
r-SVM 2.0 for Linux
A User Manual

By:

Benoit Valin, Eng.
Institute of Bioinformatics and Department of Automation

Tsinghua University, Beijing 100084, China
e-Mail: bvalin@tsinghua.edu.cn

Based on :

r-SVM 1.0 by:

Xuegong Zhang, Ph.D.
Institute of Bioinformatics and Department of Automation

Tsinghua University, Beijing 100084, China
e-Mail: zhangxg@tsinghua.edu.cn

and on :

SVMTorch II v 1.77 by:

Ronan Collobert

IDIAP
CP 592, rue du Simplon 4, 1920 Martigny, Switzerland

e-Mail: ronan.collober@idiap.ch

Important Notice:

1. Using r-SVM implies the agreement of the license terms. See the README.txt for

details.

2. It is strongly recommended that users learn the basic principle of SVM before using

it. A detailed description of r-SVM can be downloaded from our r-SVM website, and
further study can follow the references provided thereby. Applying advanced
methods (such as r-SVM) without really understanding its core idea might be risky
and lead to false discoveries.

r-SVM 2.0 for Linux A User Manual
 0. Table of Contents

1. Introduction to r-SVM 2.0

1.0. r-SVM 2.0 model
1.1. Preprocessing the data (preprocessor)
1.2. Building SVM Models (rSVM)
1.3. Making prediction based on SVM Models (predictSVM)
1.4. Cross Validating the SVM Models (crossSVM)
1.5. Assessing the significance of the cross validation error rate (permuteSVM)

2. Basic Conventions and Data Formats
2.0. Basic Conventions
2.1. Basic Terms
2.2. Data Formats

2.2.1. Gene Expression Data Files
2.2.1.1. The Whitehead Format (WI)
2.2.1.2. Cheng Li's compact format (CHENG)
2.2.1.3. Cheng Li's complete format (CH2)
2.2.1.4. Pure Data Format (PURE)
2.2.1.5. r-SVM 2.0 Data Format (rsvm2)
2.2.1.6. A note about the Affymatrix chip

2.2.2. Class Index Files
2.2.2.1. Index files
2.2.2.2. Class file

2.2.3. SVM Model Files
2.2.4. SVM Gene Sorting Files
2.2.5. SVM Gene Selection Files

2.3. About Gene Selection
3. Using the r-SVM 2.0 package

3.0. Preprocessing your data
3.0.1. The command line synopsis

3.1. Doing Recursive Gene Selection and Classification
3.1.1. The command line synopsis

3.2. Testing and Predicting New Samples with Built SVM Models
3.2.1. Testing Built SVM Models
3.2.2. Predicting New Samples with Built SVM Models
3.2.3. The command line synopsis

3.3. Doing Cross-Validation
3.3.1. The command line synopsis

3.4. Doing Permutation Experiments to Assess the Significance of r-SVM Results
3.4.1. The command line synopsis

3.5. Sample Script and Sample Data
4. Notes from the author
 4.0. Running r-SVM.2.0 in quiet mode

4.1. User Display
4.2. Command line parameters
4.4. Final thought

r-SVM 2.0 for Linux A User Manual
 0. Table of Contents

1.0. r-SVM 2.0 model
 The r-SVM 2.0 package is aimed to solve binary (two-class) classification
problems. Although there are ways of doing continuous regression with SVM and also
ways of doing multiple classification with an ensemble of SVMs, and the same SVM
technique can be applied to the classification genes rather than samples, the current
version hereby released is only for the purpose of binary classification of the samples
according to their gene expression data. The purpose of this section is to detail the
intended uses and functionalities of this package.
 The r-SVM 2.0 package is broken down into five (5) executable files; figure 1
illustrates the interrelation of each module in this package.

crossSVM

preprocessor

rSVM

permuteSVM

predictSVM
Gene

expression
file

Index
file

Gene Expression file
 and

Index File (rS
VM2 format)

Gene Expression file and

Index File (rSVM2 format)

Gene Expression file and

Index File (rSVM2 format)

model file

Gene Expression file (rSVM2 format) Predictions

class label
permutation

statistics

Cross
validation
statistics

Fig. 1: r-SVM 2.0 – Module interaction diagram

r-SVM 2.0 for Linux A User Manual
 0. Table of Contents

1.1. Preprocessing the data (preprocessor)

Preprocessing the micro-array data is a very important step for any further studies.
We recommend using the filters offered by the r-SVM 2.0, dChip or Affymetrix's oligo
micro-array data. For cDNA array data, we do not give specific recommendations, but
users should take their effort to make sure that the data are properly preprocessed.

