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Abstract—The objective of IFRA, Instruction Footprint 

Recording and Analysis, is to overcome the challenges associated 
with a very expensive step in post-silicon validation of processors 
– localization of bugs in a system setup. Special recorders are 
inserted into the processor to record semantic information about 
data and control flows of instructions passing through various 
design blocks. The recording is done concurrently during the 
normal operation of the processor in a post-silicon system 
validation setup. Upon the detection of a problem, the recorded 
information is scanned out and analyzed offline for bug 
localization. Special program analysis techniques, together with 
the test program binary of the application executed during 
post-silicon validation, are used for the analysis. IFRA does not 
require full system-level reproduction of bugs or system-level 
simulation. Simulation results on a complex super-scalar 
processor demonstrate that IFRA is effective in accurately 
localizing electrical bugs with very little impact on overall chip 
area. 
 

Index Terms—post-silicon validation, silicon debug, 
design-for-debug, electrical bug, circuit marginality 

I. INTRODUCTION 
OST-SILICON validation involves operating one or more 
manufactured chips in actual application environment to 

validate correct behaviors across specified operating conditions. 
According to recent industry reports, post-silicon validation is 
becoming significantly expensive. Intel reported a headcount 
ratio of 3:1 for design vs. post-silicon validation [Patra 07]. 
[Yeramilli 06] observes that the increasing use of design 
resources and equipment costs in post-silicon validation makes 
it prohibitively expensive in the future. According to 
[Abramovici 06], post-silicon validation may consume 35% of 
average chip development time.  

Post-silicon validation involves three major steps [Josephson 
06, Livengood 99, Wagner 06, Sarangi 07]: 1) detecting a 
problem (e.g., through system crash, segmentation fault or error 
detection) by applying proper stimulus; 2) localizing and 
identifying the root cause of the problem; and, 3) fixing or 
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bypassing the problem. For the second step, post-silicon bug 
localization involves identifying the bug location and an 
instruction sequence that exposes the bug. The bug localization 
step often dominates post-silicon validation efforts [Josephson 
06] and is the focus of this paper. 

Major factors that contribute to the high cost of current 
post-silicon bug localization approaches (details in Sec. V) are: 

1. Failure reproduction involves returning the hardware to 
an error-free state, and re-executing the failure-causing 
stimulus (including instruction sequences, interrupts, and 
operating conditions) to reproduce the same failure. In a system 
environment, it may be very costly to reproduce a failure, 
especially for electrical bugs [Josephson 01], which manifest 
themselves only under certain operating conditions. Examples 
of electrical bugs include setup and hold time problems, 
synchronization problems, noise, and circuit marginalities. The 
expense of the reproduction is exacerbated by the presence of 
asynchronous I/Os, and multiple clock domains. Techniques to 
make failures reproducible [Heath 04, Sarangi 06, Silas 03], are 
intrusive to system operation and may not expose important 
bugs. 

2. RTL system simulation for obtaining golden responses is 
several orders of magnitude slower than silicon speed, and also 
requires expensive external logic analyzers to record all 
primary I/O signals in cycle accurate fashion [Silas 03].  

The objective of IFRA, Instruction Footprint Recording and 
Analysis, is to overcome these post-silicon bug localization 
challenges. Figure 1.1 shows a post-silicon debug flow using 
IFRA. During chip design, a processor is augmented with 
low-cost hardware recorders (Sec. II) for recording instruction 
footprints – semantic information describing data and control 
flows of dynamic instructions as they pass through various 
parts of the processor. During post-silicon validation, 
instruction footprints are recorded concurrently with system 
operation in a circular fashion to capture the last few thousand 
cycles of history before a failure manifests. After the failure 
manifests, the recorded footprints are scanned out through a 
Boundary-scan JTAG interface. The footprints, together with 
the test program binary executed during post-silicon validation, 
are then post-processed using special analysis techniques (Sec. 
III), in order to identify the bug location and the bug exposing 
stimulus. The location is provided in terms of 
microarchitectural blocks, such as control FSMs for various 
arrays of storage elements, pipeline registers, adders, decoders, 
etc. The stimulus is provided in terms of a short instruction 
sequence that enters each microarchitectural block. These 
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analysis techniques do not require failure reproducibility or 
RTL simulation. 
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Figure 1.1. Post-silicon debug flow using IFRA. 
 

