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Abstract

We present interpretation-based processing — a theory of sentence processing that builds

a syntactic and a semantic representation for a sentence and assigns an interpretation to

the sentence as soon as possible. That interpretation can further participate in

comprehension and in lexical processing and is vital for relating the sentence to the prior

discourse. Our theory offers a unified account of the processing of literal sentences,

metaphoric sentences, and sentences containing semantic illusions. It also explains how

text can prime lexical access. We show that word literality is a matter of degree and that

the speed and quality of comprehension depend both on how similar words are to their

antecedents in the preceding text and how salient the sentence is with respect to the

preceding text. Interpretation-based processing also reconciles superficially contradictory

findings about the difference in processing times for metaphors and literals. The theory

has been implemented in ACT-R (Anderson & Lebiere, 1998).
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Interpretation-Based Processing: A Unified Theory of

Semantic Sentence Comprehension

Ambiguity is one feature of human language that often frustrates the attempts to

automatize its understanding by computers: not only can words have multiple meanings,

but sometimes the meaning of a word is not taken at face value. Everyday language is

often nonliteral; figurative devices such as irony, indirect request, metaphor, metonymy, or

hyperbole are common and are understood easily. Metaphor is a particularly pervasive

device: it is a rich source of new words (recent examples include web and couch potato)

and, moreover, according to researchers such as Lakoff (Lakoff, 1987; Lakoff & Johnson,

1990) or Reddy (1993), language is often shaped by existing, conceptual metaphors.

Humans comprehend language not only in the presence of ambiguity or nonliterality,

but also in the presence of noise. Real-time communication is inherently noisy — often,

the communication medium is imperfect (e.g., a bad connection on the phone or a

discussion in a noisy room) and people make errors in pronunciation or choice of words,

but their communication partners are able to grasp the gist of their message. Sometimes

speakers say what they did not intend (for example, when they commit slips of the

tongue), but we still understand them. Not only do listeners often recover from

mispronunciations or slips of the tongue, but sometimes they are unable to notice them in

a sentence. For instance, when asked When an aircraft crashes, where should the survivors

be buried? about 80 percent of people do not detect the anomaly (i.e., that the survivors

need not be buried — Barton & Sanford, 1993). Even if they are warned in advance that

the sentence may be distorted, about 40 percent of participants still do not notice the

inconsistency in a statement such as Moses took two animals of each kind on the ark, in

spite of knowing that Noah, rather than Moses, is the character of the ark story in the

Bible (Erickson & Mattson, 1981). (This phenomenon is called Moses illusion.) These
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facts suggest that ignoring minor discrepancies in communication is such a basic feature of

our language system that we cannot easily turn it off.

In this article we argue that metaphor comprehension and lapses in detecting

semantic inconsistencies are facets of the same mechanism of language processing; that we

understand metaphors easily for the same reasons for which we fail to notice semantic

distortions. We propose a new theory of sentence understanding, called

interpretation-based processing (INP) that hinges on the concept of prior

knowledge. INP postulates that the same processes are involved in the processing of both

literal and nonliteral language and shows that literality is only a matter of degree.

Although a word may seem inappropriate, a rich sentence context that contains a lot of

known information can often help people identify what the sentence is about and make

them grasp the intended meaning of that word. Moreover, if the sentence context precedes

the “wrong word” (be it metaphor, semantic distortion or even a poorly chosen literal),

then people can get what the word refers to without even detecting that it was

inappropriate or not used literally. That is, the literal meaning of a word can be bypassed

if the other preceding words in the sentence are informative enough. This theory naturally

explains priming effects due to context: rich contexts can provide interpretations for

sentences; these interpretations, in turn, can facilitate the processing of new meanings.

One consequence of our theory is that it reconciles the contradictory findings in

psycholinguistic studies that have compared the comprehension speed of metaphors and

literals: whereas some of these studies did not find any significant difference in overall

processing time for metaphoric and literal sentences (Ortony, Schallert, Reynolds, &

Antos, 1978; Shinjo & Myers, 1987; Inhoff, Lima, & Carroll, 1984; Keysar, 1989; Budiu &

Anderson, 2002), others found an advantage of literal sentences over metaphoric ones

(Gibbs, 1990; Onishi & Murphy, 1993; Budiu & Anderson, 2001).

INP is embodied as an ACT-R (Anderson & Lebiere, 1998) model that actually
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processes sentences. (Further on we use INP to refer to both the theory and the model.)

ACT-R is a cognitive architecture that has served as a framework for successfully

modeling a large variety of problem-solving and memory tasks (see

http://act-r.psy.cmu.edu/ for a list of articles that describe ACT-R models).

Implementing the theory in ACT-R has a number of advantages, perhaps the most

important of them being that it allows the model to perform in real time tasks described

in the psycholinguistic literature. Thus, the responses produced and the time taken by an

ACT-R model for a task can be compared directly to the human participants’ data from

the same task. We use this testing methodology to evaluate our model. The commitment

of ACT-R to real-time processing also creates another challenge for INP: like humans, it

must perform all of its processing at the speed of only a few hundred milliseconds per

word. This constraint proves to be a severe test for any theory.

INP simulates several datasets — three of them come from the metaphor literature

(Gerrig & Healy, 1983; Onishi & Murphy, 1993; Budiu & Anderson, 2002), two datasets

involve the Moses illusion (Reder & Kusbit, 1991; Ayers, Reder, & Anderson, 1996), and

one is concerned with text priming (Schwanenflugel & White, 1991). Although there are

psychological theories that separately address metaphor processing, semantic illusions,

text priming, real-time sentence processing, or that have been realized as running models,

ours is the first to simultaneously achieve all of these constraints. Moreover, to the best of

our knowledge, INP is the first full-fledged domain theory for metaphor understanding

that reconciles those contradictory empirical findings regarding the processing times of

metaphors and literals. INP also relates metaphor processing to other text-processing

empirical phenomena that were not traditionally regarded as connected to metaphors and

shows that failures of the language-processing mechanism (e.g., Moses illusions) reflect the

same process that enable language flexibility in the comprehension of metaphors. As such,

we believe that INP constitutes another step of progress in coming to an understanding of
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human language processing.

In the rest of the paper we discuss the general behavior of our model, then we

describe the experimental tasks to which it has been applied. Finally, we comment on

other empirical predictions that INP makes and, in the conclusions section, we discuss

how our model compares to other theories of sentence processing.

1. The interpretation-based–processing theory

INP is implemented in ACT-R (Anderson & Lebiere, 1998), a general theory of

human cognition. In Appendix A we review those general ACT-R concepts and

mechanisms that play an important role in our INP model; here we present the core

concepts of INP — interpretation and background knowledge and, also, its main

representational and process assumptions.

1.1. Interpretation and background knowledge

The task of the INP model is to produce syntactic and semantic representations for

the input sentence and to relate the sentence to prior (or background) knowledge, which

may contain facts such as College students live in dorms, Noah took two animals of each

kind on the ark, or The night sky is filled with stars, or other more specific propositions

derived from text preceding the input sentence. Theoretically, the relationship with the

prior knowledge could be quite complex: one could imagine a variety of inferences being

drawn about the new sentence (e.g., what caused that sentence, what its consequences

may be, how typical it is, whether it contradicts other knowledge). But, practically, this

multitude of inferences is not feasible in a system such as ACT-R, in which each step of

processing takes at least 50 ms1. Therefore, INP is limited to drawing only one such

“inference” — namely, finding a known fact that overlaps most with the current sentence.

We call this fact the interpretation. It is the position of the interpretation in the overall

map of prior knowledge that enables the model to perform more complex inferences, when
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(and if) they will be needed. Anderson, Budiu, and Reder (2001), Budiu and Anderson

(2000) showed that this minimalist inference mechanism is powerful enough to capture

many aspects of sentence memory. Specifically, Anderson et al. (2001) illustrated how the

sentence interpretation (which they call referent) can help or interfere with later memory

of the text. In this article, we show that tentative interpretations based on sentence

fragments can help or interfere with lexical processes or even with the comprehension

process itself.

INP incrementally builds the representations and tries to find an interpretation as it

“reads” the words in the sentence, before reaching the end of the sentence. The aim of the

model is to “guess” the interpretation of the current sentence as soon as possible. The

incrementality of language comprehension (i.e., that people do not wait for the end of the

sentence to process the incoming words) is supported by a number of experimental studies

(Marslen-Wilson, 1973, 1975; Tyler & Marslen-Wilson, 1982; Oakhill, Garnham, & Vonk,

1989; Traxler, Bybee, & Pickering, 1997); another indirect demonstration is found in one

of the metaphor studies discussed in this article (Gerrig & Healy, 1983).

When a sentence communicates old information, its interpretation naturally

corresponds to a prior-knowledge proposition that matches it (almost) perfectly, that is to

a proposition that contains the same (or highly similar) concepts in the same roles. For a

sentence such as At the restaurant the man paid the waiter, such an interpretation can be

the fact The customer paid the waiter, which is part of our prototypical restaurant

knowledge. Alternatively, when the sentence is novel, INP needs to be content with an

interpretation that matches only part of the input sentence. For instance, Tengiz

Abuladze directed “Repentance” is an obscure sentence for many people; a possible

interpretation could be The person directed a play. (“Repentance” is actually a movie.)

Whereas in the case of sentences transmitting known information the interpretation can

be regarded as the “meaning” of the sentence, for novel sentences, the interpretation is
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rather a “hook” or an “anchor” point in the prior knowledge: it does not necessarily

match all the concepts in the sentence, although it shares some.

1.2. Representation

Recent ACT-R models (e.g., Anderson, Bothell, Lebiere, & Matessa, 1998; Salvucci

& Anderson, 2001; Anderson et al., 2001) have developed a fragmented style of

representation, in which the information about a single event or object is spread among

several chunks (i.e., pieces of declarative knowledge). INP applies this style for both

syntactic and semantic (or propositional) representations, which are closely related to

those used by Anderson et al. (2001). Here we focus on the semantic representation2.

Fig. 1 depicts the semantic representation corresponding to the sentence The college

students were taught by professors of good reputation.

Insert Figure 1 about here

The semantic structure of the sentence is encoded as a tree; the nodes in this tree

correspond to meanings. The root of the tree represents the meaning of the whole

sentence; the interior nodes are composite meanings (e.g., the meaning of the noun phrase

college students); and the leaves are meanings of individual words. The key assumption is

that each of the nodes and edges in this tree is represented as a declarative chunk in

ACT-R. This assumption enables the model to reason about each piece of the meaning

separately in its incremental processing of the sentence. Fig. 1 shows one example chunk

that encodes the fact that Meaning1 is the patient of the proposition Prop. Note that the

edges contain information about the nodes they connect, about the role of the child within

its parent, about the context in which they occur, and also about the interpretation of the

current sentence.
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1.2.1. Semantic similarities.

The ultimate purpose of our model is to account for phenomena at the semantic

level of language. To achieve this purpose, it relies on the concept of semantic similarity,

which drives the process of activation spreading. According to ACT-R, when an item

comes in the focus of attention, it spreads activation to other items to which it is

associated. The amount of activation spread depends on the strength of association,

which, in turn, in the case of INP, depends on the semantic similarity3. (This dependence

is linear and described in Appendix B.) In our model, words just read get in the focus of

attention and spread activation to other semantically similar facts in the prior knowledge.

The question that remains to be answered is how INP computes semantic

similarities. Since we do not have a theory of semantic similarity, we use an existent

theory — Latent Semantic Analysis (LSA — Landauer & Dumais, 1997; Landauer, Foltz,

& Laham, 1998) — to obtain similarities between different words; then, we define

similarities involving more complex structures (e.g., propositions) based on LSA word

similarities. Thus, the model needs to receive as input similarities between words.

Appendix B specifies the rules for calculating similarities of complex structures and how

these similarities determine the strengths of associations in the ACT-R model and drive

the spreading of activation.

As mentioned, we use LSA to define the basic similarities between words. LSA is a

mathematical technique that generates a semantic space starting from a text corpus. It

represents word meanings as vectors in a high-dimension space; dimensions in this space

are different texts and the meaning vector reflects how frequently the word occurs in each

dimension text. Then LSA applies singular value decomposition to reduce the

dimensionality of the semantic space. The similarity between two meanings is calculated

as the cosine of the angle between the corresponding vectors in the smaller-dimension

semantic space. This technique can be extended to compute the similarity between a word
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and a passage. LSA was used to simulate many psycholinguistic phenomena such as

vocabulary acquisition (Landauer & Dumais, 1997), emergence of natural categories

(Laham, 1997), predication (Kintsch, 2001), and metaphor comprehension (Kintsch,

2000). Although LSA may not always offer a perfect definition of similarity (even for some

of our simulations), it is clearly quite successful and provides a solid, independently

defined constraint for our model. It could be replaced by more reliable definitions of

similarity (e.g., participant ratings) if these were available. The qualitative predictions of

the model depend on similarity orderings rather than on exact values obtained from LSA

or from another theory.

