation of simple la-
teen EM: first running soft EM (this took 101 steps,
using the same termination criterion), followed by
hard EM (again to convergence — another 23 it-
erations). The result was a decrease in hard EM’s
cross-entropy, from 3.69 to 3.59 bits per token (bpt),
accompanied by a 2.4% jump in accuracy, from 50.4
to 52.8%, on Section 23 of WSJ (see Table 1).4

Our first experiment showed that lateen EM holds
promise for simple models. Next, we tested it in
a more realistic setting, by re-estimatinglexicalized
models,5 starting from the unlexicalized model’s

3http://nlp.stanford.edu/pubs/

markup-data.tar.bz2: dp.model.dmv
4It is standard practice to convert gold labeled constituents

from Penn English Treebank’s Wall Street Journal (WSJ) por-
tion (Marcus et al., 1993) into unlabeled reference dependency
parses using deterministic “head-percolation” rules (Collins,
1999); sentence root symbols (but not punctuation) arcs count
towards accuracies (Paskin, 2001; Klein and Manning, 2004).

5We used Headden et al.’s (2009) method (also the approach

parses; this took 24 steps with hard EM. We then
applied another single lateen alternation: This time,
soft EM ran for 37 steps, hard EM took another 14,
and the new model again improved, by 1.3%, from
54.3 to 55.6% (see Table 1); the corresponding drop
in (lexicalized) cross-entropy was from 6.10 to 6.09
bpt. This last model is competitive with the state-of-
the-art; moreover, gains from single applications of
simple lateen alternations (2.4 and 1.3%) are on par
with the increase due to lexicalization alone (1.5%).

4 Methodology for Study #2

Study #1 suggests that lateen EM can improve gram-
mar induction in English. To establish statistical sig-
nificance, however, it is important to test a hypothe-
sis in many settings (Ioannidis, 2005). We therefore
use a factorial experimental design and regression
analyses with a variety of lateen strategies. Two re-
gressions — one predicting accuracy, the other, the
number of iterations — capture the effects that la-
teen algorithms have on performance and efficiency,
relative to standard EM training. We controlled for
important dimensions of variation, such as the un-
derlying language: to make sure that our results are
not English-specific, we induced grammars in 19
languages. We also explored the impact from the
quality of an initial model (using both uniform and
ad hoc initializers), the choice of a primary objective
(i.e., soft or hard EM), and the quantity and com-
plexity of training data (shorter versus both short and
long sentences). Appendix A gives the full details.

4.1 Data Sets

We use all 23 train/test splits from the 2006/7
CoNLL shared tasks (Buchholz and Marsi, 2006;
Nivre et al., 2007),6 which cover 19 different lan-
guages.7 We splice out all punctuation labeled in the
data, as is standard practice (Paskin, 2001; Klein and
Manning, 2004), introducing new arcs from grand-
mothers to grand-daughters where necessary, both in
train- and test-sets. Evaluation is always against the

taken by the two stronger state-of-the-art systems): for words
seen at least 100 times in the training corpus, gold part-of-
speech tags are augmented with lexical items.

6These disjoint splits require smoothing; in the WSJ setting,
training and test sets overlapped (Klein and Manning, 2004).

7We down-weigh languages appearing in both years — Ara-
bic, Chinese, Czech and Turkish — by 50% in all our analyses.



entireresulting test sets (i.e., all sentence lengths).8

4.2 Grammar Models

In all remaining experiments we model grammars
via the original DMV, which ignores punctuation; all
models are unlexicalized, with gold part-of-speech
tags for word classes (Klein and Manning, 2004).

4.3 Smoothing Mechanism

All unsmoothed models are smoothed immediately
prior to evaluation; some of the baseline models are
also smoothed during training. In both cases, we use
the “add-one” (a.k.a. Laplace) smoothing algorithm.

4.4 Standard Convergence

We always halt an optimizer once a change in its ob-
jective’s consecutive cross-entropy values falls be-
low 2−20 bpt (at which point we consider it “stuck”).

4.5 Scoring Function

We report directed accuracies — fractions of cor-
rectly guessed (unlabeled) dependency arcs, includ-
ing arcs from sentence root symbols, as is standard
practice (Paskin, 2001; Klein and Manning, 2004).
Punctuation does not affect scoring, as it had been
removed from all parse trees in our data (see§4.1).

