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Abstract. As faculty, our goals for students are often tacit, hidden not only from students
but from ourselves as well. We present a conceptual framework for considering teaching
goals – what we want our students to achieve – that encourages us to think more broadly
about what we mean by achieving in our knowledge domains. This framework includes
declarative knowledge (“knowing that”), procedural knowledge (“knowing how”), schematic
knowledge (“knowing why”) and strategic knowledge (“knowing when, where and how our
knowledge applies”). We link the framework to a variety of assessment methods and focus on
assessing the structure of declarative knowledge – knowledge structure. From prior research,
we know that experts and knowledgeable students have extensive, well-structured, declarative
knowledge; not so novices. We then present two different techniques for assessing knowledge
structure – cognitive and concept maps, and a combination of the two – and provide evidence
on their technical quality. We show that these maps provide a window into the structure of
students’ declarative knowledge not otherwise tapped by typical pencil-and-paper tests. These
maps provide us with new teaching goals and new evidence on student learning.

As university faculty teaching in, for example, science, mathematics and
engineering, our goals for students’ learning are often tacit. They are hidden
not only from our students, but also from ourselves. However, when we
assess students’ learning we begin to make our goals public, or at least
those goals that are easily tested. Especially with large classes, these tests
tend to be pencil-and-paper, often some combination of multiple-choice and
open-ended constructed responses. Explicitly, then, our goals for student
learning are often highly content oriented, focusing on facts and concepts and
algorithms and procedures, looking for “right answers”. If we could make all
our goals explicit to our students and ourselves, we might expect much more
of their learning and our teaching.
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In this paper, we attempt to make explicit goals for teaching and learning
in the sciences and show how they might be linked to the assessment of
learning. We then focus on an important but often neglected aspect of learning
science – the conceptual structure of the domain. We describe some measure-
ment techniques that provide windows into the structure of our students’
minds. We also present empirical evidence showing that we can measure
some important aspects of conceptual structure reliably, and that the measures
provide information different from the usual pencil-and-paper measures that
focus on the amount of conceptual and procedural knowledge learned. These
structural measures provide added insight into learning and teaching.

Knowledge goals for teaching and learning

We believe that the goals of teaching and learning science include knowledge
(cognition), emotion and motivation. Here we focus on knowledge, broadly
speaking, and specifically on the structure of conceptual (“declarative”)
knowledge.

Our working definition of the cognitive goals, which we call “science
achievement” when expected of students (Shavelson and Ruiz-Primo 1999a;
see Figure 1 below), involve “knowing that” – declarative (factual, concep-
tual) knowledge. For example, force equals mass times acceleration. Achieve-
ment also involves knowing how to do something – procedural (step-by-step
or condition-action) knowledge. For example, knowing how to measure the
density of an object. And we also seek to teach schematic knowledge –
“knowing why”. For example, schematic knowledge involves knowing why
New England has a change of seasons. Finally, we want students to develop
strategic knowledge – knowledge of when, where and how their knowl-
edge applies, and to check to see if their application of this knowledge is
reasonable. For example, experts know when to apply Newton’s first law
given a problem to solve dealing with force and motion whereas novices are
attracted to the surface features of the problem (Chi, Feltovich and Glaser
1981). Presumably experts have scientifically well justified “mental models”
(Gentner and Stevens 1983) that deal with knowing why something is so,
getting at deep conceptual understanding or misunderstanding. Finally, we
recognize that the cognitive tools of planning and monitoring in general
and especially in the domain of science tacitly influence how this knowl-
edge is used and thereby influence achievement, although they are not easily
measured directly by tests.

Each type of knowledge has a set of characteristics. For example, we can
ask about the extent of declarative – factual and conceptual – knowledge. That
is, how extensive is a student’s conceptual knowledge of force and motion?
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Or we can ask about the structure of this conceptual knowledge, the focus
of this paper. For example, how well structured is this student’s knowledge.
We know that physics experts have extensive and well-structured knowledge
(Chi et al. 1981).