1.3. Process

INP has two components: a syntactic component and a semantic one; they are both

available on line as a single model at the Published Models link at

http://act-r.psy.cmu.edu/. The syntactic component processes each new word in the

sentence as it is “read” and builds both the syntactic and the semantic representation for

the input sentence. The focus of this article is on the semantic component. For the sake of

completeness, we describe the syntactic processes that INP carries out in Appendix C,

although we do not make much reference to them in the rest of this article. The existence

of a syntactic component is the main difference between INP and the purely semantic

model in Budiu (2001) and shows that comprehension of basic sentences can be achieved

rapidly in a production system, even when both syntactic and semantic processes are

accounted for. Given that we want to show that INP can run in real time, it is critical

that the model also deal with syntax.

The semantic component of INP attempts to guess what the sentence is about as it

reads it. It retrieves a proposition (a candidate interpretation) from the prior

knowledge that best matches what the model has read and, then, it checks whether the
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candidate interpretation is validated by subsequent information; if it is not, the model

attempts to find another candidate. The semantic processor acts on each semantic unit

(or on what it believes to be a semantic unit); roughly speaking, semantic units

correspond to verbs, adverbs, and noun phrases. Thus, the search or validation of the

interpretation does not occur on auxiliary verbs or prepositions or even on every

component noun of a noun phrase, although the syntactic processor acts on each of these

when it builds the semantic representation of the input.4 For instance, instead of looking

for an interpretation after each word in the noun phrase the college students, the semantic

processor waits until after INP read all three words; if the noun phrase were the college

students with child dependents, the semantic processor would act after reading students

and, then, finding that the phrase continues, it would act again on dependents. Thus, the

model makes a trade-off between the tendency to wait until it is sure that the noun phrase

ended and a need to keep only a limited number of items unprocessed by the semantic

processor. Specifically, it keeps at most one head noun in store before triggering the

semantic processing for that noun phrase.

Insert Figure 2 about here

Let us go through how INP processes a sentence such as The college students were

taught by lecturers (Fig. 2). We emphasize here only the actions of the semantic processor;

Appendix C contains a more detailed discussion of how the model builds the syntactic and

semantic representations shown in Fig. 2. After reading the words the college students,

which together form a noun phrase with the meaning represented by the chunk Meaning1,

INP attempts to guess an interpretation for the input sentence based just on the words

read. Thus, it looks for a fact in the background knowledge that involves the composite

meaning Meaning1 (i.e., college students) and makes that fact its current candidate

interpretation (e.g., College students live in dorms). Next, when the main verb taught is
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read, the model checks whether the current word phrase matches the verb in the current

candidate interpretation; in our case it does not, so INP needs to search for another

interpretation involving Meaning1 and taught and in which taught is a verb. Let us

assume that INP selects Professors teach college students; that fact becomes our current

candidate interpretation. This candidate interpretation is validated by the last word,

lecturers, provided that the meanings of lecturers and professors are similar enough5.

Fig. 2 illustrates the two ways in which our model deals with transient syntactic

ambiguity. One is by postponement. Thus, the model does not assign the patient role to

college students until enough of the sentence has been processed to indicate that this

assignment is appropriate. The other method used for transient ambiguities is to revise

incorrect commitments that may have been made on the basis of existing evidence. So, for

instance, college is initially assigned to a head role and then this role is changed. Our

model does not have a full treatment of all possible transient ambiguities any more than it

has a treatment of all possible syntactic structures. However, in both cases we think that

the existing treatment can be extended and that it shows how syntactic ambiguity can be

addressed in our framework, rather than a full-fledged, completely sound theory of

syntactic ambiguity. The syntactic processing in the model is discussed in more detail in

Appendix C.

Insert Figure 3 about here

The flowchart in Fig. 3 summarizes the behavior of the semantic processor. When it

is invoked for the first time, INP has no semantic interpretation and attempts to find one

that involves the current word phrase (e.g., the college students). Once it found a

candidate interpretation, it matches that interpretation against subsequent word phrases.

If at some point INP fails to find an interpretation for the current sentence, it records this

failure event by creating a special chunk called bug. At the end of the sentence, the
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model integrates the semantic representation of the read sentence with that of the found

interpretation. Next we discuss the steps in Fig. 3 in more detail.

Search. The search process (Box Search in Fig. 3) tries to find a proposition in the prior

knowledge that best matches what was read from the input sentence. INP selects the

prior-knowledge proposition that has the highest activation above the retrieval threshold.

If there is no such proposition, the semantic processor returns control to the syntactic

processor. Before doing so, it records the failure by creating a bug (Box Bug — see

below). Otherwise, if the search is successful, INP checks whether the current word phrase

matches the found proposition (Box Match); if they do not match, the model either goes

back to the syntactic processor or continues the search by looking at the next best

proposition (Box Search). The decision to stop the search is probabilistic. If INP decides

to move to the next word without having found an interpretation, it creates a bug chunk

(Box Bug), which registers the failure to find an interpretation and some extra information

about the context in which the failure occurred (e.g., current word phrase, current role,

previous candidate interpretation). Bugs are bumps in the comprehension process and INP

uses them to keep track of the local failures; later in the sentence, when more information

is available, the model may try to recover from those failures. A smooth, bug-free

comprehension indicates that the sentence is very close to some already known fact. Thus,

bugs are useful in verification tasks, to decide whether the sentence is true or false.

To match the speed of human comprehension, INP must perform a very efficient

search — it cannot spend time selecting many bad candidates and then rejecting them.

Rather, it should find the right candidate interpretation as soon as possible in the search

process: each failure costs time (each time INP finds a wrong interpretation it must spend

extra time to look for another candidate interpretation). The order in which

interpretations are selected is determined by their activation. The information that INP
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has gathered about the sentence spreads activation to the interpretation. At each

moment, INP keeps the meanings of the last three word phrases processed in the focus;

these meanings should occur in the correct interpretation of the sentence and, therefore,

they should be highly similar and, hence, strongly associated to that interpretation.

Matching. We saw that a candidate interpretation is accepted only if it matches the

meaning of the current phrase (Box Match). Matching compares the current word phrase

with the concept in the same role in the interpretation — for instance, if the current word

phrase is a verb, it compares it to the verb in the interpretation. In INP, matching is

based on similarity and is realized through activation spreading. If the current word is

similar enough to the corresponding concept in the interpretation, the activation spread

from the current word, which is in focus, will increase the overall activation of the concept

above a threshold6 and the interpretation will match. Otherwise, if the word and the

concept in the interpretation are not similar enough, the activation of the concept will

remain under the threshold.

We should emphasize the distinction between search (Box Search) and match (Box

Match): why match if we know that the immediately preceding search was successful?

The search does not take into account the thematic roles of the word phrases; it returns

any proposition involving the last three word phrases. The match step makes sure that

the current word phrase actually matches the proposition concept in the same role. This

strategy corresponds to the result of Ratcliff and McKoon (1989) that relational

information is accessed only later in the comprehension process.

Interpretation priming. During the search process (box Search), beside the last three

meanings processed, INP keeps in focus the candidate interpretation. The candidate

interpretation remains in focus for a short while even after it has been invalidated and,

while in focus, influences the search for an interpretation by spreading activation to other
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facts similar to itself. Because it matched some meanings that may be no longer in focus,

the previous candidate interpretation represents a synthetic memory of the sentence.

However, INP discards it relatively soon to avoid getting trapped into trying only

propositions that are similar to it.

Integration. The basic assumption behind the integration phase (Box Integration) is

that the cognitive system spends some time at the end of the sentence (or clause) to

coherently relate the current sentential input to prior (episodic or permanent) knowledge.

Thus, integration in INP is conceptually similar to Just and Carpenter’s (1980) wrap up

at the end of the sentence.

With each new word that it processes, INP builds a part of the semantic

representation (i.e., a new semantic link) for the input sentence; each of these parts

contains information about the current interpretation. This information reflects INP’s

current “belief” of what the sentence is about. As INP goes through the entire sentence,

that “belief” (i.e., the current interpretation) may change, so that, at the sentence, the

final interpretation may differ from previous candidate interpretations that were

encapsulated in the various parts of the representation. Therefore, INP needs to revise

those parts that are no longer correct. This process is termed integration.

Insert Figure 4 about here

Let us go once more through the example from the beginning at this section and

discuss it in more detail. Fig. 4 shows how the semantic processor works on the initial

part of the sentence The college students were taught by lecturers. First, it processes the

meaning Meaning1 of the noun phrase the college students and, with that concept in

focus, starts looking for an interpretation. All propositions containing similar concepts get

an activation bonus (arrows in Fig. 4). The proposition with the highest activation is

picked up (assume it is College students live in dorms) and promoted as the current
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candidate interpretation. Next, the semantic processor processes the meaning of the word

taught, which is known to be a verb. INP verifies whether the meaning of taught matches

the verb of the current candidate interpretation; because live and taught are dissimilar,

too little activation spreads from taught (in focus) to the the concept live in the dorm

proposition. Therefore, that proposition will be invalidated and another candidate

proposition sought. This time, both Meaning1 and taught (together with the dorm

proposition) are in focus, so they spread activation towards similar propositions. The

activation spread from the sources combines additively, such that the proposition that is

most similar to all the chunks in the focus gets retrieved. Let us assume that this

proposition is Professors teach college students. INP checks whether its verb matches the

current word teach; because it does, INP accepts this proposition as a current candidate

interpretation. Next, the meaning of lecturers is processed; the model knows that this

word is an agent (being introduced by the preposition by), so it matches it against

professors, the agent of the current candidate interpretation. Assuming that the meanings

of lecturers and professors are similar enough, there will be enough activation spreading

from the input meaning to professors so as to make it raise above the threshold.

Therefore, the candidate interpretation will be validated and accepted as a final

interpretation. At the end of the sentence, during the integration phase, the model makes

sure that all the components of the semantic representation contain correct information

about the final interpretation Professors teach college students.

To summarize, our semantic model is a very simple search-and-match process.

Although all steps in Fig. 3 take time, the search is the most expensive part — the

number of repetitions of this step influences significantly the time spent for

comprehending the sentence. Candidate interpretations proven invalid may help with

finding new candidates. At the end of the sentence, the integration phase makes sure that

the structures created are consistent. Bug chunks keep track of local failures of



R. Budiu Interpretation-Based Processing 17

comprehension and they can be used to make various decisions. The model is

non-deterministic – decisions are probabilistic and the activation-based mechanisms

through which the steps in Fig. 3 are implemented are noisy (see Appendix A, Equation 2

for a description of activation noise in ACT-R).

2. Experimental validation

In this paper we show that INP can reproduce a number of critical results in the

literature. We attempt to reproduce both the qualitative trends in the data and, at least

approximately, the quantitative values. To reproduce the quantitative effects we estimated

several parameters. Given that these experiments tend to report relatively few data values

and that the model depends on relatively many parameters, one may think that INP

could be coerced to predict any results. Therefore, we strive to show that the model

predicts the qualitative effects and could not predict opposite effects. Although our

principal interest is in the qualitative effects, given the constraints in ACT-R on rate and

success of processing, it is not obvious that we would be able to reproduce the actual

times and accuracies. Therefore, we thought it important to show that INP could also

produce the quantitative results.

There are three types of parameters that occur in our simulations: (a) general

ACT-R parameters, (b) word similarity parameters, and (c) parameters influencing the

control structure of INP (i.e., probabilities for various branches of the flowchart in Fig. 3).

Insert Table 1 about here

There are only two ACT-R parameters that we estimate in our simulations. One of

these is the threshold parameter, τ (see discussion for Equation 2 in Appendix A), which

determines how active a chunk has to be in order to be retrieved. The other is a latency

factor, F , (see Equation 3 in Appendix A) that scales activation into retrieval times. For
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these parameters the ACT-R theory does not stipulate any values; they vary widely

among different ACT-R models (e.g., Anderson et al., 1998). Table 1 shows the values of

these parameters for each simulation7.

To set the similarity parameters for one simulation, we averaged the LSA distances

(Landauer & Dumais, 1997) over all materials in the corresponding experiment. For

instance, the similarity between a literal and a metaphoric word was instantiated to the

average LSA distance between the literals and metaphors used in all the trials of the

experiment. One exception to this rule was the text-priming simulation — for this

simulation, we did not have access to all the materials in the original experiment

(Schwanenflugel & White, 1991), so we based our LSA estimate on a single example. The

use of a single average similarity value in the simulations is possible because the

quantitative predictions of the model are a monotonic function of similarity (i.e., the

higher the similarity, the higher the effects predicted by the model). We discuss the actual

values for the similarities, as well as the remaining class of parameters, when we present

each experiment.