5 Experiments

We now summarize our baseline models and briefly
review the proposed lateen algorithms. For details of
the default systems (standard soft and hard EM), all
control variables and both regressions (against final
accuracies and iteration counts) see Appendix A.

5.1 Baseline Models

We tested a total of six baseline models, experiment-
ing with two types of alternatives: (i) strategies that
perturb stuck models directly, bysmoothing, ignor-
ing secondary objectives; and (ii)shallow applica-
tions of a single EM step, ignoring convergence.

BaselineB1 alternates running standard EM to
convergence and smoothing. A second baseline,B2,
smooths after every step of EM instead. Another
shallow baseline,B3, alternates single steps of soft

8With the exception of Arabic ’07, from which we discarded
a single sentence containing 145 non-punctuation tokens.

and hard EM.9 Three such baselines begin with hard
EM (marked with the subscripth); and three more
start with soft EM (marked with the subscripts).

5.2 Lateen Models

Ten models,A{1, 2, 3, 4, 5}{h,s}, correspond to our la-
teen algorithms #1–5 (§2), starting with either hard
or soft EM’s objective, to be used as the primary.

6 Results
Soft EM Hard EM

Model ∆a ∆i ∆a ∆i

Baselines B3 -2.7 ×0.2 -2.0 ×0.3
B2 +0.6 ×0.7 +0.6 ×1.2
B1 0.0 ×2.0 +0.8 ×3.7

Algorithms A1 0.0 ×1.3 +5.5 ×6.5
A2 -0.0 ×1.3 +1.5 ×3.6
A3 0.0 ×0.7 -0.1 ×0.7
A4 0.0 ×0.8 +3.0 ×2.1
A5 0.0 ×1.2 +2.9 ×3.8

Table 2: Estimated additive changes in directed depen-
dency accuracy (∆a) and multiplicative changes in the
number of iterations before terminating (∆i) for all base-
line models and lateen algorithms, relative to standard
training: soft EM (left) and hard EM (right). Bold en-
tries are statistically different (p < 0.01) from zero, for
∆a, and one, for∆i (details in Table 4 and Appendix A).

Not one baseline attained a statistically significant
performance improvement. Shallow modelsB3{h,s},
in fact, significantly lowered accuracy: by 2.0%, on
average (p ≈ 7.8 × 10−4), for B3h, which began with
hard EM; and down 2.7% on average (p ≈ 6.4×10−7),
for B3s, started with soft EM. They were, however,
3–5x faster than standard training, on average (see
Table 4 for all estimates and associatedp-values;
above, Table 2 shows a preview of the full results).

6.1 A1{h,s} — Simple Lateen EM

A1h runs 6.5x slower, but scores 5.5% higher, on av-
erage, compared to standard Viterbi training;A1s is
only 30% slower than standard soft EM, but does not
impact its accuracy at all, on average.

Figure 2 depicts a sample training run: Italian ’07
with A1h. Viterbi EM converges after 47 iterations,

9It approximates a mixture (the average of soft and hard
objectives) — a natural comparison, computable via gradients
and standard optimization algorithms, such as L-BFGS (Liu and
Nocedal, 1989). We did not explore exact interpolations, how-
ever, because replacing EM is itself a significant confounder,
even with unchanged objectives (Berg-Kirkpatrick et al., 2010).
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Figure 2: Cross-entropies for Italian ’07, initialized uni-
formly and trained on sentences up to length 45. The two
curves are primary and secondary objectives (soft EM’s
lies below, as sentence yields are at least as likely as parse
trees): shaded regions indicate iterations of hard EM (pri-
mary); and annotated values are measurements upon each
optimizer’s convergence (soft EM’s are parenthesized).

reducing the primary objective to 3.39 bpt (the sec-
ondary is then at 3.26); accuracy on the held-out set
is 41.8%. Three alternations of lateen EM (totaling
265 iterations) further decrease the primary objec-
tive to 3.29 bpt (the secondary also declines, to 3.22)
and accuracy increases to 56.2% (14.4% higher).