1.2. Building SVM Models (rSVM)

The simplest application of r-SVM 2.0 is to build a series of SVM classification
models with different number of genes according to the selection by r-SVM. These
models can be applied on later-on samples for prediction purpose or for testing purpose.
However, by building models only, you cannot have a reliable assessment of the
performance of the models.

1.3. Making prediction based on SVM Models (predictSVM)
 Making classification predictions of new samples based on a verdict rendered by a
r-SVM 2.0 model can be done by preprocessing the new data, with the proprocessor, to
select and order the genes into the format the model was created, using rSVM, and then
using predictSVM to obtain classification results.

1.4. Cross Validating the SVM Models (crossSVM)

If your samples do not allow you to get an independent test set, you can use cross
validation to assess the accuracy of the SVM models, from which you can get the idea
about how strong the classification signal is in the data set as revealed by linear SVM.

Note: Since cross validation generates a set of SVM models at each gene selection
level, the cross validation error rate is not the estimate of accuracy of any specific model
of them, but rather an overall estimate of how strong the signal is and how well SVM can
work on this data set. If you are aiming at deriving one single SVM classification model
for future use at a certain gene selection level, you need to build the SVM model as
described in (1.2). You cannot have a direct estimate of the performance of this model,
but you can have an idea about how well it could be according to the cross validation
performance on the same data set.

1.5. Assessing the significance of the cross validation error rate (permuteSVM)

To assess the significance of the cross validation error rate, you can do permutation
experiment to get an estimated permutation p-value. This is essential if your purpose is
to discover the existence of predictive signals in the data set. This should be done prior
to any effort aiming for building a practical prediction model.

r-SVM 2.0 for Linux A User Manual
 2. Basic Conventions and Data Formats

2.0. Basic Conventions

Throughout this instruction, we'll try to follow the basic conventions of UNIX. For
example, when describing the syntax of a command, the contents in "[]" in a command
line is an optional parameter of the command, the underlined part of a command line
option should be given by the user according to his/her need (e.g., a file name), and the
other parts of the command line should be typed exactly as illustrated.

Since some of the computations might take a very long time (say, from hours to
weeks depending on the type of work and the size of your data), This release of r-SVM
provides a progress bar to indicate the state of the process.

2.1. Basic Terms

Gene
We use "gene" in a broad sense. It is simply the basic unit of the features to be

investigated. For example, for data from Affymetrix type of microarrays, we take
each probe-set as one gene; for array CGH data, we take one BAC as one gene, and
so on.

SVM - Support Vector Machine
By default, we mean linear SVM when we say SVM, since for current micro-

array data, it is not reasonable to use non-linear version of SVMs due to the high risk
of overfitting.

Sample
The data of a sample means the data vector whose components are the expression

values of all the genes at this sample measured by the micro-array experiment. A
sample can be either labeled, meaning we know which class the sample belongs to, or
unlabeled (or unknown), meaning that we don't know (or pretend not to know) the
class label of this sample.

Training Data
The sample set in which all the samples are labeled, and will be used for

designing (training) the classifier.

Test Data
The sample set in which all samples are unlabeled (the label information will not

be used although it is there), and will be used to test the performance of a classifier
according to whether the class label predicted by the classifier is the same with the
known label.