Beside these three kinds of parameters, all our simulations use the value of 150 ms

for the time to read a word; it reflects perceptual processes involved in reading, which we

do not model here. The timings of our simulations are largely determined by this

parameter and by each production cycle taking 50 ms. Although the setting of the latency

factor can stretch or shrink these timings a little, our models are committed a priori to the

rough times for processing sentences in all these tasks and it is not a trivial

accomplishment that these models get in the ballpark of human performance.

2.1. Metaphor comprehension

Perhaps the best domain for illustrating INP is metaphor comprehension. Language

is rich in metaphors. Almost all text contains metaphors of which neither the reader nor
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the author are aware (Gibbs, 1992). The ease with which we often process metaphorical

language illustrates how comprehension requires the sort of semantic stretching that is at

the core of INP. Whereas people show considerable facility with common and practical

metaphors, it is less clear how they process novel metaphors. Many studies have compared

the processing of sentences with novel metaphors with that of literal sentences and the

results have been contradictory. Thus, Ortony et al. (1978), Inhoff et al. (1984), Shinjo

and Myers (1987), Keysar (1989), Budiu and Anderson (2002) showed that, when the

metaphor is preceded by a rich and supportive context, the metaphoric sentence can be

understood as fast as a literal one, whereas Gibbs (1990), Onishi and Murphy (1993),

Budiu and Anderson (2001) reported experiments in which participants were slower to

read or verify metaphoric sentences compared with literal sentences. Giora (1997)

proposed the graded-salience theory of metaphor comprehension, which states that the

ease of comprehension is controlled by how salient the referent of the metaphor is.

Salience depends on factors such as supportiveness of preceding sentence context and

goodness and/or familiarity of the metaphor. Other models (see Gibbs, 2001 for a review)

have also proposed that context and familiarity of metaphor both play a role in metaphor

comprehension.

Next, we discuss simulations for three metaphor comprehension experiments: Gerrig

and Healy (1983), Onishi and Murphy (1993), and Budiu and Anderson (2002). Gerrig

and Healy’s (1983) experiment shows that the sentence context preceding the metaphor

can facilitate its comprehension; the other two experiments compare the processing of

various metaphoric sentences with similar literal sentences.

2.1.1. Metaphor position: Gerrig and Healy (1983).

Gerrig and Healy (1983) showed that the position of the metaphor within a sentence

may influence the speed of comprehension. They presented their participants with two

kinds of sentences: sentences starting with a metaphor (e.g., Drops of molten silver filled



R. Budiu Interpretation-Based Processing 20

the night sky in which drops of molten silver are a metaphor for stars, The parallel

ribbons were followed by the train in which parallel ribbons are a metaphor for tracks)

and sentences ending with a metaphor (e.g., The night sky was filled with drops of molten

silver, The train followed the parallel ribbons); one type of sentence was usually obtained

by making the other passive.

Gerrig and Healy measured reading times for these kinds of sentences and found

that participants read metaphor-first sentences more slowly than metaphor-last sentences.

Another experiment in the same study established that this result was not an artifact of

the different sentence structure of the two types of targets. A related result has been

reported by Peleg, Giora, and Fein (2001): they show that at the beginning of the

sentence metaphoric words may be processed as literals initially, whereas at the end their

metaphoric meaning may be accessed immediately.

Insert Table 2 about here

Table 2 presents the reading times of the metaphoric targets in the two conditions

from the first experiment in Gerrig and Healy (1983). This result is a nice demonstration

that people dynamically interpret and reinterpret the sentence as they read it. If they

waited until the end to assign an interpretation to the sentence, there should be no

difference between the two conditions. The existence of a difference supports a key

assumption of INP: incrementality.

Let us take a look at how the semantic component of INP behaves on Gerrig and

Healy’s sentences. First, we consider metaphor-first sentences, such as Drops of molten

silver filled the night sky. The first words (Drops of molten silver filled) suggest that the

sentence may be about a container holding liquid silver, but the final words (night sky) do

not match such an interpretation. Therefore, the model must reject the container

interpretation and find a new candidate interpretation, which could be the correct
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interpretation Stars fill the night sky, provided that stars and drops of molten silver are

similar enough. But switching from the container interpretation to the stars interpretation

costs INP extra time. On the other hand, such a switch happens less often in the case of

metaphor-last sentences. For a metaphor-last sentence such as The night sky was filled

with drops of molten silver, it is more probable that, after reading The night sky was filled

with, the model select the correct stars interpretation. The stars interpretation would be

next validated by the last words of the sentence (drops of molten silver). Thus, INP

predicts that metaphor-first sentences take longer than metaphor-last sentences, because

the former require rejecting one interpretation and replacing it with another one. Table 2

(third column) shows the latency results produced by INP.

Insert Table 3 about here

A critical assumption is that the topic and the vehicle of the metaphor (e.g., drops

of molten silver and stars) are semantically similar. The similarity should be high enough

to ensure that, once the entire sentence is read, INP will find the right interpretation,

given the support of the rest of the sentence. The value of this similarity can influence the

model’s latency and ability to find the right interpretation. To obtain the results reported

in Table 2, we set the similarity between the metaphoric concept and its corresponding

literal (e.g., drops of molten silver and stars) to 0.31. This value is the average of all LSA

distances (Landauer & Dumais, 1997) between the metaphoric phrases and the literal

phrases in the targets used by Gerrig and Healy (1983). Table 3 shows how the

predictions of INP vary for other similarity settings. High values of similarity wash away

the difference between metaphor–first and metaphor–last sentences: if the metaphoric

word is very similar to the literal, the chance of getting the final interpretation before

reaching the last semantic unit (e.g., the night sky) is considerably increased for

metaphor–first sentences. The extreme similarity value of 1 corresponds to the case of a
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literal sentence. On the other hand, small similarity values make it harder for INP to find

the right interpretation, as shown by the higher error rates and by the increased latencies

for both kinds of targets. These results map nicely onto Gentner and Wolff’s (1997)

empirical finding that the similarity between the two terms of the metaphor affects the

speed of comprehension of the metaphor.

Critical to the predictions of the model is the significantly smaller chance of an

interpretation switch for metaphor-last sentences. The model’s basis for capturing the

latency pattern in Gerrig and Healy (1983) is that metaphor-first sentences are

reinterpreted once more at the last concept (the night sky), whereas metaphor-last

sentences do not need a reinterpretation in most cases. This difference is a consequence of

the character of knowledge in the long term memory: if there are few propositions

matching The night sky or The night sky was filled, then there will be a high chance that

the right interpretation for the sentence The night sky was filled with drops of molten

silver is found before the last concept (drops of molten silver) and no reinterpretation will

be necessary. On the other hand, if there are many propositions matching the beginning

of that sentence, it is possible that a reinterpretation occur. However, one can show that,

under reasonable assumptions, the contents of the knowledge base does not affect the

basic result that metaphor-first sentences are understood more slowly than metaphor-last

sentences. Appendix D reproduces a proof from Budiu (2001) that these predictions hold

in general and do not depend on the particular values of the parameters or on the contents

of the background knowledge.

2.2. Metaphors versus literals

From Table 3 we can draw one important prediction of INP with respect to the

processing of metaphors versus literals: sentences that end with a metaphor should be

almost as easy as equivalent literal sentences (compare the case when the similarity is 1,
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corresponding to the literal, with the other cases), whereas sentences that start with a

metaphor should be harder than sentences that start with an equivalent literal. The next

two experiments both study these predictions and compare literal and metaphor

processing.

These experiments involve reading of a text and, then, processing of a target

sentence. The target sentence contains a metaphoric or literal reference to a concept from

the text. To simulate these experiments, INP relies on the same kind of processes for both

metaphoric and literal targets; the only difference is that metaphors are less similar to

their referents than literals are.

2.2.1. Onishi and Murphy (1993): anaphoric versus predicative metaphors.

In the Gerrig and Healy’s (1983) simulation we saw that INP predicts different

reading time patterns for predicative and anaphoric metaphors, when compared with

literals. The model predicts, as found by Onishi and Murphy (1993), Peleg et al. (2001),

Shinjo and Myers (1987) that predicative metaphors (e.g., D.G. Rossetti’s metaphor A

sonnet is a moment’s monument) should not have much of an effect when compared with

literals. Typically, the predicate is new information in either case and, in itself, may not

help too much in the process of relating the sentence to the background knowledge;

however, in general, the preceding sentence context, if informative enough (as in the case

of metaphor-last sentences in the simulation of Gerrig & Healy, 1983), manages to

compensate for this problem and connect the current sentence to the prior knowledge.

This connection to background knowledge, once established, can, in most cases, smoothly

accommodate the new information contained in the predicate. However, as found by

Gibbs (1990) and Onishi and Murphy (1993), there should be a deficit in the processing of

anaphoric metaphors because full interpretation of the sentence is “delayed” by the

metaphor. Here we focus on modeling the experiment by Onishi and Murphy because they

explicitly compared predicative and anaphoric metaphors.
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Insert Table 4 about here

Onishi and Murphy (1993) showed their participants stories like those in Table 4.

The stories could contain either a literal or a metaphoric target. In one experiment, the

target was anaphoric (left column in Table 4) and in another experiment, the target was

predicative (right column in Table 4). Like Gibbs (1990), they found a difference between

reading times for metaphoric and literal anaphoric targets; however, they found no

difference for the case of predicative targets. The reading times in the two experiments are

presented in Table 5.

Insert Table 5 about here

This simulation is the first in this article that involves comprehension of sentences

containing new information (henceforth called novel sentences). When simulating this

study, INP tries to relate the novel sentence to information in the preceding text. The

model attempts to find an interpretation for the read sentence among propositions from

the passage. If, at some point, it finds an interpretation (which may be later rejected),

that interpretation must share with the input at least some information. This

interpretation can, thus, constitute a hook for relating the novel sentence to the context

during the integration phase. Note that any partially matching interpretation (be

subsequently rejected or the final one) can be such a hook. Ideally, the hook should be the

proposition that matches best the input sentence (i.e., the final interpretation, if any, or,

otherwise, the candidate last rejected). In Haviland and Clark’s (1974) terms, the hook is

the “given” part of the input. If no hook is found during semantic processing, the

integration cannot be performed. The more “given” information in a sentence, the higher

the chance that it will be related to the preceding text. Sentences with metaphors offer

fewer opportunities for finding a hook than equivalent literal sentences, because the

metaphors are less similar than the literals to their antecedents in the text.
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INP captures the basic results using the same processes for both metaphors and

literals. In the case of anaphoric targets, the difference in reading times between

metaphoric and literal targets is due to the different similarities between the critical word

(metaphor or literal) and its antecedent. At the beginning of the sentence, when the

anaphoric metaphor is read, most often the model fails to find an antecedent for it and

pays a time cost for that failure; however, as it reads more words, those help to relate the

current sentence to the passage and the model ends up with an interpretation of the whole

sentence. For anaphoric literal sentences, the model is more successful in finding an

antecedent for the literal, so the comprehension is smoother and faster. There is no deficit

in the processing of predicative metaphors relative to predicative literals because both

involve new information and because the previous sentence context facilitates the finding

of an interpretation for the sentence, in which the new information can be accommodated.

For this experiment, we needed an estimate of the similarity between the metaphor

or literal and their referent in the text. We used the average LSAs between

metaphors/literals and their intended antecedent in the story, as described by Onishi and

Murphy in Appendix A of their study. The values obtained were 0.12 for metaphors, 0.3

for literals in the anaphoric experiment. In the predicative experiment, there were two

types of literals — those that played the subject role in both metaphoric and literal

targets (e.g., cat in the sentence The cat is my princess/favorite from Table 4) and those

that played the predicate role in the literal targets only (e.g., favorite in the same

sentence). The average LSAs between these literals and their antecedents in the story

were 0.65 for the subject literals and, respectively, 0.41 for the predicate literals.

The LSA values seemed very small, especially for the first experiment (possibly

because of difficulties in assessing the correct antecedent — see the discussion in the

section on Budiu & Anderson, 2002) — for instance the literal stomach was rated at 0.10

LSA distance from the antecedent pregnant woman’s belly, whereas the metaphor barrel
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was at 0.17 distance from the same antecedent. Therefore, we decided to add a constant

increment of 0.15 to all LSA values. This correction also brought the LSA values for the

anaphoric part of this simulation closer to values used in the other simulations.

2.2.2. More on anaphoric metaphors: Budiu and Anderson (2002).

Insert Table 6 about here

The study by Ortony et al. (1978) is often cited as showing that even anaphoric

metaphors do not result in a comprehension deficit, when compared with literals. Budiu

and Anderson (2002) report a word-by-word reading study that examined their findings in

more detail. In our experiment, participants read passages like those in Table 6, followed

by a target sentence that could either be literal or metaphoric8 and then judged the truth

of a probe sentence. Ortony et al. (1978) reported no difference in the comprehension

times for metaphoric versus literal target sentences, but did not collect word-by-word

reading times.