6.2 A2{h,s} — Shallow Lateen EM

A2h runs 3.6x slower, but scores only 1.5% higher,
on average, compared to standard Viterbi training;
A2s is again 30% slower than standard soft EM and
also has no measurable impact on parsing accuracy.

6.3 A3{h,s} — Early-Stopping Lateen EM

Both A3h andA3s run 30% faster, on average, than
standard training with hard or soft EM; and neither
heuristic causes a statistical change to accuracy.

Table 3 shows accuracies and iteration counts for
10 (of 23) train/test splits that terminate early with
A3s (in one particular, example setting). These runs
are nearly twice as fast, and only two score (slightly)
lower, compared to standard training using soft EM.

6.4 A4{h,s} — Early-Switching Lateen EM

A4h runs only 2.1x slower, but scores only 3.0%
higher, on average, compared to standard Viterbi
training;A4s is, in fact, 20% faster than standard soft
EM, but still has no measurable impact on accuracy.

6.5 A5{h,s} — Partly-Switching Lateen EM

A5h runs 3.8x slower, scoring 2.9% higher, on av-
erage, compared to standard Viterbi training;A5s is
20% slower than soft EM, but, again, no more accu-
rate. Indeed,A4 strictly dominates bothA5 variants.

CoNLL Year Soft EM A3s

& Language DDA iters DDA iters
Arabic 2006 28.4 180 28.4 118
Bulgarian ’06 39.1 253 39.6 131
Chinese ’06 49.4 268 49.4 204
Dutch ’06 21.3 246 27.8 35
Hungarian ’07 17.1 366 17.4 213
Italian ’07 39.6 194 39.6 164
Japanese ’06 56.6 113 56.6 93
Portuguese ’06 37.9 180 37.5 102
Slovenian ’06 30.8 234 31.1 118
Spanish ’06 33.3 125 33.1 73

Average: 35.4 216 36.1 125

Table 3: Directed dependency accuracies (DDA) and iter-
ation counts for the 10 (of 23) train/test splits affected by
early termination (setting: soft EM’s primary objective,
trained using shorter sentences and ad-hoc initialization).

7 Discussion

Lateen strategies improve dependency grammar in-
duction in several ways. Early stopping offers a
clear benefit: 30% higher efficiency yet same perfor-
mance as standard training. This technique could be
used to (more) fairly compare learners with radically
different objectives (e.g., lexicalized and unlexical-
ized), requiring quite different numbers of steps (or
magnitude changes in cross-entropy) to converge.

The second benefit is improved performance, but
only starting with hard EM. Initial local optima dis-
covered by soft EM are such that the impact on ac-
curacy of all subsequent heuristics is indistinguish-
able from noise (it’s not even negative). But for hard
EM, lateen strategies consistently improve accuracy
— by 1.5, 3.0 or 5.5% — as an algorithm follows the
secondary objective longer (a single step, until the
primary objective gets worse, or to convergence).

Our results suggest that soft EM should use early
termination to improve efficiency. Hard EM, by con-
trast, could use any lateen strategy to improve either
efficiency or performance, or to strike a balance.

8 Related Work

8.1 Avoiding and/or Escaping Local Attractors

Simple lateen EM is similar to Dhillon et al.’s (2002)
refinement algorithm for text clustering with spher-
ical k-means. Their “ping-pong” strategy alternates
batch and incremental EM, exploits the strong points
of each, and improves asharedobjective at every



step. Unlike generalized (GEM) variants (Neal and
Hinton, 1999), lateen EM uses multiple objectives:
it sacrifices the primary in the short run, to escape
local optima; in the long run, it also does no harm,
by construction (as it returns the best model seen).

Of the meta-heuristics that use more than a stan-
dard, scalar objective, deterministic annealing (DA)
(Rose, 1998) is closest to lateen EM. DA perturbs
objective functions, instead of manipulating solu-
tions directly. As other continuation methods (All-
gower and Georg, 1990), it optimizes an easy (e.g.,
convex) function first, then “rides” that optimum by
gradually morphing functions towards the difficult
objective; each step reoptimizes from the previous
approximate solution. Smith and Eisner (2004) em-
ployed DA to improve part-of-speech disambigua-
tion, but found that objectives had to be further
“skewed,” using domain knowledge, before it helped
(constituent) grammar induction. (For this reason,
we did not experiment with DA, despite its strong
similarities to lateen EM.) Smith and Eisner (2004)
used a “temperature”β to anneal a flat uniform dis-
tribution (β = 0) into soft EM’s non-convex objec-
tive (β = 1). In their framework, hard EM corre-
sponds toβ −→ ∞, so the algorithms differ only in
theirβ-schedule: DA’s is continuous, from 0 to 1; la-
teen EM’s is a discrete alternation, of 1 and+∞.10