Figure 1. Conceptual framework for characterizing science goals and student achievement.

For each combination of knowledge type and characteristic, we have
begun to identify assessment methods (e.g., Li and Shavelson 2001, see
Figure 2). For example, to measure the extent of declarative knowledge,
multiple-choice and short-answer questions are cost-time efficient and very
reliable. To measure the structure of declarative knowledge, however,
multiple-choice tests fall short and concept- and cognitive-maps provide
valid evidence of conceptual structure (Ruiz-Primo and Shavelson 1996a;
Shavelson and Ruiz-Primo 1999). And to measure procedural knowledge,
performance assessments, not paper-and-pencil assessments, are needed
(e.g., Ruiz-Primo and Shavelson 1996b; Shavelson, Baxter and Pine 1992).
However, life is not quite this straightforward. While we can conceptually
distinguish knowledge types, in practice they are difficult to distinguish. For
example, conducting an investigation to find out which substance (powder)
is most soluble in water requires knowing what “solubility” means. And
assessment methods do not line up perfectly with knowledge types and char-
acteristics. For example, Sadler (1998) provided evidence of the validity of
multiple-choice tests for measuring mental models (schematic knowledge) in
astronomy (see also Stecher, Klein et al. 2000). Moreover, strategic knowl-
edge is rarely ever directly measured. Rather, it is implicated whenever other
types of knowledge are accessed.
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Figure 2. Possible links between types and characteristics of science knowledge and some
assessment method.

Nevertheless, there is an empirical basis for the framework based on our
research in pre-college education (e.g., Li and Shavelson 2000; Schultz, 1999;
most research on concept maps has been conducted in pre-college science
education). In her dissertation, for example, Schultz (1999) conducted a
randomized experiment comparing two treatment conditions – individual-
and complex-instruction-based science (ecology) inquiry – and measured
middle-school students’ learning with multiple-choice, concept-map, and
performance tests. In addition, she used the California Test of Basic Skills
(CTBS) reading test (declarative knowledge – verbal ability) as a covariate
(N = 109). The pattern of correlations among these measures was what
we expected from our working definition of achievement. Measures of
declarative knowledge correlated higher with each other than with the perfor-
mance assessment. The two measures of the extent of declarative knowledge,
the multiple-choice and reading tests, correlated 0.69. These two measures
correlated 0.60 and 0.53 (respectively) with a measure of the structure of
declarative knowledge (concept map). And these three measures correlated
0.25, 0.33, and 0.43 (reading, multiple-choice and concept-map) with the
performance assessment.

This paper focuses on some instruments for measuring science achieve-
ment that are consistent with our broader notion of achievement. More
specifically, the paper focuses on concept and cognitive maps as instru-
ments to assess students’ knowledge structure (or connected understanding)
and provides information about the technical quality of these instruments.
Concept and cognitive maps have been said to provide a “window into
students’ minds”. Although this might be an overstatement, there is evidence
that they do seem to provide information on the structure of complex ideas.

Conceptual structure and its measurement

Cognitive psychologists posit “the essence of knowledge is structure”
(Anderson 1984, p. 5). Research on the cognitive aspects of science learning
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has provided evidence that professional scientists and successful students
develop elaborate, well differentiated, and highly integrated frameworks of
related concepts (e.g., Chi, Feltovich and Glaser 1981; Glaser and Bassok
1989; Mintzes, Wandersee and Novak 1997; Pearsall, Skipper, and Mintzes
1997; Shavelson 1972). This means that as expertise in a domain grows,
through learning, training, and/or experience, the elements of knowledge
become increasingly interconnected (cf. Chi, Glaser and Farr 1988). Indeed,
expert performance seems to lie in the organization of the expert’s domain
knowledge. Experts possess a large knowledge base (what we have called
extent of knowledge) that is organized into elaborate, integrated structures,
whereas novices tend to posses less domain knowledge and a less coherent
organization of it (cf. Chi, Glaser and Farr 1988; Zajchowski and Martin
1993).