Once a bug is localized using IFRA, existing circuit-level 
debug techniques [Caty 05, Josephson 06] can then quickly 
identify the root cause of bugs, resulting in significant gains in 
productivity, cost, and time-to-market. 

In this paper, we demonstrate the effectiveness of IFRA for 
an Alpha 21264-like superscalar processor model. This model 
is sufficiently complex, yet its structured architecture provides 
opportunities for efficient bug localization. The primary goal of 
IFRA is to localize electrical bugs, since they require 
considerable post-silicon validation efforts [Patra 07]. 
Extensive IFRA simulations demonstrated: 

1. For 75% of injected bugs, IFRA pinpointed their exact 
location-time pairs. For 21% of injected bugs, IFRA correctly 
identified their location-time pairs together with 2 to 6 other 
candidates, on average. IFRA completely missed correct 
location–time pairs for only 4% of injected bugs. 

2. IFRA does not require any system-level simulation or 
failure reproducibility.  

3. IFRA hardware introduces a very small area impact of 1% 
(including 60KBytes of distributed on-chip storage).  

Major contributions of this paper are: 
1. Introduction of IFRA to bridge a major gap between 

system-level and circuit-level debug, by allowing quick 
localization of bugs to a few design blocks from anomalous 
system-level behaviors.  

2. Low cost methodology for recording control and data 
flows of dynamic instructions in a compact and non-intrusive 
manner.  

3. Off-line program analysis techniques to analyze the 
recorded information for bug localization without requiring 
system-level simulation and failure reproduction. 

4. Demonstration of the effectiveness of IFRA for a complex 
super-scalar processor. 

Section II describes the hardware support required for IFRA. 
Section III describes the off-line program analysis techniques 
performed on the recorded information. Section IV presents 
simulation results, followed by an overview of related work in 
Sec. V, and conclusions in Sec. VI. 

II. IFRA HARDWARE SUPPORT 
We use an Alpha 21264-like superscalar processor model 

[Alpha 99] to explain the IFRA recording infrastructure. The 
shaded parts in Fig. 2.1 indicate the three hardware 
components: an ID assignment unit, a set of distributed 
recorders with dedicated storage, and a post-trigger generator. 

As an instruction is fetched, the ID assignment unit tags it 
with an ID that will uniquely identify it later during the 
post-analysis. The ID is under the same control as the 
instruction it is associated with. For example, the ID receives 
the same stall and invalidate/flush signals as the instruction 
does, and when the instruction is stored in a queue, the ID is 
also stored in a queue receiving the same control signal.  

While the tagged instruction flows through each of the 
pipeline stages, it generates an instruction footprint and stores it 
into the recorder associated with the pipeline stage. Each 
footprint consists of:  

1. The instruction’s identification number that was tagged 
2. Auxiliary information, which tells us what the instruction 

did in the microarchitectural blocks contained in that pipeline 
stage. 

The post-trigger generator is responsible for detecting a 
failure, stopping the recording and draining the footprints out 
of the recorders through the scan chain. The rest of the section 
will go through each of the three hardware components in more 
details.  
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Fig. 2.1. Superscalar processor augmented with recording infrastructure. The 
figure only shows the flow for a single way for simplicity.  

A. ID-assignment Unit 
A special ID assignment scheme is used so that all 

uncommitted instructions can be identified during the 
post-analysis, and to ensure that no instructions with identical 
IDs change their relative orders in any of the recorders. The 
scheme is as follows. For a processor with at most n 
instructions in-flight, each instruction ID is log24n bits wide. 
Instruction IDs are assigned to individual instructions as they 
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exit the fetch stage and enter the decode stage as shown in Fig. 
2.2.If an ID X has been assigned in the previous cycle, and 
there are k instructions that exit the fetch stage in the current 
cycle, then k IDs, X+1 (mod 4n), X+2 (mod 4n)…X+k (mod 
4n) are assigned to the k instructions. When an instruction with 
ID Y causes a pipeline flush, ID of Y+2n+1 (mod 4n) is 
assigned to the first instruction that is fetched after the flush 
completes.  