8.2 Terminating Early, Before Convergence

EM is rarely run to (even numerical) convergence.
Fixing a modest number of iterations a priori (Klein,
2005,§5.3.4), running until successive likelihood ra-
tios become small (Spitkovsky et al., 2009,§4.1) or
using a combination of the two (Ravi and Knight,
2009, §4, Footnote 5) is standard practice in NLP.
Elworthy’s (1994,§5, Figure 1) analysis of part-of-
speech tagging showed that, in most cases, a small
number of iterations is actually preferable to conver-
gence, in terms of final accuracies: “regularization
by early termination” had been suggested for image
deblurring algorithms in statistical astronomy (Lucy,
1974,§2); and validation against held-out data — a
strategy proposed much earlier, in psychology (Lar-
son, 1931), has also been used as a halting crite-
rion in NLP (Yessenalina et al., 2010,§4.2, 5.2).

10One can think of this as a kind of “beam search” (Lowerre,
1976), with soft EM expanding and hard EM pruning a frontier.

Early-stopping lateen EM tethers termination to a
signchange in the direction of a secondary objective,
similarly to (cross-)validation (Stone, 1974; Geisser,
1975; Arlot and Celisse, 2010), but without splitting
data — it trains using all examples, at all times.11,12

8.3 Training with Multiple Views

Lateen strategies may seem conceptually related to
co-training (Blum and Mitchell, 1998). However,
bootstrapping methods generally begin with some
labeled data and gradually label the rest (discrimina-
tively) as they grow more confident, but do not opti-
mize an explicit objective function; EM, on the other
hand, can be fully unsupervised, relabels all exam-
ples on each iteration (generatively), and guarantees
not to hurt a well-defined objective, at every step.13

Co-training classically relies on two views of the
data — redundant feature sets that allow different al-
gorithms to label examples for each other, yielding
“probably approximately correct” (PAC)-style guar-
antees under certain (strong) assumptions. In con-
trast, lateen EM uses the same data, features, model
and essentially the same algorithms, changing only
their objective functions: it makes no assumptions,
but guarantees not to harm the primary objective.

Some of these distinctions have become blurred
with time: Collins and Singer (1999) introduced
an objective function (also based on agreement)
into co-training; Goldman and Zhou (2000), Ng
and Cardie (2003) and Chan et al. (2004) made do
without redundant views; Balcan et al. (2004) re-
laxed other strong assumptions; and Zhou and Gold-
man (2004) generalized co-training to accommodate
three and more algorithms. Several such methods
have been applied to dependency parsing (Søgaard
and Rishøj, 2010), constituent parsing (Sarkar,

11We see in it a milder contrastive estimation (Smith and Eis-
ner, 2005a; 2005b), agnostic to implicit negative evidence, but
caringwhencelearners push probability mass towards training
examples: when most likely parse trees begin to benefit at the
expense of their sentence yields (or vice versa), optimizers halt.

12For a recently proposed instance of EM that uses cross-
validation (CV) to optimizesmootheddata likelihoods (in learn-
ing synchronous PCFGs, for phrase-based machine translation),
see Mylonakis and Sima’an’s (2010,§3.1) CV-EM algorithm.

13Some authors (Nigam and Ghani, 2000; Ng and Cardie,
2003; Smith and Eisner, 2005a,§5.2, 7;§2; §6) draw a hard line
between bootstrapping algorithms, such as self- and co-training,
and probabilistic modeling using EM; others (Dasgupta et al.,
2001; Chang et al., 2007,§1; §5) tend to lump them together.



2001) and parser reranking (Crim, 2002). Funda-
mentally, co-training exploits redundancies in unla-
beled data and/or learning algorithms. Lateen strate-
giesalso exploit redundancies: in noisy objectives.
Both approaches use a second vantage point to im-
prove their perception of difficult training terrains.