Theory and measurement techniques

Assuming that knowledge within a content domain is organized around
central concepts, to be knowledgeable in the domain implies a highly inte-
grated conceptual structure among those concepts. Researchers have taken
different representational approaches to capture this organizational property
of knowledge (e.g., Goldsmith, Johnson and Acton 1991; Novak and Gowin
1984; White and Gunstone 1992). What seems common among them is the
assumption that knowledge structures can be modeled as associative network
nodes linked together, the strength of the links depending on, for example,
the frequency with which the link is traversed.

Direct approaches to the measurement of structure, called concept maps
(Novak and Gowan 1984), assume a semantic model of memory (Fisher
2000) which builds on the associative model by labeling the lines linking
concepts with specific relationships describing the meaning of the relation-
ship (see Figure 3). When a node is stimulated, a memory search radiates out
along relevant relationships (lines).

A concept map, then, is a graph in which the nodes represent concepts, the
lines represent relations, and the labels on the lines represent the nature of the
relation between concepts. A pair of nodes and the labeled line connecting
them is defined as a proposition. Students are asked to construct a “map” that
makes explicit how they relate concept pairs. Students may be asked to create
a map in an explicit science domain with concepts provided by the teacher. Or
they may be provided a skeleton map with some nodes filled in and all lines
labeled and their task is to fill in the missing nodes using a set of concepts
provided by the teacher (see Ruiz-Primo, Schultz, Li and Shavelson 2001 for
details).
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Figure 3. Associative and semantic models of memory: nodes represent concepts and lines
represent relationships.

Indirect approaches to measuring knowledge structure, called cognitive
maps (e.g., Goldsmith, Johnson and Acton 1991), assume an associative
model of memory (Anderson 1983; Shavelson 1974). The model is a
network where the nodes are concepts and the lines are relations between
concepts (see Figure 3). When one (or more) nodes are stimulated, a search
radiates out from that node first to the most proximate nodes, and then
beyond. Consequently, the order of recall, for example, provides information
about memory structure and the sequence of or similarity between concepts
provides information about distances among concepts. Cognitive maps probe
a student’s knowledge structure by asking, for example, the student to rate the
similarity between concepts (e.g., Goldsmith, Johnson and Acton 1991), to
associate words (e.g., Shavelson 1972, 1974), or to sort concepts into groups
based on their similarity (e.g., Shavelson and Stanton 1975). These ratings,
associations, and groupings are treated as distances (or proximities) among
concepts and translated, mathematically, into network representations where
the nodes represent concepts and the lines represent relationships between
concept pairs.

Evidence on the reliability and validity of interpretations of concept maps as
measures of declarative knowledge structure

Variations in concept maps abound, as we have pointed out. Perhaps the most
commonly used type of concept map is what we call, “construct a map”.
Students are provided with a set of (10–20) concepts and asked to draw a
map. The result might look like the map of the water cycle in Figure 4. We
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have explored the reliability and validity of interpretations of these and other
concept maps with students primarily in elementary and middle school.

Reliability. In a typical reliability study, we have two or more “raters” score
concept maps using a scoring system that identifies and evaluates possible
propositions. A student’s concept-map score is defined as the proportion of
valid propositions in her map to the total possible valid propositions identi-
fied in a criterion (e.g., instructor’s) map. We interpret both the agreement
between raters on proposition scores and the correlation between raters’
proposition scores as evidence of reliability. We have found that raters can
reliably score concept maps. Interrater reliabilities, for example, are around
0.90 on a scale from 0 to 1.0.

Figure 4. An eleven-year old’s construct-a-map concept map from White and Gunstone
(1992, p. 16).

Another aspect of reliability is the sensitivity of concept-map scores to
the particular set of concepts provided by the instructor in the map. To what
extent would a student’s score differ from one sample of concepts to another?
We have explored this question and found high reliability – “generalizability”
(Ruiz-Primo, Schultz and Shavelson 1996c; Shavelson and Webb 1991) –
from concept sample to sample, and from rater to rater (see Table 1). The
first column of the table shows the sources of variation in students’ test scores.
One purpose of the concept map is to reliably distinguish among persons; this
source of variation is expected and desirable. All other sources contribute to
“absolute” error in the measurement and are reflected in the dependability
coefficient (�) in Table 1; those sources that contain the person component
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(e.g., p × s) form the basis of error for the relative reliability estimate (ρ2) in
Table 1.