 
Fig. 2.2. The area enclosed by the dashed line indicates the ID-assignment unit 
for a 2-way processor. Shaded parts indicate the newly added hardware.  
 

In Appendix A, we formally prove how the specified ID 
assignment scheme can be used to uniquely identify each 
instruction during the post-analysis, even in the presence of 
pipeline flushes, multiple clock domains, and dynamic voltage 
and frequency scaling in each of the clock domains.  

B. Instruction Footprint Recorder 
Fig. 2.3 shows the internal structure of the recorder. One 

recorder is associated with one way of a pipeline stage (e.g., 
four recorder’s are associated with a 4-way fetch stage). Each 
recorder records footprints of instructions as they leave the 
pipeline stage. The main circular buffer acts as storage for 
instruction footprints and each buffer entry contains three 
fields: 1-bit idle field, instruction ID/idle cycle count field and 
auxiliary information field. 

Fig. 2.3. Recorder’s internal structure 
 

Idle = 1 indicates that no instruction has passed by (i.e., 
NOPs detected), and the number of consecutive idle cycles are 
stored in the second field, with the third field left blank. The 
Idle cycle FSM is responsible for maintaining idle cycle counts. 
Idle=0 indicates that an instruction has passed by and left its 
instruction ID in the second field and its auxiliary information 
in the third field.  For example, in Fig 2.3, the first three entries 

of the circular buffer correspond to instructions with IDs 2, 5, 
12. Next, there are NOPs for 24 cycles, followed by an entry for 
instruction with ID 22. 

The auxiliary information records information specific to the 
pipeline stage where the recorder is inserted. Table 2.1 shows 
auxiliary information collected in each pipeline stage of an 
Alpha 21264-like 4-way superscalar processor (detailed 
configuration in Sec IV). The third column indicates the 
number of bits of auxiliary information for each recorder, and 
the last column indicates the total number of recorder required 
for each pipeline stage. The commit-stage recorder has a 
different structure from the rest; it has a single register that 
records the ID of the youngest committed instruction, rather 
than having a circular buffer. 

TABLE 2.1. AUXILIARY INFORMATION FOR EACH PIPELINE STAGE. 
Pipeline 
stage 

Auxiliary information # bits  Num 

Fetch Program Counter 32 4 

Decode Decoding results 4 4 

Dispatch 2-bit residue of reg. name 6 4 

Issue 3-bit residue of operands 6 4 

ALU, 
MUL 

3-bit residue of result  3 4 

Branch None 0 2 

LSU 3-bit residue of result; 
memory address 

35 2 

Commit Exceptions ~0 4 

C. Post-trigger Generators 
In order to ensure that the entire error-to-failure history is 

captured using reasonably sized recorders, we assume the 
presence of early failure detection mechanisms, post-triggers, 
for the failure scenarios listed in Table 2.2. Detection of any 
one of the failure scenarios terminates the recording.  

TABLE 2.2. FAILURE SCENARIOS AND POST-TRIGGERS. 
Failure 
Scenario 

Post-triggers 
Soft Hard 

Array error - Parity check 
Arith. error - Residue check 
Exceptions - In-built exceptions 
Deadlock Short (2 mem loads) 

instruction  
retirement gap 

Long (2 secs) 
instruction 
retirement gap 

Segfault Tlb-miss + Tlb-refill Segfault from OS; 
Address equals 0 

We assume the presence of parity bits for arrays (e.g. register 
file, reorder buffer, register rename table, register free list, 
scheduler, and various queues). We also assume the presence of 
residue codes for arithmetic units in ALUs and address 
calculators. Such parity bits and residue codes exist in several 
commercial processors [Ando 03, Leon 06, Sanda 08]. 
Unimplemented instruction exceptions and arithmetic 
exceptions are already present in most processors.  This refers 
to the first three scenarios.  