Unknown Data
The sample set in which all the samples have not been assigned a class label. A

classifier can be applied on the unknown data to make predictions. The difference
with a test data set is that we cannot judge whether the prediction is correct or not.

r-SVM 2.0 for Linux A User Manual
 2. Basic Conventions and Data Formats

2.2. Data Formats

2.2.1. Gene Expression Data Files
All the gene expression data of all samples should be contained in a single ASCII

file, with each row representing one gene, and each column (or two columns for some
format, see below) representing one sample (one case). Each item in the data file is
delimited with a tab ('\t'). The expression file can be the output of some popular
micro-array data processing softwares such as dChip (Li & Wong).

The preprocessor accepts five (5) file formats; the paragraphs bellow illustrates
each of the file formats.

2.2.1.1. The Whitehead Format (WI)

The old format used by Whitehead Institute for the leukemia (ALL/AML)
data, probably generated with the GeneChip software by Affymetrix. Here is a
sample:

Gene Description Gene Accession Number 1 call 2 call 3 call
AFFX-HUMGAPDH/M33197_M_st (endogenous control) AFFX-HUMGAPDH/M33197_M_st 132 A 301 P 524 P
AFFX-HUMGAPDH/M33197_3_st (endogenous control) AFFX-HUMGAPDH/M33197_3_st 546 P 530 P 911 P
AFFX-HSAC07/X00351_5_st (endogenous control) AFFX-HSAC07/X00351_5_st -1 A 185 A 140 A
AFFX-HSAC07/X00351_M_st (endogenous control) AFFX-HSAC07/X00351_M_st 336 A 418 P 761 P
GB DEF = GABAa receptor alpha-3 subunit A28102_at 151 A 263 P 88 A
Osteomodulin AB000114_at 72 A 21 A -27 A
mRNA AB000115_at 281 A 250 P 358 P
Semaphorin E AB000220_at 36 A 43 A 42 A
MNK1 AB000409_at -299 A -103 A 142 P
VRK1 AB000449_at 57 A 169 P 359 A

The first line contains the name (tag) of the samples. For each sample, there
are two columns: the first column contains the expression values of the genes, and
the second column contains either a 'A' or 'P' for each gene, indicating whether the
gene is recognized as "Absent" or "Present" by the Affymetrix software. The first
and 2nd columns of the file are the gene description and the probe set tag.

2.2.1.2. Cheng Li's compact format (CHENG)

The simplest expression output format provided by dChip. Here is a sample:

Probe set 1 2 3
AFFX-HUMGAPDH/M33197_M_st 132 301 524
AFFX-HUMGAPDH/M33197_3_st 546 530 911
AFFX-HSAC07/X00351_5_st -1 185 140
AFFX-HSAC07/X00351_M_st 336 418 761
A28102_at 151 263 88
AB000114_at 72 21 -27
AB000115_at 281 250 358
AB000220_at 36 43 42
AB000409_at -299 -103 142
AB000449_at 57 169 359

It is similar to the WI format except that only one column is used for
containing the probe set tags. Also there is only one column per sample,
containing only the expression values (without any 'A' or 'P' information).

r-SVM 2.0 for Linux A User Manual
 2. Basic Conventions and Data Formats

2.2.1.3. Cheng Li's complete format (CH2)
Similar with CHENG format, except that the Absent/Present information is

available in the file so that each sample has two columns. Here is a sample:

Probe set 1 call 2 call 3 call
AFFX-HUMGAPDH/M33197_M_st 132 A 301 P 524 P
AFFX-HUMGAPDH/M33197_3_st 546 P 530 P 911 P
AFFX-HSAC07/X00351_5_st -1 A 185 A 140 A
AFFX-HSAC07/X00351_M_st 336 A 418 P 761 P
A28102_at 151 A 263 P 88 A
AB000114_at 72 A 21 A -27 A
AB000115_at 281 A 250 P 358 P
AB000220_at 36 A 43 A 42 A
AB000409_at -299 A -103 A 142 P
AB000449_at 57 A 169 P 359 A

2.2.1.4. Pure Data Format (PURE)

This is the simplest format, which is virtually just a matrix, with each row
representing one gene and each column representing one sample. No sample tag
or probe set (gene) tag information is kept in the file. Here is a sample:

132 301 524
546 530 911
-1 185 140

336 418 761
151 263 88
72 21 -27

281 250 358
36 43 42

-299 -103 142
57 169 359

Since this data format does not provide any information concerning the gene
and sample names, the preprocessor automatically generates sample and gene
names in the following format:

Type Index Generated name
Gene X Gene_X

Sample Y Sample_Y

2.2.1.5. r-SVM 2.0 Data Format (RSVM2)
In order to simplify the design of each module within the r-SVM 2.0 package,

the preprocessor converts the above mentioned data formats into a common data
format. A slightly modified version (without the “Probe set” tag in position (0;0))
of the CHENG has been chosen to be the common file format.