Notice that raters contribute very little variation to scores, regardless of
mapping technique or concept sample, a finding that further extends our
finding of high interrater reliability (0.90 above). Hence our conclusions that
raters can score concept maps reliably. Secondly, the variability contributed
by the unique combination of person and sample of concepts is moderate –
students have partial knowledge and vary in which parts of their conceptual
structure are consistent with a scientifically justifiable representation. Impor-
tantly, the variability hardly changes moving from students’ performance
across three maps including the “no concept map” where students gener-
ated their own concepts, and the two maps with randomly selected concepts
from the domain of molecular structures. Finally, the reliability generalizing
across raters and concept samples is quite respectable, 0.78 (one rater and one
concept sample) or greater (more raters, samples or both).

Table 1. Percent of total variability and generalizability (reliability) coefficients∗ for
concept-map scores

Source of variation Percentage of variance components

No Concepts Sample A & B

Person (p) 71.64 78.67

Rater (r) 0.15 0.0

Sample (s) 0.0 0.0

p × r 0.0 0.79

p × s 22.81 17.64

r × s 0.01 0.18

prs,e 5.37 2.69

ρ2 (n1 = 2, n2 = 3) 0.89 (n1 = 2, n2 = 2) 0.88

φ 0.89 0.88

ρ2 n1 = 1, n2 = 1 0.78

φ 0.78

∗ρ2 is the generalizability (reliability) coefficient for consistency in rank-ordering
scores; φ is the dependability coefficient for absolute scores.

Validity. In a number of studies, we have examined the evidentiary basis of the
claim that concept maps measure important aspects of knowledge structure
– i.e., validity claims (Ruiz-Primo, Schultz and Shavelson 1996c). In some
cases, our studies focus on whether we can distinguish concept-map scores
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from multiple-choice scores. While we claim that both measurement methods
can tap declarative knowledge, the maps reflect the structure of knowledge
and the multiple-choice reflect the extent of knowledge. We have commonly
found correlations among these scores in the range of 0.45–0.64 (across no-
concepts-given maps and maps constructed with a set of concepts provided
by the person assessing).

We have also compared different concept-mapping techniques, asking
whether they provide the same information about students’ knowledge struc-
tures (Ruiz-Primo, Schultz, Li and Shavelson 2001). Different mapping tech-
niques may tap different aspects of knowledge structure. Take, for example,
the nature of a mapping task. One dimension in which tasks can vary is
the constraints imposed on students in representing their connected under-
standing. We have considered construct a map, as the “benchmark” technique.
In this technique, students are asked to construct a map from scratch. This
technique varies as to how much information is provided by the assessor
(e.g., the assessor may provide the concepts). Students draw their maps on a
piece of paper. Scoring systems vary from counting the number of nodes and
linking lines to evaluating the accuracy of propositions. Several variations of
maps provide cost and time efficient means for assessment. For example, one
mapping technique asks student to fill in the randomly missing nodes with
terms provided by the instructor. Another version provides nodes filled in but
randomly deletes the labels from (say) 40 percent of the lines (see Figure 5).
In either case, scoring is rapid – right or wrong – and students can complete
the task rapidly.

In our study of these three mapping techniques, we created two randomly
parallel forms of the fill-in-the-nodes and fill-in-the-lines maps and compared
students’ performance on them with a construct a map (Figure 6). To evaluate
the equivalence of the two randomly parallel versions of the fill-in maps,
we began by comparing their means and standard deviations (Table 2). The
means for the two versions of the fill-in-the-nodes maps were very close,
well within sampling error, as were the standard deviations. The means and
standard deviations for the fill-in-the-lines maps were quite similar. Impor-
tantly, the latter maps were more difficult for the students than the former
(lower means). Indeed, the students’ mean scores on the fill-in-the-nodes
maps were at ceiling (mean of 11 out of 12 possible!).