9 Conclusions and Future Work

Lateen strategies can improve performance and effi-
ciency for dependency grammar induction with the
DMV. Early-stopping lateen EM is 30% faster than
standard training, without affecting accuracy — it
reduces guesswork in terminating EM. At the other
extreme, simple lateen EM is slower, but signifi-
cantly improves accuracy — by 5.5%, on average
— for hard EM, escaping some of its local optima.

It would be interesting to apply lateen algorithms
to advanced parsing models (Blunsom and Cohn,
2010; Headden et al., 2009,inter alia) and learn-
ing algorithms (Gillenwater et al., 2010; Cohen and
Smith, 2009,inter alia). Future work could explore
other NLP tasks — such as clustering, sequence la-
beling, segmentation and alignment — that often
employ EM. Our meta-heuristics are multi-faceted,
featuring aspects of iterated local search, determin-
istic annealing, cross-validation, contrastive estima-
tion and co-training. They may be generally useful
in machine learning and non-convex optimization.

Appendix A. Experimental Design

Statistical techniques are vital to many aspects of
computational linguistics (Johnson, 2009; Charniak,
1997; Abney, 1996,inter alia). We used factorial
designs,14 which are standard throughout the natu-
ral and social sciences, to assist with experimental
design and statistical analyses. Combined with or-
dinary regressions, these methods provide succinct
and interpretable summaries that explain which set-
tings meaningfully contribute to changes in depen-
dent variables, such as running time and accuracy.

14We usedfull factorial designs for clarity of exposition. But
many fewer experiments would suffice, especially in regression
models without interaction terms: for the more efficientfrac-
tional factorial designs, as well as for randomized block designs
and full factorial designs, see Montgomery (2005, Ch. 4–9).

9.1 Dependent Variables

We constructed two regressions, for two types of de-
pendent variables: to summarize performance, we
predict accuracies; and to summarize efficiency, we
predict (logarithms of) iterations before termination.

In the performance regression, we used four dif-
ferent scores for the dependent variable. These in-
clude both directed accuracies andundirectedaccu-
racies, each computed in two ways: (i) using a best
parse tree; and (ii) using all parse trees. These four
types of scores provide different kinds of informa-
tion. Undirected scores ignore polarity of parent-
child relations (Paskin, 2001; Klein and Manning,
2004; Schwartz et al., 2011), partially correcting for
some effects of alternate analyses (e.g., systematic
choices between modals and main verbs for heads
of sentences, determiners for noun phrases, etc.).
And integratedscoring, using the inside-outside al-
gorithm (Baker, 1979) to compute expected accu-
racy across all — not just best — parse trees, has the
advantage of incorporating probabilities assigned to
individual arcs: This metric is more sensitive to the
margins that separate best from next-best parse trees,
and is not affected by tie-breaking. We tag scores
using two binary predictors in a simple (first order,
multi-linear) regression, where having multiple rel-
evant quality assessments improves goodness-of-fit.

In the efficiency regression, dependent variables
are logarithms of the numbers of iterations. Wrap-
ping EM in an inner loop of a heuristic has a mul-
tiplicative effect on the total number of models re-
estimated prior to termination. Consequently, loga-
rithms of the final counts better fit the observed data.

9.2 Independent Predictors

All of our predictors are binary indicators (a.k.a.
“dummy” variables). Theundirectedandintegrated
factors only affect the regression for accuracies (see
Table 4, left); remaining factors participate also in
the running times regression (see Table 4, right). In a
default run, all factors are zero, corresponding to the
intercept estimated by a regression; other estimates
reflect changes in the dependent variable associated
with having that factor “on” instead of “off.”