Insert Table 7 about here

We found that the reading times were significantly longer for the metaphoric nouns

than for the literal nouns and that the subsequent verbs were also read more slowly after a

metaphor, reflecting a spill-over effect. However, the endings of metaphoric sentences were

read significantly faster than the endings of literal sentences. Table 7 shows the

aggregated reading times for the noun and verb, for the endings, and for the whole

sentence. As can be seen, the shorter ending times balanced the longer beginning times

resulting in no overall difference, which was the result reported by Ortony et al. Our

experiment also looked at success in judging the subsequent sentence and found that

participants who had read a metaphoric target performed worse, suggesting a

comprehension deficit in some cases.
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Insert Table 8 about here

Based on these data, we concluded that participants had only a partial

understanding of the metaphors and that, sometimes, they failed to integrate the

metaphoric sentences with the preceding context (and thus read the endings faster). An

analysis of the endings of target sentences confirmed this conclusion. As seen in Table 6,

the endings of the target sentences could be split into two classes: endings related to the

passage (e.g., class in the targets of the linebacker story from Table 6) and endings that

were novel with respect to the passage (e.g., noisily for the women story). When looking

at reading times for the two classes of endings, we found that participants were faster for

the unrelated endings in the metaphoric condition (see Table 8). In the original study, we

argued that the unrelated endings offered little help with the process of integration with

discourse; therefore, participants may have failed to generate integrations for at least some

of the metaphoric sentences with unrelated endings and, thus, may have processed them

quickly.

For this experiment, we need an estimate of the similarity between the metaphor or

literal and their referent in the text. However, objectively identifying the referent in a text

is no easy task, because relevant features may be diffused across various sentences (for

instance, if the word hens is used to refer to a group of women that noisily discuss some

topic in a meeting, the female and the noisy features of this referent may be described in

several sentences). To solve this problem, we estimate the similarity between the

metaphor and its referent by the LSA distance between the metaphoric word and the

entire story (up to the target). For consistency (and also because literals were not always

identical to their referents — for instance, the literal athlete could be used to refer to an

arm wrestler), we estimated in the same way the similarity between the literal and its

referent. This technique led to relatively low similarity values between literals and their
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referents. We obtained the results in Table 7 by setting the similarity between the noun

and its antecedent in the passage to 0.19 for metaphors and 0.34 for literals. The

corresponding LSA similarities for the verbs were 0.23 (metaphors) and 0.44 (literals).

These numbers were obtained by averaging the LSA distances between the critical word

(metaphoric or literal, noun or verb) and the corresponding passage. These values

illustrate that literal meaning is hard to define; as Gibbs (2001) observed, “the very idea

of literality carries with it many assumptions about default meaning and processing that

are simply unwarranted and not experimentally verified”. Moreover, these low similarities

for literals support the idea that there is no dichotomy between metaphors and literals,

but, rather, that metaphoric or literal processing is just a matter of degree: the more

similar (or salient) the word phrase is to its antecedent, the fewer local failures of

comprehension and the smoother the processing.

Next, we discuss the predictions for the aggregated noun-and-verb reading times

and for the ending-reading times. The predictions for the sentence-reading times result

from summing up the components.

Aggregate noun-and-verb reading times. The data in Table 7 indicate that people

take longer to read the initial part of a target when it contains a metaphoric noun than

when it contains a literal noun. INP predicts these results because it tries hard to find an

antecedent for the first word of the sentence. For metaphoric nouns, the chance of finding

an antecedent is very low, so the model spends more time in repeated searches for one. On

the other hand, for literal nouns, this process needs fewer attempts and is more effective

(because the literals are more similar to their referents than the metaphors), so it is faster.

Ending-reading times. Consider the situation in the right column of Table 6. For

metaphoric sentences with unrelated endings (e.g., The hens cluck noisily), most

frequently, the given information does not suffice to retrieve any candidate interpretation
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from the context, because the activation spreading from metaphoric words (e.g., hens and

clucked) is not enough to select any proposition. Therefore, because it was not able to find

a candidate interpretation at any point during the processing of the input, at the end of

the sentence the model has no hook to perform integration and fails to relate the input to

the context; in consequence, the sentence is perceived as isolated. On the other hand, if

the ending is related to the context, it can help to find a hook for integration. Indeed,

although no interpretation may be found on the metaphoric noun and verb, the presence

of an ending related to the context may boost the spreading activation to a level high

enough to select a candidate interpretation.

Whenever it has a hook or a final interpretation, INP uses it for integrating the

input with the context. Context integration is quite minimalist in INP: it means only

updating the semantic representation of the sentence to make sure it is consistent; in a

more complex model of discourse processing it may require more elaborate processes.

However, the important assumption for simulating this experiment is that integration

takes extra time at the end of the sentence. Therefore, INP predicts that, each time when

a hook is found, context-integration time adds to the ending-reading times. Hence,

unrelated endings of metaphoric sentences should be read faster than related endings,

because the latter lead more often to context integration than the former.

Insert Table 9 about here

An important prediction of INP is that the time to read the noun (be it literal or

metaphoric) in this experiment depends on the similarity of the noun to its antecedent in

the passage. To test this hypothesis, we did an analysis of the individual nouns to find out

how their similarities relate to the performance (in terms of noun reading times and

accuracies) on that item. In the original study (Budiu & Anderson, 2002), we had

collected ratings of the familiarity of the noun metaphors9; we can use these ratings to see



R. Budiu Interpretation-Based Processing 30

if the results are more extreme for the poorer metaphors. First we examined reading

times, and found a marginally significant correlation (r = 0.32, p ≈ .1 for 28 items)

between reading times for the noun and rated familiarity (partialing out word frequency).

We also wanted to examine whether there was a relationship between rating and success

on the subsequent comprehension test. To assess this relationship, we filtered the original

28 items to include only those items where subjects showed a 20% improvement in the

literal trials over a baseline performance estimated in the absence of the target sentence10.

(Many of the questions were answered accurately in absence of the target sentence – 16 of

28 with greater than 75% accuracy.) Table 9 shows the seven items that survived this filter

(metaphors and our rendition of their antecedents in the story), their rated familiarity, the

reading times for the nouns, and the accuracy on the subsequent questions. Generally,

there is a relationship in the expected direction between the familiarity rating and the two

measures of comprehension success (r = 0.89, p < 0.005 for accuracy, r = −.63, p = .13 for

noun reading times). Interestingly, the LSA values show only a modest nonsignificant

correlation with the ratings (r = −0.32, p > 0.400), in the opposite direction. This failure

of LSA to work for individual items suggests that averaging LSAs over several items (as

we do in fitting the data of our simulation) may be a more reliable indicator of the average

“true” similarity than using individual LSAs to stand for similarities for individual items.

2.3. Moses illusion

The preceding experiments showed how INP (and human participants) can process

metaphoric language with varying degrees of success. In the Moses-illusion experiments

the same factors that lead to success in the processing of metaphors cause INP to make

the same mistakes as people and fail to detect what ought to be glaring contradictions.

Erickson and Mattson (1981) were the first who studied Moses (or semantic) illusions.

They asked their participants to look for distortions in sentences such as How many
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animals of each kind did Moses take on the ark? Surprisingly, people failed to find the

distortions in these questions, in spite of knowing the corresponding undistorted facts

(e.g., that Noah, rather than Moses, took the animals on the ark). As a dependent

measure in their study, Erickson and Mattson defined the illusion rate as the percentage

of undetected distortions out of cases in which the correct answer is known. Thus, the

illusion rate for a question is based on the number of participants who have the correct

knowledge, rather than on the total number of participants.

Reder and Kusbit (1991) followed up on the Erickson and Mattson’s (1981) result

and introduced a slightly different paradigm, the gist task. Unlike the original Erickson

and Mattson’s task (henceforth called the literal task), in which participants had to

detect distortions in Moses-illusion type of questions, in the gist task they needed to

ignore the distortions and answer the questions as if they were undistorted. For example,

the correct answer to the Moses question is distorted in the literal task and two in the gist

task. The gist task is analogous to being asked to comprehend a metaphoric sentence.

Whereas for the literal task, the illusion rate is the dependent variable, for the gist task

the corresponding measure is the percentage of correct answers.

Insert Table 10 about here

Table 10 shows the results of Experiment 1 from Reder and Kusbit (1991),

comparing latencies for correctly answering distorted questions (e.g., How many animals

of each kind did Moses take on the ark?) with those for correctly answering undistorted

questions (e.g., How many animals of each kind did Noah take on the ark?). Whereas in

both gist and literal tasks there was no statistically significant difference in latency

between the distorted and undistorted questions, participants responded faster in the gist

task than in the literal task. Also, in the gist condition, they tended to take longer (but

not significantly longer) to answer correctly the distorted questions than to respond to the
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undistorted questions. These results indicate that in the literal condition people process

more carefully the questions than they do in the gist condition.

Insert Table 11 about here

Although, generally, people find the literal Moses-illusion task difficult, not any

distorted question can trick them (e.g., Who was the first man who walked on the sun).

Ayers et al. (1996) compared illusion rates for good and bad distortions embedded in

similar sentences. They looked at three variants of the same question: one containing a

good distortion, one containing a bad distortion, and one containing the undistorted

term11. For example, the three variants could be How many animals of each kind did

Moses take on the ark? (good distortion), How many animals of each kind did Adam take

on the ark? (bad distortion), and How many animals of each kind did Noah take on the

ark? (undistorted term). Ayers et al. conducted an informal rating of the “good” and

“bad” distortions and established that the good distortion shared more features with the

undistorted term than the bad distortion12. Ayers et al.’s results (Table 11) showed that

people had most difficulty with the the good-distortion questions.

In the simulations for metaphor data we were able to capture the different effects for

literals and metaphors by assuming the same cognitive processes; the only difference

between the literals and metaphors was that the former were more similar to their

antecedents than the latter. In accounting for the Moses-illusion experiments, we assume

that the difference between good and bad distortions is also in their degree of “literality”:

the higher the similarity between the distortion and the undistorted term, the more likely

the illusion is to work. (This assumption is confirmed by the ratings conducted by Ayers

et al., 1996; van Oostendorp & de Mul, 1990; van Oostendorp & Kok, 1990.) Because the

spreading activation reflects semantic similarity, depending on how similar the distorted

term in the sentence is to the undistorted term, INP may behave in any of the following
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ways: (a) it may comprehend the sentence very smoothly, without forming any bugs, and

thus not noticing the distortion; (b) it may experience local failures of comprehension (i.e.,

may form bugs), but still reach to a final interpretation; (c) it may end up with no final

interpretation.

In the literal task, INP uses the existence of bugs as a basis for deciding whether a

sentence may be distorted. INP searches for interpretations of the sentence among the

propositions from background knowledge and answers undistorted if it comprehends the

probe with no bugs and distorted if it has generated any bugs during comprehension.

(Remember that bugs correspond to local failures of comprehension — that is, moments

when the model did not find any interpretation to match the current words.) In contrast,

the model ignores bugs in the gist task, when reaching an interpretation is all that is

required. Because INP is more likely to find an interpretation when the similarity between

the distorted and undistorted terms is higher, it predicts that (a) in the literal task, the

illusion rates for good-distortion questions are higher than those for bad-distortion

questions; (b) in the gist task, the percent correct is greater for good-distortion sentences

than for bad-distortion sentences. Table 11 presents the illusion rates and percentage

correct as resulted from the simulation13.

In the gist task, if it has found an interpretation for the current sentence, INP may

stop before reaching the end of the sentence and answer according to the current

interpretation (provided that it has processed enough words in the sentence).

(Participants in Ayers et al., 1996 study also tend to answer before reading the end of the

sentence.) The probability of stopping (given that the model has an interpretation) is 0.5

for each new word. Thus, because the chance of finding an interpretation sooner is higher

for undistorted sentences than for distorted sentences, on average INP stops sooner for

undistorted questions and, thus, tends to answer them faster in the gist task (see Table 10

for the model’s response times). This is also why INP captures the difference in latency
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between the gist and the literal task (i.e., in the gist task, the model sometimes stops

before the end). It simulates the participants’ tendency in the gist task to give the answer

as soon as they have it.

Insert Table 12 about here

We obtained the results presented in Tables 10 and 11 by assuming that the

semantic similarity between the good distortions and undistorted terms was 0.44 and the

similarity between the bad distortions and the undistorted terms was 0.33. These values

were obtained by averaging the LSA distances between the distortions and the undistorted

terms. The LSA values for individual items were modestly correlated with the illusion

rates (r = 0.33, p < 0.05). As expected, the illusion rate in the literal task and the

percentage of correct answers in the gist task are monotonically increasing functions of the

similarity between the distortion and the undistorted term. Table 12 shows how the

performance of INP varies for different values of the similarity. The higher the similarity,

the higher the illusion rate in the literal task and the accuracy in the gist task. Note that

the latency of the correct response in the literal task is not much affected by the

similarity; however, in the gist task, distortions of low similarity tend to take longer

(because the chance of finding an interpretation for the sentence is smaller).