2.2.1.6. A note about the Affymatrix chip

The Affymatrix chips usually contain probe sets named as "AFFX-***" which
are probe sets for quality-controlling purpose only. The preprocessor removes
these genes during the conversion process.

r-SVM 2.0 for Linux A User Manual
 2. Basic Conventions and Data Formats

2.2.2. Class Index Files
Since no class labeling information is kept in the expression data file, the class

labeling information can be inputted to the preprocessor.

2.2.2.1. Index files

This formats uses two (2) files (one for each class) to indicate which sample is
of which class. An index file contains the relative indexes of the samples that
belong to the same class. Please note that the index begins from 0; and that each
index should be on a separate line.

2.2.2.2. Class file

This format uses only one (1) file containing a combination of “1” or “-1” to
indicate which sample is of which class. Please note that theres should be the
same amount of values than the number of samples in the gene expression file;
and that each index should be on a separate line.

2.2.3. SVM Model Files

Files named as "*.model" are SVM model files obtained by training SVM with
some training samples. These model files can be used for test/prediction purpose.
They are binary files so that you cannot directly read or edit them. See 4 and 5 for
how to use these files.

2.2.4. SVM Gene Sorting Files

Files named as "*.sort" are SVM gene sorting files. File "1000g.sort" means the
sorting of the 1000 genes used by SVM. This is an ASCII text file, in which the
content look likes the following example:

 Weigths
U09770_at 0.274179
U41060_at 0.163121
M31627_at 0.132785
J02611_at 0.119609
M12529_at 0.117941
M20902_at 0.056548
J03191_at 0.055181
D30655_at 0.052506
U46692_rna1_at 0.051478
M16279_at 0.050424
D26598_at 0.048061

r-SVM 2.0 for Linux A User Manual
 2. Basic Conventions and Data Formats

2.2.5. SVM Gene Selection Files
Files named as "*.genes" contain the gene (probe set) names (tags) of genes being

selected to generate a SVM model file accompanied by their relative weight within
the SVM model. This is an ASCII text file, in which the content look likes the
following example:

Weigths

U09770_at -0.00015
U41060_at -1.4E-05
J02611_at 0.000051
M12529_at 0.000002
M31627_at -3.7E-05
M22382_at 0.000007
J03191_at 0.000077
L76200_at 0.000011
M16279_at 0.000054
HG3494-HT3688_at 0.000077
M20902_at 0.000039
J03909_at 0.000008
D42123_at -6.5E-05

Since SVM models are feature and feature order sensitive. Each time a model file
is generated, a gene selection file is also generated. The gene selection files can then
be used as an input to the preprocessor to process new gene expression files into gene
expression files compatible with the generated model (generated with fewer genes
and in different order).

Users will be interested in the gene selection files only if they want to investige
the gene selected by r-SVM 2.0.

2.3. About Gene Selection

r-SVM 2.0 offers different schemes to control gene selection at each level of
recursion. These features are details in later sections of this document. If you urgently
want to do selection schemes that are not currently offered, please contact the author for a
possible especially personalized version of r-SVM 2.0 for you!

r-SVM 2.0 for Linux A User Manual
 3. Using the r-SVM 2.0 package

3.0. Preprocessing your data

3.0.1. The command line synopsis

Syntax:
preprocessor InputFileName DataFormat OutputFileName

[CLASS-INFO] [FILTERS...]

Base Parameters:
InputFileName : The gene expression file.
DataFormat : The data format of the gene expression file.