• adhoc — This setting controls initialization.
By default, we use the uninformed uniform ini-
tializer (Spitkovsky et al., 2010a); when it is



Regression forAccuracies Regression forln(Iterations)
Goodness-of-Fit: (R2

adj ≈ 76.2%) (R2

adj ≈ 82.4%)

Indicator Factors coeff.̂β adj. p-value
undirected 18.1 < 2.0 × 10

−16

integrated -0.9 ≈ 7.0 × 10
−7 coeff.β̂ mult. eβ̂ adj. p-value

(intercept) 30.9 < 2.0 × 10
−16 5.5 255.8 < 2.0 × 10

−16

adhoc 1.2 ≈ 3.1 × 10
−13 -0.0 1.0 ≈ 1.0

Model sweet 1.0 ≈ 3.1 × 10
−9 -0.2 0.8 < 2.0 × 10

−16

B3s shallow (soft-first) -2.7 ≈ 6.4 × 10
−7 -1.5 0.2 < 2.0 × 10

−16

B3h shallow (hard-first) -2.0 ≈ 7.8 × 10
−4 -1.2 0.3 < 2.0 × 10

−16

B2s shallow smooth 0.6 ≈ 1.0 -0.4 0.7 ≈ 1.4 × 10
−12

B1s smooth 0.0 ≈ 1.0 0.7 2.0 < 2.0 × 10
−16

A1s simple lateen 0.0 ≈ 1.0 0.2 1.3 ≈ 4.1 × 10
−4

A2s shallow lateen -0.0 ≈ 1.0 0.2 1.3 ≈ 5.8 × 10
−4

A3s early-stopping lateen 0.0 ≈ 1.0 -0.3 0.7 ≈ 2.6 × 10
−7

A4s early-switching lateen 0.0 ≈ 1.0 -0.3 0.8 ≈ 2.6 × 10
−7

A5s partly-switching lateen 0.0 ≈ 1.0 0.2 1.2 ≈ 4.2 × 10
−3

viterbi -4.0 ≈ 5.7 × 10
−16 -1.7 0.2 < 2.0 × 10

−16

B2h shallow smooth 0.6 ≈ 1.0 0.2 1.2 ≈ 5.6 × 10
−2

B1h smooth 0.8 ≈ 1.0 1.3 3.7 < 2.0 × 10
−16

A1h simple lateen 5.5 < 2.0 × 10
−16 1.9 6.5 < 2.0 × 10

−16

A2h shallow lateen 1.5 ≈ 5.0 × 10
−2 1.3 3.6 < 2.0 × 10

−16

A3h early-stopping lateen -0.1 ≈ 1.0 -0.4 0.7 ≈ 1.7 × 10
−11

A4h early-switching lateen 3.0 ≈ 1.0 × 10
−8 0.7 2.1 < 2.0 × 10

−16

A5h partly-switching lateen 2.9 ≈ 7.6 × 10
−8 1.3 3.8 < 2.0 × 10

−16

Table 4: Regressions for accuracies and natural-log-iterations, using 86 binary predictors (allp-values jointly adjusted
for simultaneous hypothesis testing;{langyear} indicators not shown). Accuracies’ estimated coefficientsβ̂ that are
statistically different from 0 — and iteration counts’ multiplierseβ̂ significantly different from 1 — are shown in bold.

on, we use Klein and Manning’s (2004) “ad-
hoc” harmonic heuristic, bootstrapped using
sentences up to length 10, from the training set.

• sweet— This setting controls the length cut-
off. By default, we train with all sentences con-
taining up to 45 tokens; when it is on, we use
Spitkovsky et al.’s (2009) “sweet spot” cutoff
of 15 tokens (recommended for English, WSJ).

• viterbi — This setting controls the primary ob-
jective of the learning algorithm. By default,
we run soft EM; when it is on, we use hard EM.

• {langyeari}22

i=1
— This is a set of 22 mutually-

exclusive selectors for the language/year of a
train/test split; default (all zeros) is English ’07.

Due to space limitations, we excludelangyearpre-
dictors from Table 4. Further, we do not explore
(even two-way) interactions between predictors.15

15This approach may miss some interesting facts, e.g., that
theadhocinitializer is exceptionally good for English, with soft

9.3 Statistical Significance

Our statistical analyses relied on the R package (R
Development Core Team, 2011), which does not,
by default, adjust statistical significance (p-values)
for multiple hypotheses testing.16 We corrected
this using the Holm-Bonferroni method (Holm,
1979), which is uniformly more powerful than the
older (Dunn-)Bonferroni procedure; since we tested
many fewer hypotheses (44 + 42 — one per inter-
cept/coefficient̂β) than settings combinations, its ad-
justments to thep-values are small (see Table 4).17

EM. Instead it yields coarse summaries of regularities supported
by overwhelming evidence across data and training regimes.