To summarize, INP accounts for the influence of semantic similarity on the illusion

rates: the higher the similarity, the more likely the model is to fall for an illusion or to

grasp the gist of the sentence. INP uses the distortion as well as the other information in

the sentence as sources of activation; if the distortion is similar enough to the

interpretation, then it will still spread enough activation to allow smooth, failure-free

comprehension. The difference between the gist task and the literal task is that INP falls

for an illusion only if the comprehension was local-failure free in the literal task, whereas

in the gist task it disregards memories of local failures and focuses only on the existence of
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a final interpretation.

2.4. Text priming: Schwanenflugel and White (1991)

Insert Table 13 about here

So far we have discussed the role of interpretation in integrating the sentence with

past knowledge and the current context. However, the interpretation can also facilitate

the processing of related words. Priming paradigms are a commonly used method of

measuring lexical processing. One task on which priming has been extensively studied is

lexical decision. We chose to model an experiment by Schwanenflugel and White (1991)

because it was also addressed by Kintsch (1998)’s Construction-Integration model, to

which we want to make comparisons. Schwanenflugel and White (1991) found that both

preceding discourse and local sentence context can influence lexical decision. In their

experiment, participants read a short passage followed by an unfinished sentence and then

made a lexical decision about a word that ended the sentence. The passage could be

consistent, partially consistent, or neutral to the final sentence and the target word could

be either locally expected or locally unexpected on the basis of the final sentence

fragment. Table 13 shows sample materials used in Experiment 2 in Schwanenflugel and

White (1991). Note that, for consistent passages, the locally expected word is consistent

with the previous passage, whereas, for the partially consistent passages, the locally

unexpected word is consistent with the previous passage (at least with the last complete

sentence). For each consistent or partially consistent passage, participants saw a neutral

passage (not shown in Table 13) followed by a target that was similar in frequency or

length to the target in the nonneutral passage. The neutral context contained four

sentences such as This is the first sentence of this paragraph and ended with the sentence

fragment The last word of this sentence is.
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Insert Table 14 about here

Schwanenflugel and White’s (1991) results in terms of differences with respect to the

neutral passage are presented in Table 14. They show that participants are fastest when

the target is expected and the context is consistent. The next fastest case is that of an

unexpected target and a partially consistent passage. The 66 ms difference between locally

unexpected targets in consistent contexts and neutral contexts was not significantly

different from zero in the item analysis. These results indicate that the priming effect

depends on whether the target is related to both the last sentence and to the preceding

passage, with the preceding passage having a somewhat larger impact.

In the simulation for this experiment, INP reads the sentences in the passage one by

one and, as before, tries to find an interpretation for each of them. The search for an

interpretation is among background-knowledge propositions. Each time the model finds an

interpretation for a sentence, it also identifies the “script”14 that contains that

interpretation and keeps the script in the focus for a while. Therefore, that script works as

a source of activation and, next time when INP searches for an interpretation, favors other

propositions from the same script (because these propositions are associated to their

script).

Each pair of paragraphs in the study is formed from two scripts: a major script and

a minor script. In the example in Table 13, the major script is the hiking trip and the

minor script is entering the lobby. All sentences in the consistent paragraph come from

the major script, whereas in the partially consistent paragraph the last complete sentence

comes from the minor script.

When it starts reading the final sentence fragment, (e.g., The hikers climbed up the),

INP searches for interpretations in the current script (i.e., in the last seen script). If the

major script is current, the model will easily find in it an interpretation corresponding to
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the final sentence fragment. That interpretation is part of the focus in the lexical-decision

task and, because it is semantically similar to the locally expected target, it will facilitate

its processing. On the other hand, when the minor script is current, INP will often not be

able to find an interpretation in that script for the final sentence fragment and might

instead switch back to the major script. If it switches to the major script, the lexical

decision is facilitated for the locally expected targets; if it keeps the minor script because

it was able to find an interpretation, then the locally unexpected target is at advantage.

The probability of giving up the minor script depends on the similarity between the final

sentence fragment and the minor script. It also depends on the probability of abandoning

a script if at some point an interpretation from that script does not match the current

word; this probability was set at 0.20. We assumed that the verb (climbed) is typical for

both scripts and that the similarity between the first word in the final sentence (e.g.,

hikers) and the propositions in the minor script, was 0.1315. This latter value should

reflect how similar the word is to a generic agent of the script, such as people. The specific

estimate that we used reflected the LSA similarity between hikers and people16.

Our model of lexical decision is very simple: we assume that, given a string, the

model attempts to retrieve a meaning for that string; if it succeeds it responds yes,

otherwise no. The success and speed of retrieval depends on the spreading activation from

the goal: if the items in the goal (e.g., current interpretation) are related to the word,

then the model will respond fast.

Insert Table 15 about here

Given that we estimated the LSA similarity between the first word of the final

sentence (hikers) and the agent of the minor script (people) based on a single example, we

wanted to assess how stable the results of the simulations are. Table 15 shows the

predictions of the model (in terms of latency differences with respect to the neutral
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context) for various similarity settings. (The error rates also vary very little and have

values close to the ones in Table 14.) We can see that the model produces virtually the

same results independent on the specific similarity value used, for relatively small

similarity values (between 0 and 0.43). Naturally, the behavior becomes symmetric for the

case when the similarity is 1 (because the last sentence fragment becomes equally

consistent with both the minor and the major script).

3. Predictions of INP

In this section we identify some predictions of our model that go beyond the specific

simulations in this paper. Perhaps one central prediction of INP is that the ordering of

given versus new information within a sentence (or a passage) is a major factor in

comprehension. Specifically, the model implies that whenever the given information

precedes the new information, an interpretation has higher chances to be found and

therefore comprehension is facilitated. We have seen this principle at work in the Gerrig

and Healy (1983) and Onishi and Murphy (1993) simulations. However, it can be used in

other domains, some discussed in this paper (e.g., Moses illusion17). The ordering effect

can be extended to the level of multiple sentences or passages. Thus, INP predicts that,

when the information relevant to the identification of a script is given in advance, the

comprehension of further sentences is easier. This prediction is consistent with studies

such as Dixon’s (1987), which showed that texts such as This will be the picture of a

house. Draw a rectangle with a triangle on top are better understood (in terms of

comprehension times and accuracies of execution) than equivalent texts in which the

script information was given at the end Draw a rectangle with a triangle on top. This will

be the picture of a house.

The order effect was also found in memory experiments (e.g., Bransford & Johnson,

1972, who, in their famous “washing clothes” study, showed that participants’ memory for
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a text is improved if they are given the topic in advance). In general, INP can simulate

such experiments, assuming that the interpretation found at study, when the sentence is

first comprehended, helps situate the sentence in memory and facilitates access to other

script propositions that may be retrieved as inferences during recall or recognition (see

Anderson et al., 2001; Budiu, 2001 for a more in-depth explanation of these effects).

The domain of text inferences is also one in which INP can make contributions.

First, INP predicts that, in normal comprehension, there are no inferences drawn during

reading, except for the interpretation of the sentence. The reason for this behavior is the

limited time — there are too many syntactic and semantic processes going on to leave

time for extra inferencing. However, the interpretation itself can be a source of inferences,

if these inferences are needed at a later time. For instance, recalling that a sentence was

about folding the laundry from the washing machine may activate other facts about

washing clothes, even if those were not studied.

Another domain in which INP makes predictions is the processing of lexically

ambiguous words — words with two (or more) meanings. INP predicts that the current

candidate interpretation spreads more activation to the related meaning of the ambiguous

word than to the unrelated meaning. This effect translates into context having some role

in the selection of the meaning, although other factors (e.g., frequency) will also affect the

relative activation of the two meanings. Such predictions are consistent with experimental

findings (Duffy, Morris, & Rayner, 1988; Rayner & Duffy, 1986; Rayner & Frazier, 1989).

Although we did not elaborate on syntactic processing in this article, one domain

where INP may give some interesting insights is the influence of semantic processing on

syntax. However, there is one natural extension of INP to this domain — namely, in the

case of syntactic ambiguity (be it temporal or final) the candidate interpretation could

favor an assignment of thematic roles that is consistent with that interpretation. This

behavior would correspond to what the INP does in the case of lexical access, in the
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Schwanenflugel and White (1991) simulation — there the interpretation favors the lexical

access of the incoming words. Similarly, the candidate interpretation has the potential of

affecting the syntactic processing, in particular the assignment of thematic roles.

Preliminary results of a study run in our laboratory indicate some support for this

hypothesis.

4. Conclusions

In his 1988 paper, Kintsch argued that modeling comprehension with a top-down,

rule-based system is not a realistic endeavor, because “it is difficult to design a production

system powerful enough to yield the right results but flexible enough to work in an

environment characterized by almost infinite variability.” In this article we showed that a

simple production system with a powerful, similarity-based mechanism of spreading

activation may offer the right mixture of bottom-up and top-down processes: spreading

activation may lead to the selection of the right interpretation and, once that

interpretation is selected, it can ensure resilience of comprehension through a flexible

matching mechanism.

INP addresses a number of issues in the metaphor literature. First, as other modern

models in the field (e.g., Giora, 1997; Peleg et al., 2001; Frisson & Pickering, 2001; Katz &

Ferretti, 2001) it postulates the same processes for metaphoric and literal sentences. INP

shows that, as Giora (1997) observed, the metaphoric–literal divide, which for so long has

fascinated psycholinguists, is in fact a continuum. Since the similarity of the metaphor or

of the literal to their referents (which is part of what Giora, 1997 calls “salience” and

Haviland & Clark, 1974 call “given” information) drives the processing, literals with low

similarity to their context can be processed in the same way as metaphors are and vice

versa. Sentence context can increase the amount of “given” information, so the different

comprehension patterns for metaphors are associated with different degrees of support
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from the sentence context. Whereas the importance of the preceding text has been

demonstrated (e.g. Ortony et al., 1978; Inhoff et al., 1984), INP emphasizes the different

roles that sentence context (be it preceding or following the metaphor) can also play in

comprehension. Thus, supportive preceding context can speed up metaphor

comprehension as in Gerrig and Healy (1983) and supportive following context can

facilitate correct comprehension, although the metaphor may be initially not understood

(Budiu & Anderson, 2002; Onishi & Murphy, 1993). Moreover, lack of supportive sentence

context may lead to fast reading but poor comprehension due to lack of integration of the

sentence with the larger discourse context (Budiu & Anderson, 2002). Metaphoric

sentences typically offer a mixture of “new” and “given” information; comprehension is

possible to the extent that the other “given” information in the sentence is enough to

relate it to the context. Predicative metaphors do not pose difficulty to INP both because

they occur relatively late in the sentence and so are helped by the early part of the

sentence and because predicates, be they literal or metaphoric, are typically new

information.

INP bears similarity to other process models existent in the field. Perhaps the most

prominent sentence-processing theory is Kintsch’s (1988) construction-integration model.

Kintsch’s model, as INP, is based on associations between words and propositions. More

recently, Kintsch addressed the problem of metaphor comprehension in the framework of

his CI theory. Specifically, he looked at the comprehension of predicative metaphors of the

type A is B. Kintsch used an LSA-based (Landauer & Dumais, 1997) knowledge

representation, in which the strengths of the association-network connections are given by

their LSA distance. To apply the CI theory to this knowledge structure, Kintsch (2000)

defines a predication algorithm for understanding A–is–B metaphors. The predication

involves integration in a network formed by A, B and relatively close neighbors of B. The

meaning of the metaphor is the centroid between A, B and the most active terms in the
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network, after the system stabilizes. Kintsch argues that the same theory can be applied

to the understanding of literal predications.

In comparing Kintsch’s metaphor-comprehension theory with INP, we must keep in

mind that there are important scope differences between the two. Specifically, Kintsch’s

theory only addresses A is B predicative metaphors, whereas our model addresses

metaphoric sentences that can be predicative or anaphoric.

Kintsch evaluates his theory in terms of three empirical results that it captures: (1)

metaphors are not reversible, (2) activating the literal meaning of the metaphor can harm

the comprehension of the metaphor, (3) understanding metaphors is similar to

understanding lexically-ambiguous words. Next we discuss how INP fares on the same

tests.