Values are:
WI - Whitehead format
CHENG - Cheng Li's compact format
CH2 - Cheng Li's complete format
PURE - Pure format
RSVM2 - r-SVM 2.0 format

OutputFileName : The output r-SVM 2.0 gene expression file

Class Information:
-idx1 classFile: The index file Containing the class information of

each sample (either 1 or -1).
-idx2 index1File index2File: Where each index File contains the

indexes of the samples in each class
(starting at index 0).

-idxn name1File name2File : Where each index File contains the names
of the samples in each class

****NOTE: The class information will be remapped and saved under
the following name (to prevent any confusion with any
other index file): OutputFileName.idx

Gene selection Information:
-genes GeneSelectionFileName : The gene selection file (.genes) used

to Prepare a new gene expression file
to be used with a created model.
Outputted by SVM training (rSVM).

Filters:
-topcut value : Excludes the top "value" genes (before other

filtration).
-smplexc name : Excludes the sample named "name".
-geneexc name : Excludes the gene named "name".
-smplthresh min max : Excludes the samples that do not respect

the following rule:
 min <= gene value <= max
 NOTE: (max - min) != 0

-genethresh min max : Excludes the genes that do not respect the
following rule:

 min <= sample value <= max
 NOTE: (max - min) != 0

-nfold n : Excludes the genes that has a sample that do
not respect the following rule:

 n < (max(sample value) / min(sample value))
-std mean stddiv : Standardize all the gene expression to a mean of

n" and a st ation of "stddiv". "mea andard devi
 NOTE: stddiv > 0

-topsel value : Keep only the "value" top genes (after other
filtration).

This program will output entry files necessary for the use of all the other programs in
the r-SVM 2.0 package.

r-SVM 2.0 for Linux A User Manual
 3. Using the r-SVM 2.0 package

 < 0 UserSpecified < UserSpecified 1

 ≤ UserSpecified

3.1. Doing Recursive Gene Selection and Classification
Doing Recursive Gene Selection and Classification with r-SVM 2.0 can be done

through the rSVM program. This program creates a series of SVM gene-selection lists,
and SVM classification models built on these genes, without any procedure to evaluate
the performance of the built models.

3.1.1. Gene selection algorithms
 This new version of r-SVM provides four (4) gene selection algorithms. The
algorithm can be applied to each of the SVM learning programs (rSVM, crossSVM and
permuteSVM); with exception.

3.1.1.1. Based on weight

WeigthOfSelectedGenes
WeigthOfAllTheGenes

Where

NOTE: Since this algorithm does not guarantee the same gene selection
count at each level, this gene selection algorithm can only be
used in rSVM and not in crossSVM or permuteSVM.

3.1.1.2. User specified

 := Selection [], ,UserSelk = k 0 .. 1 n

NOTE: The user must provide a file with the gene selection counts in it.

3.1.1.3. Fixed amount (Default)

 := Selection [], , , , , , , , ,ALL 1000 500 200 100 50 30 20 10 5

3.1.1.4. Divide by half

 = Selection
 + k 1

1
2 Selectionk

Where
 = Selection0 ALL

r-SVM 2.0 for Linux A User Manual
 3. Using the r-SVM 2.0 package

3.1.2. The command line synopsis

Syntax :
 rSVM InputFileName IndexFile [...SELECTION ALGORITHIM...]

Base Parameters :
 InputFileName : The gene expression file (in rsmv2 format).
 IndexFile : Contains belonging class of each sample
 (either 1 or -1).

Selection Algorithm:

The options in this program relate directly to the recursive gene
selection algorithm. The recursively will stop when less than 2
genes are selected or that the number of genes does in a new
selection does not decrease the gene count. There are 4 types of
gene selection algorithms:

-ratio WeigthRatio : This algorithm will select genes until the

equation verified:

 SumOfWeigth(selected genes)
 WeigthRatio <= ---------------------------
 SumOfWeigth(all genes)

 NOTE: Progress cannot be established for this method.

-user SelectionFile : This algorithm will recursively select the
number of genes specified in the
'SelectionFile'. The file should contain 1
value per line and be in decreasing order.