Unlike the first three failure scenarios listed in Table 2.2, the 
last two failure scenarios may be detected several millions of 
cycles after an error occurs. In order to prevent the history 
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recorded in the recorders to be overwritten during this time, we 
introduce the notion of soft and hard post-triggers. A hard 
post-trigger fires when there is an evident sign of failure, while 
a soft post-trigger fires when there is an early symptom of 
possible failure. A hard post-trigger causes the recording and 
the processor operation to terminate. A soft post-trigger causes 
the recording in all recorders to pause, but allows the processor 
to keep running. If a hard post-trigger for the failure 
corresponding to the symptom occurs within a pre-specified 
amount of time, the processor stops. If a hard post-trigger does 
not fire within the specified time, the recording resumes 
assuming that the symptom was false.  

For deadlocks, a soft post trigger event fires when no 
instruction retires within the time required to perform two 
memory loads. The corresponding hard post trigger event is 
two additional seconds of no retirement.  

For segmentation fault (or segfault), there is a single hard 
post-trigger to detect null-pointer dereference, and a pair of soft 
and hard post-triggers to detect illegal reading/writing into 
unallocated memory or writing into read-only memory. 
Null-pointer dereference is detected by adding simple hardware 
to detect whether the memory address equals zero in the 
Load/Store unit. For other illegal memory accesses, TLB-miss 
is used as the soft post-trigger. If a segfault is not declared by 
the OS while servicing the TLB-miss, the recording is resumed 
on TLB-refill. Since the recording is paused in the event of a 
soft post-trigger, there may be a period of time that may act as a 
blind spot during post-silicon validation.  

III. POST-ANALYSIS TECHNIQUES 
After a hard post-trigger fires, all recorder entries, together 

with the write addresses of the circular buffers, are scanned out 
through the JTAG interface. The localization analysis begins 
by combining recorder contents with the test program binary in 
a process called footprint linking (Sec. III.A). The end result 
shows where each dynamic instruction was present and what 
each instruction was doing at each time instance. Next, four 
high-level post-analysis techniques (Sec. III.B) targeting 
different parts of the processor are run on the linked footprints. 
If one or more high-level techniques identify inconsistency in 
the flow, low-level post-analysis techniques (Sec. III.C) are 
performed starting from the earliest occurrence of the 
inconsistency. If no inconsistency is found, the low-level 
analysis starts from the youngest entries of the recording.  

A. Footprint Linking 
During system run, a fetched instruction drops multiple 

footprints across multiple recorders. Footprint linking is a 
process of relating the multiple footprints back to the single 
instruction that dropped the footprints. This method works for a 
processor supporting pipeline flushes, out-of-order execution 
and multiple clock domains, where each domain can undergo 
dynamic voltage and frequency scaling. The algorithm 
completes the following five steps.  

1. Within recorders associated with the in-order pipeline 
stages, identify all the instructions that caused a pipeline flush.  

2. Identify all the uncommitted and committed instructions.  
3. Select the youngest committed instruction in the 

dispatch-stage recorder and find its instruction ID. For each of 
the other recorders, find the youngest footprint with the same 
ID as the youngest committed instruction. All these footprints 
correspond to a single dynamic instruction and they should be 
linked together.  

4. Step 3 is repeated for all the committed instructions 
starting from the youngest to the eldest committed instructions 
present in the dispatch-stage recorder.  

5. Step 3 is repeated on the uncommitted instructions.  
6. PCs from the fetch-stage recorder are mapped to the 

instructions in the binary.  