The irreversibility of metaphors refers to the difference between A is B and B is A

— compare, for instance, Her surgeon is a butcher with Her butcher is a surgeon, or His

marriage is an icebox with His icebox is a marriage. Due to the asymmetry of Kintsch’s

predication algorithm, his theory agrees with the data. INP also would find different

interpretations for each sentence in such a pair. To see why, let us assume that a

proposition such as Her butcher is a surgeon was initially part of the model’s prior

knowledge18. Then that proposition would be the interpretation assigned by the model to

the sentence Her butcher is a surgeon, but consider what proposition would be chosen as

an interpretation for Her surgeon is a butcher. In processing the end of the sentence Her

surgeon is a butcher, if INP has not found a valid interpretation yet, it will look for a

proposition in which butcher is part of the predicate. It could retrieve Her butcher is a

surgeon, but that proposition would be rejected because butcher would fail the matching

test with the corresponding concept (i.e., surgeon) in the predicate role of the

interpretation19. After rejecting this proposition, INP might retry and find an

interpretation such as Her surgeon is rough and might well accept this if rough and
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butcher are similar enough.

With regard to the literal meaning interfering with metaphor understanding,

Kintsch suggests that preceding a metaphoric sentence such as My lawyer is a shark with

a literal sentence such as Sharks can swim leads to people taking longer to understand the

metaphor. In Kintsch’s predication model, this effect can be simulated by asserting that

Sharks can swim activates those neighbors of the predicate that are related to the literal

meaning of shark; they start with some positive activation at the beginning of the

integration and it takes longer for this prior activation to be washed out. In INP, if the

interpretation or script associated to the previous sentence (Sharks can swim) is still in

focus (as in the text-priming simulation), then that interpretation could interfere with the

retrieval of a correct interpretation for My lawyer is a shark and thus delay the

comprehension.

Another phenomenon cited by Kintsch as predicted by his theory is that metaphor

understanding is similar to lexical-ambiguity resolution. Both Kintsch’s model and ours

predict that in the presence of a supporting preceding context, the right meaning of a

homonym is retrieved. For homonyms, if the current interpretation (promoted by

preceding context) favors a certain meaning of the homonym, that meaning will be

retrieved due to extra activation from the interpretation. This behavior is similar to the

the text-priming simulation, where we showed that the current interpretation can

facilitate the processing of words related to it.

Another feature of Kintsch’s model is that it proposes the same comprehension

process for both literal and metaphoric predication. This is also true of INP — if the

metaphor occurs at the end of the sentence (and it does for predicative metaphors) and if

the model has found the correct interpretation, it will integrate the metaphor smoothly

into the interpretation, in the same way it would do with a literal sentence. If the correct

interpretation was not found (i.e., the context was scarce), then the search for an
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interpretation occurs for both the metaphor and the literal. The only potential for a

difference between metaphors and literals is their different similarity to their referents.

Although INP can understand sentences embedded in context, it is still a

rudimentary model of text processing. For instance, it does not deal with binding or

pronoun resolution. However, it is interesting to compare it with existent text-processing

theories. One current view, popular among several researchers (Myers & O’Brien, 1998;

Noordman & Vonk, 1998; Cook, Halleran, & O’Brien, 1998; Albrecht & Myers, 1998;

Sanford & Garrod, 1998) is the memory-based–text-processing (MBP) approach. The

central assumption of MBP is that the processes involved during text comprehension are

an effect of more basic memory processes: reading new information evokes older

information (from the text) through an activation-spreading process and, thus, makes that

information readily available. (This process is called resonance.) Whatever inferences are

made during reading, they are not explicit, but rather due to the old information being

“dumbly” activated. INP is consistent with this view, although the information evoked

from prior text is limited to one single proposition that is “dumbly activated” (through

the process of spreading activation) by the elements in the current sentence. In both MBP

and INP, this old information is at the core of text inferences.

INP has a syntactic component which has been only briefly discussed in this paper.

It is still somewhat rudimentary (it does not cover a lot of English constructions — for

instance, relative clauses) and does not yet deal with syntactically ambiguous sentences.

However, as discussed in the section on predictions, the resolution of syntactic ambiguity

is a domain where INP may be able to show its predictive power. Specifically, the

interpretation may be a factor in resolving syntactic ambiguity. In this respect, INP is

relatively similar with constraint-satisfaction models (e.g., MacDonald, Pearlmutter, &

Seidenberg, 1994; MacDonald, 1997), which assume that semantic factors such as the

lexical properties of the words involved, the context, and the frequency of the structure all
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influence the syntactic-ambiguity resolution. Indeed, INP selects its candidate

interpretation as the most active proposition in memory that matches the sentence

context. A proposition that corresponds to a frequent structure will presumably be more

active than another proposition; moreover, such a proposition needs (by definition, since it

is the result of the storing of language input) to satisfy the lexical constraints imposed by

the words involved.

One question that can be asked about INP is to what extent its predictions reflect

just LSA similarity, given that the model uses similarity values that are taken from the

LSA theory. Whereas LSA is a theory of similarity, it does not offer a process explanation

for language processing. As such, it cannot distinguish, for instance, between situations

like those in Gerrig and Healy’s (1983) experiment, where only the order of the words in

the sentence is manipulated. It also cannot explain the time course of processing in

metaphor understanding studies such as Budiu and Anderson (2002), or the difference

between the anaphoric and predicative metaphors as in Onishi and Murphy (1993).

However, to convince ourselves, we carried out a small experiment. We used practice

items from the Accuplacer reading comprehension test20; these items were short texts,

followed by four multiple choice questions. We used INP to parse a modified, syntactically

simpler version of the texts and to say which of the four choices is true, based on the text;

we also used LSA to compute the distance between the four choices and the text and

assumed that the answer was the one with the highest LSA. Our model achieved an

accuracy of 50%, whereas LSA was lower than chance (15%).

Another issue that can be raised about INP is how scalable it is. Inherently, the

background knowledge with which INP operates is limited to a small number of

propositions; however, people probably operate with lots of facts in their background

knowledge. Budiu (2001) presents a simulation of the semantic part of INP when the

number of propositions in the background knowledge is relatively large. We were
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especially interested in two results: (1) whether, presented with a sentence, the model

finds the correct interpretation for it in the database, and (2) whether the time to find

this interpretation is reasonable. The database we used was obtained by running a query

for noun–active verb–noun sentences on the Brown corpus

(http://www.ldc.upenn.edu/ldc/online/). The Brown corpus was compiled in the

early 1960s at Brown University under the direction of W. Nelson Francis and Henry

Kucera. It contains 500 text samples of circa 2,000 words each, representing 14

categories(e.g., literature, fiction, government). The result of the search consisted of 457

propositions that satisfied the pattern agent–verb–object. We chose such 3-concept items

mainly because such sentences are simple enough syntactically. We presented random

sentences from the database to the model and looked at the final interpretation. The

results were encouraging: for a range of parameters, the simulation indicated that the

model was able to find the correct interpretation in 95% of cases. Moreover, it did so

reasonably fast (the average number of candidate interpretations that were examined by

the model before finding the correct one was less than 0.7).

Finally, we would like to close this paper by reviewing what we think are the

important aspects of our theory of semantic sentence processing. One point that has been

in the background throughout the paper, but we would like to stress here is that the

theory provides a complete computational model that goes from the parsing of words to

the interpretation of a sentence. It has strong commitments to the real-time processing of

sentences. These commitments come from the fact that it is embedded in the ACT-R

architecture. That architecture places significant constraints on how much information

can be processed in any particular time. Although the theory allows for massively parallel

subsymbolic activation computations, these computations must conclude in the selection

of a single production to fire and each cycle of production firing must take at least 50 ms.

This constraint forces a minimalist style of information processing in which the model
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counts on the parallel activation to come up with an interpretation and only minimally

checks that particular interpretation. The fact that we can successfully process sentences

at a speed that humans do and with the behavioral profiles that humans display is a

non-trivial accomplishment. The successful embedding of INP in the ACT-R architecture

has a number of consequences. Of course, it conveys some credit to the architecture.

However, more importantly, it says that sentence processing is not unlike the other sorts

of information-processing tasks that ACT-R has modeled.

Over and above its general computational embodiment, INP has made a number of

commitments as to the nature of semantic sentence processing. These commitments were

driven by the empirical results that we reviewed. Probably, the most striking feature of

the model is the claim that sentence processing involves an obligatory search for an

interpretation and that this interpretation starts with the first phrase and continues

incrementally throughout the sentence. This interpretation of the sentence allows one to

recognize what one already knows and relate new information to that knowledge. It also

speeds up lexical processing and other low-level aspects of sentence processing. In INP the

interpretation is the linchpin of the comprehension process. The incremental nature of

interpretation processing has been essential in our accounts of many of the phenomena in

the paper.

The other striking commitment has been to similarity-driven processing. The

associations that fed the spreading activation processes were based on similarities and, in

general, we found Landauer and Dumais’s (1997) LSA a useful vehicle for assessing

similarities. This commitment has been essential also in our accounts of many of the

behavioral phenomena. Moreover, it has the implication that literality is a matter of

degree and that metaphor and semantic illusions are just relatively extreme examples of

the kind of processing that is essential to our interpretation of every sentence.
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Appendix A: An Overview of ACT-R

ACT-R assumes that human knowledge is structured in two categories: declarative

and procedural. The declarative knowledge refers to facts such as Stockholm is the capital

of Sweden or 2+2=4; in ACT-R, these facts would be represented as chunks. The

procedural knowledge corresponds to knowledge about carrying out actions (for instance,

about performing addition or about driving) and is expressed in ACT-R in the form of

productions. ACT-R claims that human cognition occurs as the result of the interaction

between procedural and declarative knowledge.

Chunks. ACT-R chunks encode “small, independent patterns of information”

(Anderson & Lebiere, 1998). The slots structure the information within a chunk. For

example, we could represent two chunks encoding that Stockholm is the capital of Sweden

and that Oslo is the capital of Norway in the following way:

Sweden-fact

isa capital-fact

country Sweden

city Stockholm

Norway-fact

isa capital-fact

country Norway

city Oslo

Chunks are characterized by their activation, which is a quantity reflecting how

often and how recently the chunk was used in the past and how relevant it is to the

current context. Activation plays an important role in the retrieval of the chunk. We talk

later in this section about how chunk activation is computed.

Productions. A production is an if–then rule with a condition side, containing one or

more conditions, and an action side, specifying a number of actions. If the conditions in

the condition side are fulfilled, the production can be fired and the actions in the action

side can be executed. The following example is the verbal description of an ACT-R

production for answering a question about the capital of a country:
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IF the goal is to say the capital of the country c

and x can be retrieved as the capital of country c

THEN say x

The first condition of any production always refers to the current goal; the other

conditions are typically memory retrievals. The goal denotes a chunk that corresponds

to the current focus of attention in the system. The other condition type allowed in the

condition side of a production is a memory retrieval: it indicates that a chunk must be

retrieved from memory and that it must match the pattern specified in the production.

Cognition in ACT-R emerges from a set of productions that fire in some constrained

order; each production can retrieve information from memory and use it to modify the

current goal. A production takes at least 50 ms to fire; a production that performs

time-consuming actions such as key presses or memory retrievals can take longer.

Moreover, two productions cannot fire in parallel. Hence, the more productions that fire

to perform a task, the longer the overall time to complete that task. This observation has

an important implication for an ACT-R model of sentence processing: if the goal is to

match human comprehension speed, the model’s complexity (in terms of the total number

of productions fired) must be relatively low.

Subsymbolic computation. The chunks and the productions form the symbolic level

in ACT-R. Subsymbolic, continuous quantities govern which production should be fired

next or which chunk should be retrieved and how long its retrieval takes. Unlike the

symbolic computation, which is serial, multiple computations of these subsymbolic

quantities are carried out in parallel.

Chunk activation is one such quantity, which controls the retrieval of a chunk. It

reflects how frequently and how recently the chunk was used and it also depends on the

context in which the chunk occurs. The context is formed by the chunks in the goal: each
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of them spreads activation to other chunks. Thus, the activation Ai of a chunk i is the

sum of a base-level activation and a spreading activation, as specified by the

following equation:

Ai = Bi +
∑

j

WjSji (1)

The summation is done over all goal slots j. Bi is the base-level activation of chunk i and

depends on the usage history of this chunk. In all simulations in this study we use a

constant value for Bi, arbitrarily set to 0 and corresponding to the assumption that most

chunks used in the tasks are well known and their activation does not vary over the course

of the experiment. The other component of the activation is the spreading activation:

each element j that is part of the current focus of attention (i.e., of the current goal)

spreads an amount of activation to the chunk i proportional to the association Sji between

chunks j and i. Wj reflects the splitting of “attention” among the elements in the focus.

By default, ACT-R sets Wj = 1

n , where n is the number of elements in focus. In INP, the

associations Sji reflect semantic similarities among chunks. In Appendix B we discuss how

these similarities are computed.