-fixed : This will select a fixed amount of genes at each

recursion. The values are:
 [ALL; 1000; 500; 200; 100; 50; 30; 20; 10; 5]

 NOTE: This algorithm is equivalent to r-SVM v.1.0
recursive gene selection algorithm.

-divbyn n : This algorithm will select 1/n genes at each new

recursion.
 i.e. Selection(t+1) = Selection(t) / n

This program will output a series of SVM model files and gene selection files

corresponding to each generated model.

r-SVM 2.0 for Linux A User Manual
 3. Using the r-SVM 2.0 package

3.2. Testing and Predicting New Samples with Built SVM Models

3.2.1. Testing Built SVM Models
Once you have an r-SVM 2.0 classification model, you can use an independent

data set to test the accuracy of this model. The test set should be drawn independently
from the same population as the training samples, and should have exactly the same
file format and gene order as the training data file (this can be achieved by inputting
the gene selection file during the preprocessing of your data).

3.2.2. Predicting New Samples with Built SVM Models

Predicting new samples with a built SVM model is exactly the same as the testing
procedures, except that you don't know the correct class labels for the testing samples.

3.2.3. The command line synopsis

Syntax:
predictSVM ModelFile IndexFile ResultFile

Base Parameters:
ModelFile : The generated model file created by rSVM
InputFile : The gene expression file (in rsmv2 format) to predict.
ResultFile : The output prediction result file

This program will output a result file containing, on each line, the name of the
sample followed by its predicted class value.

r-SVM 2.0 for Linux A User Manual
 3. Using the r-SVM 2.0 package

3.3. Doing Cross-Validation

It is important to note that in order to investigate the underlying classification
relationship between the raw data and the classes being investigated, the steps for gene
selection (if any) should be taken, as a part of the whole classification system, which
means the gene selection steps should also be cross validated. Thus, the whole procedure
of r-SVM cross validation can be broken down into three (3) steps, as follows:

1. Leave one example (sample) out from the sample set
2. Do a r-SVM gene selection and classification on the new sample set
3. Test the obtained series of models on the left-out example
Every example is left out once. The cross validation error rate is estimated by

counting the proportion of the examples being mistaken in the test when it is the left-out
example. See the reference for details. The implementation of the cross validation
procedure is rather straightforward though, by executing the following command:

NOTE: The current version (2.0) of r-SVM allows only leave-one-out cross validation.

3.3.1. The command line synopsis

Syntax :
 crossSVM InputFile IndexFile StatFile [...SELECTION ALGORITHM...]

Base Parameters :

InputFile : The gene expression file.
IndexFile : The index file Containing the class information of

 each sample (either 1 or -1).
StatFile : Output file name containing the statistics of the

 crossSVM validation.

Selection Algorithm:
The options in this program relate directly to the recursive gene
selection algorithm. The recursively will stop when less than 5 genes
are selected or that the number of genes does in a new selection does
not decrease the gene count. There are 3 types of gene selection
algorithms:

-user SelectionFile : This algorithm will recursively select the

number of genes specified in the
'SelectionFile'. The file should contain 1
value per line and be in decreasing order.

-fixed : This will select a fixed amount of genes at each recursion.

The values are:
[ALL; 1000; 500; 200; 100; 50; 30; 20; 10; 5]

NOTE: This algorithm is equivalent to r-SVM v.1.0 recursive

gene selection algorithm.

-divbyn n : This algorithm will select 1/n genes at each new

recursion.
 i.e. Selection(t+1) = Selection(t) / n

r-SVM 2.0 for Linux A User Manual
 3. Using the r-SVM 2.0 package

This program will output results into two distinct formats.

1. The results of each leave out case will be saved in a folder named
“Leave_SAMPLENAME”. In this folder the gene sort file and an error file
(errors.note) will be saved. In this error file, each recursion case will be
quoted along with classification results and SVM outputs.