B. High-level Analysis 
1) Data Dependency Analysis 

Our first post-analysis approach is to verify whether data 
dependency order is preserved, i.e., if there is a 
producer-consumer relationship in the serial execution trace, 
whether the consumer instruction executes after the producer 
instruction has produced its result. The analysis is performed 
on instruction issue sequence (obtained from issue-stage 
recorders) and the serial execution trace (derived from the 
fetch-stage recorders and commit-stage recorders). Consider 
the example in Fig. 3.1. Architectural register names (rather 
than physical register names) are obtained from the assembly 
code instruction mapping done in step 6 of the linking.  

Fig. 3.1 illustrates an example of data dependency analysis. 
Since instruction with ID 0 shown in the serial trace produces a 
value on R0, while the instruction with ID 3 consumes a value 
from R0, data dependency exists between those two 
instructions. Instruction with ID 0 enters the ALU while the 
instruction with ID 3 enters the multiplier (shown in the 
execution-stage recorders). Assume that the two functional 
units are in different clock domains, and also assume that the 
ALU has a latency of 3 cycles. Since the two dependent 
instructions are in different clock domains with a possibility of 
dynamic frequency scaling, it is not possible to directly check 
their relative timing. However, we know that the issue-stage 
recorders must be in a single clock domain, and thus know that 
the instructions with ID 3 and ID 5 must be issued at the same 
time (shown in the issue-stage recorders). In this case, the 
distance between 0x03 and 0x00 is only two cycles, which is 
shorter than the 3-cycle latency of the ALU. This implies the 
consumer instruction with ID 3 was issued prematurely, before 
the producer instruction with ID 0 has completed.  

 
Fig.3.1. Data dependency analysis example. 
 

Any inconsistency identified using this analysis is then 
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further analyzed by the low-level analysis described in Sec. 
III.C and Appendix B to identify an error in one of following 
microarchitectural blocks of the processor: registers at 
dispatch, issue, execute stages; issue buffer entries and issue 
buffer’s control; forwarding paths among dispatch, issue, 
execute stages; register files; register renaming of dispatch 
stage.  

2) Program Control Flow Analysis 
Our second post-analysis technique verifies program control 

flow. There are four illegal cases that are checked for: 
1. Transition in the absence of control flow transition 

instruction (instruction that changes the PC, e.g., branch, 
jump). 

2. No transition in the presence of unconditional transition 
instruction (instruction that always changes PC value) 

3. Illegal target in the presence of direct transition (with 
target address that does not depend on a register value). 

4. Illegal target in the presence of indirect transition (with 
target address that depends on a register value). 

Fig. 3.2 shows an example serial execution trace (derived 
from recorder data from fetch and commit stage) illustrating all 
four illegal cases. The first two cases can be checked by 
checking PC. The third case can be easily checked since the 
instruction itself contains all the necessary information to 
compute the target address. The fourth case is checked by 
checking whether the address addition has been done correctly 
using residue arithmetic. 

A violation in the program control flow is further analyzed 
by the low-level analysis to identify an error in one of the 
following microarchitectural blocks: address calculator in 
execution stage; all pipeline registers between fetch and 
execution stages; forwarding path between execution and fetch 
stage; speculation recovery; register renaming.  

 
Fig. 3.2. Four illegal cases of control flow transitions.  
 

3) Load/Store Analysis 
The third post-analysis technique involves verifying that a 

stored value to a memory address matches the value that is later 
loaded from that same address. In the absence of DMA activity, 
which may modify the memory content, any mismatch 
indicates a bug in the load/store unit or memory system (cache, 
memory controller, memory, etc) external to the processor core. 
In order to check for such mismatches, for each load/store 
instruction, memory addresses and residue of memory contents 
in Load/Store-unit recorders are recorded. A detailed 
localization approach can be found in Appendix B. Memory 
addresses affected by DMA activities may be factored out 
during post-analysis by recording the instructions sent to DMA 
engines using external logic analyzer.  