A chunk can be retrieved only if its activation is greater than a fixed retrieval

threshold, τ . ACT-R activations are noisy: a random value is added to the magnitude

computed by the Activation Equation 1. The noise comes from a logistic distribution with

variance σ. As a consequence, a chunk j is retrieved with a probability given by the

following equation:

Pj =
eAj/t

∑
i e

Ai/t
(2)

where Pj is the probability of chunk j being retrieved. t is a constant dependent on the

noise variance σ: t = σ
√

6/π. In all our simulations we use the value t = 0.35. The

summation in the denominator is done over all chunks that match the retrieval condition



R. Budiu Interpretation-Based Processing 51

and also includes a term corresponding to the retrieval threshold τ . According to

Equation 2, how likely a chunk is to be retrieved depends on how much larger its activation

is, compared with the activations of other chunks and with the retrieval threshold.

The activation Aj of chunk j also influences the time to retrieve that chunk: the

higher the activation, the faster the retrieval. The relationship between activation and

retrieval latency is described by the following equation:

Tj = Fe−Aj (3)

where F is a constant latency factor.
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Appendix B: Semantic Similarities

Semantic similarity and associative strength.

Given the similarity σ(j, i) between two chunks i and j, we calculate the associative

strength Sji between them using a linear function of the similarity:

Sij = C + M ∗ σ(j, i) (4)

where C is a base associative strength and M is a positive multiplier. C is a negative

quantity, indicating that two items can be positively associated only if they are similar

enough. In all our simulations, we use C = −16, M = 21 if one of the chunks is a

proposition and M = 32 otherwise. Thus, most of the activation spread from an item is

negative.

Calculation of semantic similarities for composite structures

INP takes as input the similarities between words and then, based on them, it

computes similarities involving more complex structures such as composite meanings (e.g.,

college students) and propositions. In the simulations in this article we use LSA (Landauer

& Dumais, 1997) to set the basic similarities for words. Next we discuss the rules used by

the model for deriving composite similarities, using these basic similarities. Note that we

assume (as does LSA) that the basic similarities between words are symmetric and all of

our composite similarities are defined so that they, too, are symmetric.

Similarity between two meanings. Suppose c1 and c2 are two meanings. Let the

concepts c11 . . . c1n, c21 . . . c2m be children of c1 and c2, respectively. (If either c1 or c2 is

atomic, it can be regarded as a composite meaning with a unique child — the atomic

meaning itself.) Then the similarity between the two meanings is defined as follows:
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σ(c1, c2) =
1

k

n∑

i=1

m∑

j=1

σ(c1i, c2j)

where k is the maximum between n, the number of children of c1 and m, the number of

children of c2. One can prove that this definition is symmetric.

Let us go through an example to see how these similarities are calculated. Suppose

c1 and c2 are college students and preschool students. Then c1 has two children, c11 —

college and c12 — students; similarly, the children of c2 are preschool and students. In our

case, both c1 and c2 have two children each, so m = n = k = 2. Each of the children is

atomic, so the similarities between them are given as input to the model. Suppose that

the similarity between college and preschool is 0.08, the similarity between college and

students is 0.5, and the similarity between preschool and students 0.13. Then the

similarity between the two meanings c1 and c2 is

1

2
(σ(c11, c21) + σ(c11, c22) + σ(c12, c21) + σ(c12, c22)) = 1

2
(0.08 + 0.5 + 0.13 + 1) = 0.86.

Similarity between a meaning and a proposition. Suppose the concepts c1 . . . cn

occur in the proposition p. Then the similarity between a meaning m and the proposition

p made of those concepts is defined as follows:

σ(m, p) =
n∑

i=1

σ(m, ci)

σ(p,m) =
n∑

i=1

σ(ci,m)

where σ(m, ci) is the similarity between the meaning m and the concept ci and σ(ci,m) is

the similarity between ci and m.

For the proposition Professors teach students, n = 3 and the similarity between the

meaning students and that proposition is the sum of similarities between students and

each of the meanings professors, teach, and students, which is 0.5 + 0.5 + 1 = 2, provided
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that the similarity between students and professors or teach is 0.5 and the similarity of

students to itself is 1.

Similarity between two propositions. Assume that proposition p1 is made of

concepts c11 . . . c1k and proposition p2 is made of concepts c21 . . . c2l and, moreover, that

c1i and c2i have the same thematic role (i.e., agent, patient, etc.), for all i. Then the

similarity σ(p1, p2) between p1 and p2 is defined as follows:

σ(p1, p2) =
1

n

m∑

i=1

σ(c1i, c2i)

where σ(c1i, c2i) is the similarity between concepts c1i and c2i, m is the number of common

roles in p1 and p2, and n is the number of roles that occur in at least one of p1 or p2.

If the two propositions were Professors teach students at college and Parents protect

children, then m is 3 (agent , patient, and verb are roles in both propositions), n = 4

(because the roles occurring in at least one of the two propositions are agent, patient,

verb, and place oblique) and c11 is professors, c21 is parents, c12 is teach, c22 is protect,

and c13 is students, c23 is children.

The similarity between the two propositions is

1

4
(σ(c11, c21) + σ(c12, c22) + σ(c13, c23)) = 1

4
(0.08 + 0.11 + 0.12) = 0.08, where the mutual

similarities between the agents, verbs, and patients in the two propositions are 0.08, 0.11

and 0.12 respectively.

Similarity between a meaning or proposition and a semantic link. This is just

the similarity between the meaning or proposition and the meaning in the child slot of the

link (see Fig. 1 for an example of semantic link). Also, the similarity between the semantic

link and the meaning or proposition is defined as the similarity between the child of the

link and the meaning or proposition.
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Appendix C: Syntactic Representation and the Syntactic

Processor in INP

In this appendix, we discuss in more detail the syntactic representation and the

functions of the syntactic processor.

Syntactic representation. The syntactic representation is inspired by the X-bar

theory (Jackendoff, 1977); however, it is somewhat simplified (some X-bar assumptions are

violated). Thus, for the sentence The college students were taught by lecturers, the

syntactic representation corresponds to a parse tree of the sentence (see Fig. 2, last

syntactic tree on the page): the leaf nodes are words (e.g., the, students, good) and the

interior nodes are nonterminals (e.g., NP1, V P1, N ′1). Both nodes and edges of the tree

are represented as ACT-R chunks, with edge chunks bearing all the structural information

in the tree. Thus, the chunk that corresponds to the edge between N ′2 and the word

college points to the parent chunk (i.e., to N ′2), to the child chunk (i.e., to college), and to

the sentence (in a slot called context). It also contains role information (i.e., that the child

is a head of its parent) and information about the parent’s type of nonterminal (i.e., N ′).

Syntactic component of INP and the interaction between the syntactic and

semantic processors. The syntactic component is based on the model described by

Anderson et al. (2001), but is somewhat more complex, being able to deal with sentences

that contain more elaborate noun phrases (e.g., college students, professors of good

reputation, athletes from each country) and also with interrogative structures (e.g., How

many people did the driver take on the bus). The syntactic component processes each new

word in the sentence as it is “read” and builds a syntactic and a semantic representation

for the input sentence.

Next, we discuss in more detail how INP processes the sentence The college students

were taught by lecturers and how it generates the representations in Fig. 2. (Still more
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detail can be obtained by running the simulations available on the web, at

http://act-r.psy.cmu.edu.) First, the model reads the word the; it retrieves the

meaning and the category of this word (i.e., determiner) and it starts building the

sentence representation. Because the is a noun determiner, INP knows that it is part of a

noun phrase, so it builds the node NP1 and it links it to the. The model also creates the

node Sent corresponding to the current sentence and connects it with the noun phrase

NP1. For the semantic representation, INP creates a node for the proposition

corresponding to the input sentence and links it to a noun-phrase meaning. At this point

the model does not know what this latter meaning will be, nor does it know what the

thematic role (e.g., agent, patient) of the noun phrase will be. Later, when the word

college is read, INP updates both its syntactic and semantic representations to include it:

the node college is parsed as the head of the noun phrase introduced by the and also as

the head of the meaning of that noun phrase. At this point, INP does not consider the

noun phrase complete (it assumes that further arguments may come), so it postpones the

search for an interpretation for the current input sentence. Next, the word students is

read and the model modifies the noun phrase N ′1 to have the head students and creates a

new node N ′2 to be the parent of college and an argument of N ′1. The semantic

representation is also modified to encode that the noun-phrase meaning is a composite

meaning formed by the meanings students (as head) and college as argument. At this

point, the semantic part of INP comes into play: because it has accumulated two noun

heads (for N ′1 and N ′2) (and the likelihood to be at the end of a noun phrase has

therefore increased), the model attempts to guess the meaning of the input sentence based

on the words read. Thus, it looks for a fact in the background knowledge that involves the

composite meaning Meaning1 (i.e., college students) and makes that fact its current

candidate interpretation (e.g., College students live in dorms). When the next word were

comes in, INP updates the parse tree, but, as before, it waits to complete its verb phrase
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before validating its semantic interpretation. After the main verb taught is read, the

model knows that the sentence is in passive voice and updates Meaning1 (i.e., college

students) to be a patient in the semantic representation. It also augments the parse tree

and the semantic tree with the verb information. Then the semantic model, invoked on

the verb, checks whether the current word phrase matches the verb in the current

candidate interpretation; in our case it does not, so the model needs to search for another

interpretation involving Meaning1 and taught and in which taught is a verb. Let us

assume that the model selects Professors teach college students and this fact becomes our

current candidate interpretation. The process of building the semantic and syntactic trees

continues in the same way for the last words of the sentence; the semantic model is again

invoked on the word lecturers: if the meanings of lecturers and professors are similar

enough, lecturers will match the agent of the current candidate interpretation (Professors

teach college students), which will become the final sentence interpretation.
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Appendix D: Independence on Background Knowledge

Structures

The predictions in the Gerrig and Healy (1983) simulation are independent on the

particular configuration of the background knowledge. Here we show that the number of

interpretation switches, which is the principal component of the comprehension time, is

higher for metaphor-first sentences than for metaphor-last sentences. We prove this

assertion only for the case of three-concept sentences.

Let f be the probability of finding the right interpretation (The stars filled the night

sky) for the metaphor-last sentences after reading the first concept (The night sky) and let

s be the probability of finding the right interpretation on the second concept (i.e., after

reading both The night sky and was filled). Let us also assume a certain probability r of

rejecting a wrong interpretation. Moreover, suppose that the model never searches for

more than one candidate interpretation per input concept. We are interested in estimating

the expected number of interpretation switches for metaphor-last sentences. A switch can

happen on the second concept (filled), or on the third concept (drops of molten silver), or

on both. The probability of having only one switch on the second concept is

(1 − f)rs + (1 − f)r(1 − s)(1 − r): this sum corresponds to the case when a wrong

interpretation is selected on the first concept, then it is rejected on the second and

replaced either with the right one (first term) or with a wrong interpretation, which fails

to be rejected on the third concept. The probability of having only one switch on the

third concept is (1 − f)(1 − r)r (we assume that, given all three concepts, the probability

of finding the right interpretation is 1). The probability of switching on both the second

and the third concepts is (1 − f)r(1 − s)r. Thus, the expected number of switches

performed for a metaphor-last target is:
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N2 = (1 − f)rs + (1 − f)r(1 − s)(1 − r) + (1 − f)(1 − r)r + 2(1 − f)r(1 − s)r

= (1 − f)r(2 − rs).

For metaphor-first sentences, there is also a possibility of a switch on the second

concept, if the interpretation selected on the first does not match it, or on the third

concept, or on both. We can assume that the chance of selecting the right interpretation

on the first concept is 0, as is the chance of selecting it on the second concept (i.e., you

cannot guess a star interpretation after reading Drops of molten silver and filled). Then, if

r is, as before, the probability of rejecting a wrong interpretation, there is a r(1 − r)

chance of having a switch on the second concept only (that would mean that a wrong

interpretation would be final). The probability of having a switch only on the third word

is (1 − r)r and the probability of switching twice is r2. Therefore, the expected number of

switches for metaphor-first sentences is:

N1 = r(1 − r) + (1 − r)r + 2r2

= 2r.

Then, we compute the difference in the number of switches between the two

conditions:

N1 − N2 = 2r − (1 − f)r(2 − rs)

= r(2f + rs(1 − f))

≥ 0, because 0 ≤ f, r, s ≤ 1

Therefore N1 > N2. We have shown that the expected number of switches is higher
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for metaphor-first sentences than for metaphor-last sentences and, therefore, the model

takes longer to process the former21.