2. The statistic file contains the average error rates (over all, positive and
negative) at each recursion level.

r-SVM 2.0 for Linux A User Manual
 3. Using the r-SVM 2.0 package

3.4. Doing Permutation Experiments to Assess the Significance of R-SVM Results

If the classification signal in your data is not so strong, and especially when you
sample size is not very large, you might need to do permutation experiments to get a
strict estimation of how significant the classification you've got is. This is very important
for serious scientific studies. See the references for more details.

Please note that each permutation test take approximately the same amount of time as
the cross validation procedure. So if you want to do 100 runs of random permutation, it
will cost you 100 times more time. If you have a cluster, you might want to distribute the
permutation experiments on several clusters. The easiest way to do this is to execute a
job of permuteSVM on each node of your cluster, but remember to use non-overlapping
selection of random seeds for these jobs.

3.4.1. The command line synopsis

Syntax :

permuteSVM InputFile IndexFile StatFile NbPerms
 [...SELECTION ALGORITHIM...] [...OPTION...]

Base Parameters :

InputFile : The gene expression file (in rsmv2 format).
IndexFile : The index file Containing the class information of

 each sample (either 1 or -1).
StatFile : Output file name containing the statistics of the

 permutation experiments.
NbPerms : The number of permutations to execute

Selection Algorithm:

The options in this program relate directly to the recursive gene
selection algorithm. The recursively will stop when less than 5
genes are selected or that the number of genes does in a new
selection does not decrease the gene count. There are 4 types of
gene selection algorithms:

-user SelectionFile : This algorithm will recursively select the

number of genes specified in the
'SelectionFile'. The file should contain 1
value per line and be in decreasing order.

-fixed : This will select a fixed amount of genes at each recursion.

The values are:
[ALL; 1000; 500; 200; 100; 50; 30; 20; 10; 5]

NOTE: This algorithm is equivalent to r-SVM v.1.0 recursive
gene selection algorithm.

-divbyn n : This algorithm will select 1/n genes at each new

recursion.
 i.e. Selection(t+1) = Selection(t) / n

Option:
Random Control:
 -seed s: Random number generator seed ‘s’. If none

specified, current time will be used.

r-SVM 2.0 for Linux A User Manual
 3. Using the r-SVM 2.0 package

3.5. Sample Script and Sample Data

 This version r-SVM is distributed with a sample script and a sample dataset. In
this section we will detail each sample file.

WARNING:

The data and results are meaningless; the files are provided to illustrate
the functionalities of the programs, AND NOTHING MORE!

File Name Description

demodata_ch2.xls Sample Data set
Class_a.idx Indexes of the “class A” samples
Class_b.idx Indexes of the “class B” samples
Class_a+Class_b.idx Class labels (1 or -1) of all the samples
Class_Names1.idx Names of the “class A” samples
Class_Names2.idx Names of the “class B” samples
SampleScript.sh A pilot script to run the demo.

r-SVM 2.0 for Linux A User Manual
 4. Notes from the author

4.0. Running r-SVM.2 in quiet mode
 Since some processes might take hours, days or weeks, it is possible to launch the
process with the help of “nohup” which will start the process and not permit it to be
stopped by user logoff. Hence if you wish to launch a process on your main frame
computer (at home) from you laptop while you’re driving down I-5 at 145 miles an hour
in your beige 1973 Volvo 1800ES, you can use “nohup command_to_run” to make sure
that the process will not be stopped when your laptop flies out the car’s window and gets
pulverized on the curb.

4.1. User Display

In this new version of r-SVM, the run-time screen print out of information was
stripped. A progress bar is now being displayed to give a user status update. In the case
that the process is launched in quiet mode, a “progress.txt” file is created to indicate the
process state.

4.2. Command line parameters

In this new version of r-SVM, the programs were stripped of the barrage of questions
that was characteristic to the previous version and replace them with command line
parameters. The purpose of this change was to enable the user to write bash shell scripts
to orchestrate or automate the usage of the multiple executables.

4.3. Final thought

The author is 150 % NON-RESPONSIBLE in case of data loss or data corruption
that could result in the miss use of a computer, software or firearms. The quote of the day
is: “Back-up your stuff or Pack-up your stuff”.