4) Decoding Analysis 
This technique checks whether all committed instructions are 

decoded correctly and whether they pass through the correct 
sequence of modules without disappearing or being distorted in 
the middle. Recording part of the decoded instruction bits 
(which functional unit should the instruction go to, how many 
operands it uses and whether it requires a destination register) 
verifies the operation of the decoder. Checking that instructions 
went to the correct functional units ensures that there was no 
corruption in the decoded opcode field of pipeline registers. 
Corruption of pointers or states associated with regular array 
structures is checked by observing whether instructions appear 
or disappear in the middle of a pipeline. For example, 
corruption of the empty flag bit of an issue buffer results in 
sudden disappearance of instructions.  

C. Low-level Analysis 
The low-level analysis mainly involves checking for 

consistency in residue bits collected by recorders (shown in 
Table 2.1). Residues of operands used by consumer 
instructions must match the residues of results produced by 
producer instructions. Additionally, the residues of physical 
registers used by consumers must match the residues of 
physical registers in which the producers placed their results. 
The localization refinement comes from comparing the right set 
of residues, in addition to knowing which post-triggers were 
activated and knowing which high-level post-analysis 
techniques detected inconsistencies. A brief description of the 
low-level analysis can be found in Appendix B.  

IV. RESULTS 
We evaluated IFRA by injecting errors into a 

micro-architectural simulator augmented with IFRA, as 
described in Sec. II. Post-analysis techniques described in Sec. 
III are used for bug localization. We used Simplescalar 3.0 
architectural simulator [Simplescalar] with Alpha 21264 
configuration (4-way pipeline, 64 maximum instructions 
in-flight, 2 ALUs, 2 multipliers, 2 load/store units).  For this 
particular configuration, there are 200 different 
microarchitectural blocks. The number does not include the 
array-like structures and arithmetic units that are protected by 
parity and residue respectively. Each block has an average size 
equivalent of 10K 2-input NAND gates. The microarchitectural 
blocks can be inferred from low-level analysis shown in 
Appendix B. Seven benchmarks from SPECint2000 (bzip2, gcc, 
gap, gzip, mcf, parser, vortex) were chosen as validation test 
programs. The recorders were designed to collect information 
according to the setup described in Table 2.1. Each recorder 
was sized to have 1,024 entries.  

All bugs were modeled as single bit-flips to target 
hard-to-repeat electrical bugs that pose major post-silicon 
validation challenges. Many electrical bugs affect speed paths 
[Silas03], and speed paths manifest themselves as incorrect 
values arriving at flip-flops for certain input combinations and 
operating conditions. 

Errors were injected in one of 1,191 flip-flops (Table 4.1). 
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Note that, no errors were injected in array-like structures since 
they have built-in parities for error detection. Errors were 
injected in input / output registers and various control registers 
controlling the array structures. Pipeline registers in Table 4.1 
include decoded opcode, register specifiers, immediate data, 
address, offset, etc. Valid bits indicate whether a given 
instruction is valid or not in a pipeline register. 

TABLE 4.1. ERROR INJECTION BITS. 
Description #  bits 
PC, next PC 128 
Memory Address used by Load/Store 128 
Input/Output latch of Array Structures 82 
Pointers to Array structures 23 
Control states of Array Structures 4 
Pipeline Registers  800 
Valid Bits 26 
Upon error injection, the following scenarios are possible: 
1. The error has no effect at the system level. 
2. The error does not cause any post-trigger mechanism to 

trigger, but produces incorrect program output. 
3. Failure manifestation with short error latency, where 

recorders successfully capture the history from error injection 
to failure manifestation (including situations where recording is 
stopped upon activation of soft post-triggers).  

4. Failure manifestation with long error latency, where 
1024-entry recorders fail to capture the history from error 
injection to failure (including soft triggers). 

Cases 1 and 2 are related to coverage of validation test 
programs and post-triggers, and are not the focus of this paper. 
Hence, error injection runs resulting in these cases are ignored 
and not reported. Any error injection run which does not result 
in the activation of any post-trigger within 100K cycles from 
error injection are included in this category. For errors resulting 
in cases 3 and 4, we report results in Tables 4.2 and 4.3. For 
case 4, we pessimistically report that our IFRA approach 
completely misses correct bug location-time pair (included 
under “completely missed” category in Tables 4.2). All error 
injections were performed after a million cycles from the 
beginning of the program in order to demonstrate that the 
history between error injection and failure manifestation is 
sufficient for effective post-silicon bug localization as is the 
case with IFRA.  