16Since we wouldexpectp% of randomly chosen hypotheses
to appear significant at thep% level simply bychance, we must
take precautions against these and other “data-snooping” biases.

17We adjusted thep-values for all 86 hypotheses jointly, us-
ing http://rss.acs.unt.edu/Rdoc/library/multtest/
html/mt.rawp2adjp.html.



CoNLL Year A3s Soft EM A3h Hard EM A1h

& Language DDA iters DDA iters DDA iters DDA iters DDA iters
Arabic 2006 28.4 118 28.4 162 21.6 19 21.6 21 32.1 200

’7 – – 26.9 171 24.7 17 24.8 24 22.0 239
Basque ’7 – – 39.9 180 32.0 16 32.2 20 43.6 128
Bulgarian ’6 39.6 131 39.1 253 41.6 22 41.5 25 44.3 140
Catalan ’7 – – 58.5 135 50.1 48 50.1 54 63.8 279
Chinese ’6 49.4 204 49.4 268 31.3 24 31.6 55 37.9 378

’7 – – 46.0 262 30.0 25 30.2 64 34.5 307
Czech ’6 – – 50.5 294 27.8 27 27.7 33 35.2 445

’7 – – 49.8 263 29.0 37 29.0 41 31.4 307
Danish ’6 – – 43.5 116 43.8 31 43.9 45 44.0 289
Dutch ’6 27.8 35 21.3 246 24.9 44 24.9 49 32.5 241
English ’7 – – 38.1 180 34.0 32 33.9 42 34.9 186
German ’6 – – 33.3 136 25.4 20 25.4 39 33.5 155
Greek ’7 – – 17.5 230 18.3 18 18.3 21 21.4 117
Hungarian ’7 17.4 213 17.1 366 12.3 26 12.4 36 23.0 246
Italian ’7 39.6 164 39.6 194 32.6 25 32.6 27 37.6 273
Japanese ’6 56.6 93 56.6 113 49.6 20 49.7 23 53.5 91
Portuguese ’6 37.5 102 37.9 180 28.6 27 28.9 41 34.4 134
Slovenian ’6 31.1 118 30.8 234 – – 23.4 22 33.6 255
Spanish ’6 33.1 73 33.3 125 18.2 29 18.4 36 33.3 235
Swedish ’6 – – 41.8 242 36.0 24 36.1 29 42.5 296
Turkish ’6 – – 29.8 303 17.8 19 22.2 38 31.9 134

’7 – – 28.3 227 14.0 9 10.7 31 33.4 242
Average: 37.4 162 37.0 206 30.0 26 30.0 35 37.1 221

Table 5: Performance (directed dependency accuracies measured against all sentences in the evaluation sets) and
efficiency (numbers of iterations) for standard training (soft and hard EM), early-stopping lateen EM (A3) and simple
lateen EM with hard EM’s primary objective (A1h), for all 23 train/test splits, withadhocandsweetsettings on.

9.4 Interpretation

Table 4 shows the estimated coefficients and their
(adjusted)p-values for both intercepts and most pre-
dictors (excluding the language/year of the data sets)
for all 1,840 experiments. The default (English) sys-
tem uses soft EM, trains with both short and long
sentences, and starts from an uninformed uniform
initializer. It is estimated to score 30.9%, converging
after approximately 256 iterations (both intercepts
are statistically different from zero:p < 2.0 × 10−16).

As had to be the case, we detect a gain fromundi-
rected scoring; integrated scoring is slightly (but
significantly: p ≈ 7.0 × 10−7) negative, which is re-
assuring: best parses are scoring higher than the rest
and may be standing out by large margins. Thead-
hocinitializer boosts accuracy by 1.2%, overall (also
significant: p ≈ 3.1 × 10−13), without a measurable
impact on running time (p ≈ 1.0). Training with
fewer, shorter sentences, at thesweetspot gradation,
adds 1.0% and shaves 20% off the total number of it-
erations, on average (both estimates are significant).