We then compared students’ performance on the fill-in maps with their
performance on the construct a map (see Figure 6). We found that the former
provided high estimates of structural knowledge whereas the latter provided
a more sobering view with a mean of 53.91 out of a possible 135 (instructor’s
map criterion).
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Figure 5. Examples of fill-in-the-nodes and fill-in-the-lines skeleton maps.

Figure 6. High school chemistry student’s construct-a-map concept map.
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We also examined the correlations between construct-a-map and fill-in-a-
map scores (ranging from 0.40–0.47) with one another and with multiple-
choice test scores (0.37–0.53) on the same concepts (elements, atoms,
compounds, etc.; see Table 2). Apparently each of these methods measure
somewhat different aspects of declarative knowledge.

Table 2. Correlations (and reliabilities) among concept maps and a multiple-choice test

Type of assessment Structure Extent Standard

C-M FI-N FI-L M-C Mean deviation

Construct a map (C-M) (0.99)

Fill in nodes (FI-N) 0.47 (0.71)

Fill in lines (FI-L) 0.44 0.40 (0.85)

Multiple choice (M-C) 0.44 0.37 0.53 (0.74)

An examination of validity claims needs to go beyond correlations. A thor-
ough investigation of the claim that concept maps measure important aspects
of structural knowledge must also include evidence of students’ “thinking”
as they construct their maps. If these various techniques tap the same struc-
tural knowledge, we would expect a cognitive analysis to reveal similar
patterns of thinking. To find out about their thinking, we asked students to
“think aloud” as they carried out the mapping activity (Ericsson and Simon
1993, 1998). Their think aloud protocols were audio-recorded, transcribed,
and analyzed. We found a striking difference between construct-a-map and
fill-in techniques. Students, talking aloud as they performed the construct-
a-map assessment tended to explain to themselves the concepts and their
links, and to a lesser extent, monitor what they were doing to make sure
they had covered all relevant possibilities. In contrast, students rarely offered
explanations while filling in maps. Rather, they most often monitored their
performance to see that everything had been filled in.

Based on this research, albeit primarily from pre-college education, we
have reached the following set of tentative conclusions about concept maps:
• Students’ maps can be consistently scored by different raters even when

complex judgments are required
• Different mapping techniques provide different pictures of students’

declarative knowledge structure. The construct-a-map method provides
opportunities to reveal students’ conceptual understanding to a great
extent than do fill-in maps

• Different mapping techniques impose different cognitive demands
on students. Highly structured mapping techniques like fill-in allow
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students to respond by elimination or guessing (hence high monitoring
of performance); whereas constructed response requires considerable
explaining of concepts and their relationships

• Correlations between concept-map and multiple-choice scores are
positive and moderate suggesting that these two types of assessments
measure overlapping but somewhat different aspects of declarative
knowledge.

Evidence on the reliability and validity of interpretations of cognitive maps
as measures of declarative knowledge structure: A view to the future

Variations in cognitive maps abound. Perhaps the most commonly used type
of cognitive map is generated using similarity judgments. With this method,
students are provided with a set of (10–20) concepts and asked to evaluate
the similarity between all possible pairs. An example from a college course
on introductory statistics is provided in Figure 7.

Figure 7. Similarity judgment task – rate the similarity of each pair of terms by circling one
of the numbers provided or “DK – Don’t Know”.

We have, in a small way, studied the impact of an introductory statistics
course on the extent and structure of 28 graduate-students’ knowledge both
before and after 3 months of instruction (Wiley 1998; see also Schau and
Mattern 1997). In addition to collecting similarity judgments, we collected
construct-a-map concept-map and multiple-choice data. Consequently, we
had two different measures – one direct (see Figure 8) and one indirect –
of students’ declarative knowledge structures, and a measure of the extent of
their declarative knowledge.