This demonstration is actually pessimistic, because it assumes equal cost of switches

for metaphor-first and metaphor-last targets. In fact, for the latter, switches take less time

because of interpretation priming: the old candidate interpretation (which was just

rejected) helps the selection of related interpretations. For metaphor-last sentences,

although initial interpretations may be wrong (e.g., after reading The night sky was filled,

a possible candidate proposition is The night sky was filled with airplanes), in most cases

they are more related to the correct interpretation than the bad candidates for

metaphor-first sentences. For instance, suppose that the candidate interpretation after

reading Drops of molten silver filled is Drops of molten silver filled the bowl; the bowl

interpretation and the correct stars interpretation (The night sky was filled with stars) are

less similar than the airplane interpretation and the stars interpretation. Thus, less

activation spreads from the goal in the case of metaphor-first sentences and the

interpretation switch is more expensive than for metaphor-last sentences.
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Footnotes

1This 50-ms-per-step assumption has been supported in many domains and in many

production-rule architectures beside ACT-R (Just & Carpenter, 1992; Meyer & Kieras,

1997; Newell, 1990) and proves a defining constraint in the ACT-R models.

2The syntactic representation is inspired by the X-bar theory (Jackendoff, 1977) and

is described in more detail in Appendix C.

3Note that the activation spread from a source does not depend on how active that

source itself is.

4That the process of finding an interpretation is not invoked on every word does not

contradict the incrementality of language — the syntactic component of INP, which builds

both syntactic and semantic representations, does act on each word and takes decisions

even when prepositions or auxiliaries are encountered.

5The similarity between various meanings is given as input to the model, as discussed

in the section on semantic similarities.

6Technically, the activation of the propositional link involving the concept is raised

above the retrieval threshold.

7As in Anderson and Lebiere (1998), there is a large correlation (0.936) between the

retrieval thresholds and latency factors. This reflects the fact that latency is relatively

constant at threshold. Thus, in a sense, the only free parameter is the retrieval threshold.

8The target sentence contained a noun, a verb and an ending; the noun and the verb

could be either literal or metaphoric. In this discussion we aggregate our data over the two

verb types.

9Chiappe and Kennedy (2001) looked at similarity as a measure of the number of

features that the two components of the metaphor had in common and found a highly

positive, highly significant correlation — r = 0.84 — between familiarity and similarity.

10The baseline performance represented the performance in Experiment 2 in Budiu and
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Anderson (2002). In that experiment, participants read the same story without the target

sentence, and then answered the same comprehension question.

11The authors used their intuition to design the good and bad distortions and, then,

confirmed their choices by the rating described below.

12This informal rating agrees with the results of van Oostendorp and de Mul and

colleagues — van Oostendorp & de Mul, 1990; van Oostendorp & Kok, 1990, who conducted

a more rigorous rating.

13Note that participants respond distorted even to undistorted questions. We simulate

this bias by making the model answer distorted in 10 percent (respectively, 20 percent) of

the cases when it did not detect any distortion in the literal task (respectively, in the gist

task). The different biases in the literal and gist task reflect the fact that, whereas in the

literal case, the illusion rates in the undistorted case include only “distorted” answers, the

error rates in the gist task also include wrong answers. Refer to Reder and Kusbit (1991)

for a more detailed analysis of the types of error in Moses-illusion tasks.

14We use the term “script” as meaning a set of propositions corresponding to the same

prototypical situation (e.g., eating in a restaurant). This script need not be the structure

defined by Schank and Abelson (1977).

15The similarities between climbed and the verb in the corresponding script (be it minor

or major) proposition was set to 1, and so was the similarity between hikers and the agent

of the corresponding proposition in the major script.

16Unlike for the other simulations, we did not have access to all the materials used in

the Schwanenflugel and White’s (1991) study. Even if we had, we would also need data on

agents of the minor scripts.

17For Moses illusion, there is some evidence that moving the distortion in focus using

cleft sentences may actually decrease the illusion rate (Bredart & Modolo, 1988); it is

possible that this effect be a position effect, since focused nouns in cleft sentences occur at
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the beginning of the sentence (e.g., It was Moses who took two animals of each kind on the

ark. Bredart and Docquier (1989) also showed that this effect holds when capitalization of

the distorted term is used; however, Kamas, Reder, and Ayers (1996) replicated the study

and used a bias–sensitivity analysis to prove that capitalization mainly affected participants’

bias towards calling a sentence distorted rather than their sensitivity to distortions. Jaarsveld,

Dijkstra, and Hermans (1997) investigated position effects on Moses illusion, but, since they

did not include an undistorted condition in their experiments, it remains to be shown that

their result was indeed an effect of the manipulation.

18This assumption is unrealistic, but it represents the most unfavorable case for our

model; in that situation INP would be most likely to end up with the same interpretation

for both sentences.

19Note that butcher in the sentence is not matched against butcher in the interpretation

because they do not share the same role.

20Accuplacer is a placement test used in community colleges. We preferred it over other

tests available (e.g., Toefl) because the texts and the questions were shorter and somewhat

simpler.

21Note that the switch time does not depend on the position of the word on which it

occurs.
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Table 1

Latency factor (s) and retrieval threshold for various simulations.

Experiment Retrieval threshold Latency factor

Gerrig and Healy (1983) -1.750 0.060

Onishi and Murphy (1993) -3.500 0.003

Budiu and Anderson (2002) -3.250 0.003

Ayers et al. (1996), Reder and Kusbit (1991) -0.350 0.060

Schwanenflugel and White (1991) -0.550 0.080
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Table 2

Mean reading times (s) for metaphorical sentences from Gerrig & Healy (1983): data and

model.

Reading Times

Type of sentence Data Model

Metaphor-first 4.21 4.21

Metaphor-last 3.53 3.70
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Table 3

Variation of INP’s predictions as a function of the similarity between the metaphoric word

and its referent for the Gerrig and Healy (1983) simulation.

Similarity

0.18 0.28 0.38 0.48 0.78 1.00

Latency (s) metaphor-first 4.26 4.22 4.18 4.11 4.05 3.74

metaphor-last 3.83 3.70 3.66 3.64 3.63 3.61

Error rate metaphor-first 0.45 0.10 0.01 0.00 0.00 0.00

metaphor-last 0.46 0.01 0.00 0.00 0.00 0.00

Note. Latency stands for average latencies on targets for which the

model is able to find the correct interpretation.
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Table 4

Sample materials from Onishi and Murphy (1993).

Anaphoric Predicative

Felicia was a feline fanatic, who had two persians

and a siamese. The siamese was her favorite, and

she treated her like a child. One day it would

not eat its food, though Felicia tried to coax it.

After babying it for an hour, to no avail, she

became worried. She called Joseph, her usual

veterinarian, for advice. He was well aware of

Felicia’s doting attitude towards her pets. Felicia

described her problem with her siamese.

Felicia was a feline fanatic, who had two persians

and a siamese. The siamese was her favorite,

and she treated her like a child. One day it

would not eat its food, though Felicia tried to

coax it. After babying it for an hour, to no

avail, she became worried. She called Joseph,

her usual veterinarian, for advice. He was well

aware of Felicia’s doting attitude towards her pets.

Targets

“My princess won’t eat”, she informed him. [metaphoric] “The cat is my princess”, she informed him.

“My cat won’t eat”, she informed him. [literal] “The cat is my favorite”, she informed him.

Ending

Joseph said, “Bring her in, there’s an

open slot at noon.”

Joseph said, “Bring her in, there’s an

open slot at noon.”
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Table 5

Mean reading times (ms) for metaphoric and literal targets in Onishi and Murphy (1993):

data and model.

Data Model

Anaphoric Predicative Anaphoric Predicative

Metaphors 2262 2146 2271 2301

Literals 1912 2054 1877 2330
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Table 6

Sample materials from Budiu and Anderson (2002).

During history seminars, a massive young man

always yawned and never paid any attention to

the discussions. He was a very good linebacker

who had been all-state in football. The seminar

always came after his training sessions, so he was

very tired.

Every year the Localville Women’s Society for

Animal Protection has a meeting. They bring

in snacks, eat, and report about what was

accomplished during the year. But this year,

a major discussion topic was the new city

regulations that allowed people to buy live animals

from ethnic food stores.

Targets

The bear hibernated in class [metaphoric] The hens clucked noisily

The athlete slept in class [literal] The women talked noisily

Probes

The man dozed during the class [true] The ladies discussed loudly

The man daydreamed in class [false] The ladies sang loudly



R. Budiu Interpretation-Based Processing 79

Table 7

Reading times (ms) from Budiu and Anderson (2002) and model results.

Data Model

Met Noun Lit Noun Met Noun Lit Noun

Noun + Verb RT 1237 1168 1229 1186

Ending RT 778 794 841 886

Sentence RT 2015 1962 2070 2072

Note. RT = reading time. Met = metaphoric. Lit = literal.
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Table 8

Ending reading times (ms) from Budiu and Anderson (2002) and model results.

Data Model

Related Unrelated Related Unrelated

Metaphoric Noun 811 748 882 799

Literal Noun 761 826 869 902

Note. Related stands for reading times of endings related to the

context. Unrelated stands for reading times of endings unrelated to

the context.
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Table 9

Items from Budiu and Anderson (2002) that had a larger than 20% improvement in the

literal trials over the no-target experiment.

Metaphor/Antecedent Noun RT (ms) Accuracy Familiarity

beast/aggressive supermarket chain 734.93 0.55 1.30

bud/beautiful girl 566.51 0.95 2.90

butterfly/graceful ballerina 638.00 0.74 2.20

cat/man enjoying fire warmth 650.69 0.77 1.70

duelers/arguing spouses 696.00 0.78 1.70

iceberg/unresponsive official 671.53 0.75 2.20

nightingale/soprano 736.85 0.93 2.40
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Table 10

Mean response latencies (s) for correct responses in the gist and literal tasks for semantic

illusions: data and model. (The data are adapted from Experiment 1 in Reder and Kusbit,

1991.)

Data Model

Question Literal Gist Literal Gist

Undistorted 4.25 3.69 4.37 3.48

Distorted 4.29 3.88 4.31 3.84
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Table 11

Illusion rates in the literal Moses-illusion task and the percentage correct in the gist

Moses-illusion task: data and model. (The data are adapted from Ayers, Reder & Anderson,

1996).

Illusion rate (literal) Error rate (gist)

Question Data Model Data Model

Undistorted 7 10 18 18

Good distortion 46 55 24 21

Bad distortion 29 24 26 31

Note. An illusion for an undistorted question is to call it distorted.
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Table 12

Performance of INP in the Moses-illusion experiments as a function of the similarity between

the distorted and the undistorted terms.

Similarity

Task Measure 0.18 0.28 0.38 0.48 0.78 1.00

Literal Illusion rate 0.00 0.07 0.40 0.68 0.92 0.90

Latency (s) 4.28 4.30 4.32 4.33 4.36 4.38

Gist Accuracy 0.66 0.45 0.25 0.19 0.20 0.22

Latency (s) 4.61 4.25 3.85 3.66 3.46 3.48
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Table 13

Sample materials used by Schwanenflugel and White (1991).

Consistent Partially consistent

The equipment they carried was heavy. They had

gotten an early start at dawn. It had been a long

day for the guys. The hiking trip was the most

strenuous the group had had. The hikers slowly

climbed up the

The equipment they carried was heavy. They had

gotten an early start at dawn. It had been a long

day for the guys. After a treacherous hike, Bill

and his friends sluggishly entered their apartment

lobby. The hikers slowly climbed up the

Target words

Locally expected: mountain

Locally unexpected: stairs
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Table 14

Differences in lexical-decision latencies (ms) and error rates (in parentheses) with respect

to the corresponding neutral condition in Experiment 2 from Schwanenflugel and White

(1991): data and simulation results.

Data Model

Prior Context Target Target

Locally Locally Locally Locally

Expected Unexpected Expected Unexpected

Consistent 81 (0.07) -66 (0.02) 80 (0.12) 0 (0.02)

Partially consistent 42 (0.07) 79 (0.04) 20 (0.04) 70 (0.08)

Note. Positive differences indicate responses that are faster (more

accurate) than in the neutral context.
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Table 15

Differences in latency expressed with respect to the neutral context in the Schwanenflugel

and White (1991) simulation as a function of the similarity between the first word of the

last sentence (e.g.,hikers) and the agent of the minor script (e.g., people).

Similarity

Prior Context Target 0.05 0.23 0.33 0.43 1.00

Consistent Expected 80 80 80 80 70

Unexpected 0 0 0 0 10

Partially consistent Expected 20 20 20 20 10

Unexpected 60 60 70 70 70

Note. Positive differences indicate responses that are faster than in

the neutral context. Latencies are expressed in milliseconds.
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Figure Captions

Figure 1. Semantic representation for the sentence The college students were taught by

professors of good reputation.

Figure 2. Processing of the sentence The college students were taught by lecturers.

Figure 3. The behavior of the semantic processor.

Figure 4. Semantic processing of the initial part of the sentence The college students were

taught by lecturers. Arrows represent spreading activation; the width of the arrow is

proportional to the amount of activation.
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