Tables 4.2 and 4.3 present results from 800 error injections 
that resulted in cases 3 and 4. The “exactly located” category 
represents the cases in which the error injection location and 
time exactly matched with the localized hardware block and the 
stimulus. The percentage of bugs belonging to this category 
must be very high for an effective bug localization technique. 
The “candidate located” category represents the cases in which 
the IFRA produced several localized hardware blocks with 
stimulus, and at least one of them matched with the error 
injection location and time. The “completely missed” category 
represents the cases where the error injection location and time 
did not match any of the localized hardware blocks and 
stimulus. An effective bug localization technique must have 
very few “completely missed” cases. It is clear from Table 4.2 

that a large percentage of bugs were uniquely located to 
correct location-time pair, while very few bugs were 
completely missed, demonstrating the effectiveness of 
IFRA.  For “candidate located” cases, Table 4.3 reports 
statistics on the number of possible candidates. It is clear from 
Table 4.3 that the number of such candidates is very small.  

TABLE 4.2 IFRA BUG LOCALIZATION SUMMARY. 
Exactly Localized 75% 
Correctly Localized with Candidates 21% 
Completely Missed 4% 

 
TABLE 4.3. STATISTICS FOR “CANDIDATE LOCATED” CASES. 

Post-analysis 
technique 

Number of candidates 
Mean Min. Max. Std.Dev 

Data dependency 6.3 2 34 7 
Control-flow 5.3 2 10 4.2 
Load / Store 2 2 2 0 
Decoding 2.4 2 3 0.55
Our synthesis result (Synopsys Design Compiler with TSMC 

0.13 microns library) shows that the area impact of IFRA 
infrastructure is 1% on the Illinois Verilog Model [IVM] (an 
open-source RTL implementation of Alpha-like core) 
assuming  a 2MB on-chip cache, which is typical of the current 
desktop/server processors. The overhead is largely dominated 
by the circular buffers present in the recorders, because of the 
absence of any global at-speed routing and the simplicity of the 
recorder’s control. Total information storage for all recorders 
adds up to 60 Kbytes, which is a very small fraction of total 
on-chip storage.  

V. RELATED WORK 
Related work on post-silicon validation can be broadly 

classified into six categories: scan dump [Caty 05, Dahlgren 
03], check-pointing with deterministic replay [Silas 03, Sarangi 
06], embedded trace buffers for hardware debugging [Anis 07], 
on-chip program and data tracing [MacNamee 00], 
fault-tolerant computing [Austin 99, Lu 82, Oh 02], and on-line 
assertion checking [Abramovici 06, Bayazit 05, Chen08].  

Debugging techniques using scan dump, checkpointing with 
deterministic replay, and embedded trace buffers require 
failures to be reproducible. Moreover, they require simulation 
for comparison of observed states against golden responses. If 
easy failure reproduction support is present, it will also help 
IFRA by allowing recorders to record unlimited lengths of 
history through repeated recording and dumping.  

On-chip storage of program and data traces [MacNamee 00], 
commonly used in embedded processors (e.g. ARM, 
Motorola’s MPC, Infineon’s Tricore), have some similarity 
with IFRA in that they also store program flow of the software 
executed on the processor. However, they are fundamentally 
different because they target software debugging running on 
correct hardware, thus need to store very different forms of 
information than IFRA.  

The difference between IFRA and traditional fault-tolerant 
computing is that the latter mainly focuses on error detection 
and recovery, while IFRA focuses on bug localization. That 
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FRA does not interfere with the system behavior (no code 
modification or resource conflicts) is essential.  

On-line assertion checking techniques are complementary to 
IFRA in that such techniques can be efficiently used to generate 
post-triggers and also for fine-grained bug localization together 
with the post-analysis techniques supported by IFRA. 