We find theviterbi objective harmful — by 4.0%,
on average (p ≈ 5.7 × 10−16) — for the CoNLL sets.
Spitkovsky et al. (2010a) reported that it helps on
WSJ, at least with long sentences and uniform ini-
tializers. Half of our experiments are with shorter
sentences, and half use ad hoc initializers (i.e., three
quarters of settings are not ideal for Viterbi EM),
which may have contributed to this negative result;
still, our estimates do confirm that hard EM is sig-
nificantly (80%,p < 2.0× 10−16) faster than soft EM.

9.5 More on Viterbi Training

The overall negative impact of Viterbi objectives is
a cause for concern: On average,A1h’s estimated
gain of 5.5% should more than offset the expected
4.0% loss from starting with hard EM. But it is, nev-
ertheless, important to make sure that simple lateen
EM with hard EM’s primary objective is in fact an
improvement overbothstandard EM algorithms.

Table 5 shows performance and efficiency num-
bers forA1h, A3{h,s}, as well as standard soft and
hard EM, using settings that are least favorable for



CoNLL Year A3s Soft EM A3h Hard EM A1h

& Language DDA iters DDA iters DDA iters DDA iters DDA iters
Arabic 2006 – – 33.4 317 20.8 8 20.2 32 16.6 269

’7 18.6 60 8.7 252 26.5 9 26.4 14 49.5 171
Basque ’7 – – 18.3 245 23.2 16 23.0 23 24.0 162
Bulgarian ’6 27.0 242 27.1 293 40.6 33 40.5 34 43.9 276
Catalan ’7 15.0 74 13.8 159 53.2 30 53.1 31 59.8 176
Chinese ’6 63.5 131 63.6 261 36.8 45 36.8 47 44.5 213

’7 58.5 130 58.5 258 35.2 20 35.0 48 43.2 372
Czech ’6 29.5 125 29.7 224 23.6 18 23.8 41 27.7 179

’7 – – 25.9 215 27.1 37 27.2 64 28.4 767
Danish ’6 – – 16.6 155 28.7 30 28.7 30 38.3 241
Dutch ’6 20.4 51 21.2 174 25.5 30 25.6 38 27.8 243
English ’7 – – 18.0 162 – – 38.7 35 45.2 366
German ’6 – – 24.4 148 30.1 39 30.1 44 30.4 185
Greek ’7 25.5 133 25.3 156 – – 13.2 27 13.2 252
Hungarian ’7 – – 18.9 310 28.9 34 28.9 44 34.7 414
Italian ’7 25.4 127 25.3 165 – – 52.3 36 52.3 81
Japanese ’6 – – 39.3 143 42.2 38 42.4 48 50.2 199
Portuguese ’6 35.2 48 35.6 224 – – 34.5 21 36.7 143
Slovenian ’6 24.8 182 25.3 397 28.8 17 28.8 20 32.2 121
Spanish ’6 – – 27.7 252 – – 28.3 31 50.6 130
Swedish ’6 27.9 49 32.6 287 45.2 22 45.6 52 50.0 314
Turkish ’6 – – 30.5 239 30.2 16 30.6 24 29.0 138

’7 – – 48.8 254 34.3 24 33.1 34 35.9 269
Average: 27.3 161 27.3 225 33.2 28 33.2 35 38.2 236

Table 6: Performance (directed dependency accuracies measured against all sentences in the evaluation sets) and
efficiency (numbers of iterations) for standard training (soft and hard EM), early-stopping lateen EM (A3) and simple
lateen EM with hard EM’s primary objective (A1h), for all 23 train/test splits, with settingadhocoff andsweeton.

Viterbi training: adhocandsweeton. AlthoughA1h

scores 7.1% higher than hard EM, on average, it is
only slightly better than soft EM — up 0.1% (and
worse thanA1s). Withoutadhoc(i.e., using uniform
initializers — see Table 6), however, hard EM still
improves, by 3.2%, on average, whereas soft EM
drops nearly 10%; here,A1h further improves over
hard EM, scoring 38.2% (up 5.0), higher than soft
EM’s accuracies frombothsettings (27.3 and 37.0).

This suggests thatA1h is indeed better than both
standard EM algorithms. We suspect that our exper-
imental set-up may be disadvantageous for Viterbi
training, since half the settings use ad hoc initializ-
ers, and because CoNLL sets are small. (Viterbi EM
works best with more data and longer sentences.)
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