The similarity judgments were placed in a concept x concept proximity
matrix. The entries in a cell of the matrix represent a student’s judgment of
the similarity between that pair of concepts (Figure 9).

These data were then submitted to an algorithm that translated the prox-
imity matrix into a network representation (Figure 10). This network can be
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Figure 8. Portion of a student’s concept map of the domain of introductory statistics
(unpublished study by Wiley, Stanford University, 1998).

interpreted as a representation of a student’s declarative knowledge structure
(e.g., Goldsmith, Johnson and Acton 1991; Shavelson 1972).

We correlated scores on the three measures both at pretest and at posttest.
If students were not particularly knowledgeable about statistics at pretest, we
would expect the correlations to be low, drawing on general ability more than
on domain-specific statistical knowledge. In contrast, at posttest, we expected
the correlation between the two alternative measure of structure – cognitive
and cognitive-map scores – to be higher than either measure’s correlation with
the multiple-choice test. This is roughly what we found with a small sample
of students (Table 3).

The results of this small study are directionally consistent with those
reported in an extensive literature on cognitive maps: cognitive (and concept)
maps provide representations of students’ declarative knowledge structures,
and this information is somewhat different from that provided by multiple-
choice tests. This suggests that these assessment methods provide a valuable
complement to multiple-choice tests toward providing a comprehensive
measurement of science achievement. Moreover, computer-based assessment
of cognitive structure is straightforward and can be widely implemented (with
a multitude of software now available).

We might speculate about the possibility of combining indirect and direct
measures of knowledge structure, as well. What if we collected structure
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Figure 10. Network representation of a student’s similarity judgments (proximities; Wiley
1998).

Table 3. Correlations among concept-map, cognitive-map,
and multiple-choice scores

Type of assessment Multiple choice Concept map

Pretest

• Concept map 0.155

• Similarity 0.554∗ 0.251

Posttest

• Concept map 0.330

• Similarity 0.434∗ 0.706∗

∗p < 0.01.

information indirectly with a computer, having a student provide similarity
judgments, translating these judgments into a proximity matrix and then
translating the proximities into a network representation? What if we then
provided a network representation immediately to the student and asked the
student to add and/or remove lines? And what if we then asked the student
to label the lines with short descriptions of how concept pairs went together
(propositions)? By combining both methods, we might just get a very good
representation of declarative knowledge structure, one that did not depend on
the student’s artistry or on the student’s practicing certain maps in preparation
for our test! Computer assessment of knowledge structure that combines a
statistical and a student-generated representation seems to be an important
next step in this work.
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Concluding comments

Concept and cognitive maps provide visual representations of some aspects
of a student’s declarative knowledge structure (connected understanding) in a
particular knowledge domain. The evidence reported here suggests that they
may make useful windows into a student’s mind if care is taken in which
types of maps are used and interpretations validated.

Moreover, concept and cognitive maps can be useful tools for representing
what knowledge students have acquired over a long period of time and how
they interrelate that knowledge. Changes in the structure of the representa-
tion may mean changes in students’ conceptual frameworks that can help
determine the type of changes that take place as a result of instruction.

Concept and cognitive maps can be thought as a unique source of informa-
tion that may help to know what and how students are learning and accom-
modating the new information learned. Research has shown that successful
students have well developed and interconnected knowledge structures.

Concepts maps can be used in a variety of forms (mapping techniques)
and the nature of the particular mapping technique(s) employed will affect
the potential costs and benefits of the assessment process. Cognitive maps
also may be constructed in many ways – e.g., through similarity judgments,
concept sorting, tree construction, and word association – and have the benefit
that they do not encourage “teaching to the test”; however, they contain less
information than concept maps with their labeled lines. Hence, the combina-
tion of concept and cognitive maps explored in our small graduate statistics
study provides an interesting possibility for further exploration.

Note

1. Complex instruction integrates individual and group work where the groups are designed
to include individuals varying in demographic characteristics and prior knowledge and
the tasks that groups work on are open ended.
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