VI. CONCLUSION 
IFRA targets the problem of post-silicon bug localization in 

a system setup, which is a major challenge in processor 
post-silicon design validation. The major novelty of IFRA is in 
the introduction of a high-level abstraction for bug localization 
through new low-cost hardware recorders hat record semantic 
information about instruction data and control flows 
concurrently in a system setup, and special analysis techniques 
that analyze the recorded data for localization after failure 
detection. These design and analysis techniques enable IFRA to 
overcome major post-silicon bug localization challenges. 1. It 
helps bridge a major gap between system-level and circuit-level 
debug. 2. Failure reproduction is not required. 3. 
Self-consistency checks associated with the analysis techniques 
eliminate the need for full system-level simulation. 

IFRA raises several interesting research questions that can be 
explored in the future. 1. Sensitivity analysis and 
characterization of the inter-relationships between 
post-analysis techniques, architectural features, error detection 
mechanisms, FRS sizes and bug types. 2. Wider variety of 
post-triggers based on assertions, e.g., [Abramovici 06, Bayazit 
05], and symptoms [Wang 04]. 3. Applicability of IFRA for 
homogeneous / heterogeneous multi-core systems, and 
system-on-chips (SoCs) consisting of non-processor designs.  4. 
Applicability of IFRA to directed diagnostic test generation and 
fault diagnosis.  

APPENDIX A: FOOTPRINT LINKING 
During system run, a fetched instruction drops multiple 

footprints across multiple recorders. Footprint linking is a 
process of relating the multiple footprints back to the single 
instruction that dropped the footprints. There are three 
challenges involved in linking, due to the structure of modern 
superscalar processors: 

1. Instructions may get issued and execute out of program 
order.  

2. With speculative execution, many instructions may get 
removed in the middle of the pipeline when there is a 
branch misprediction or an exception.  

3. Not all recorders will be placed in the same clock 
domain, and each clock domain can undergo dynamic 
voltage and frequency scaling.  

We show that by assigning instruction IDs with log24n bits, 
where n is the maximum number of instructions-in-flight, to 
each instruction footprint, we can link all footprints together in 
the presence of the above three challenges. The proof is split 
into three; Section A.1 describes how to relate footprints within 
a pipeline stage and describes a method of creating a basic data 

structure that is to be used for further analysis. Section A.2 
addresses the first challenge and Sec. A.3 addresses the second 
challenge. While doing so, we do not use any explicit 
timestamps or global synchronization mechanisms to show that 
the third challenge is overcome.  

The reader must be aware that other shorter ID widths such 
as log2(2n+2) bits or log22n bits can be used instead of the 
log24n bits presented in this paper. However, log2(2n+2) bits 
requires an expensive modulo 2n+2 operation, and also has a 
more complicated proof. ID width of log22n requires extra 
buffers to store flushed instructions and the proof is not as clean 
as the one for log24n bits. Thus we have chosen to present the 
proof for the log24n bits case. Note that the end results of all 
three variations are the same: footprints in distributed buffers 
are all linked together after identifying all the uncommitted 
instructions.   

The reader should also be aware that using program counter 
value instead of the IDs does not work. The trouble comes 
when executing a loop, which produces multiple instances of 
the same instruction with the same PC value. In the presence of 
out-of-order execution, these multiple instances may execute 
out-of-order, after which, it would be impossible to tell which 
footprint corresponds to which instance of the instruction.  

We make the following assumptions on the underlying 
superscalar processor structure [Shen 05]. The last assumption 
is the only limitation of the current linking method, and 
requires further investigation. 

1. There are four in-order pipeline stages (fetch, decode, 
dispatch, commit) and two out-of-order pipeline stages 
(issue, execute), as shown in Fig 2.1. Input to the 
centralized instruction window takes place in-order 
(process called dispatch), and output from the 
instruction window takes place out-of-order (process 
called issue).  

2. n is the number of instructions-in-flight and also the 
number of reorder buffer entries, and it is greater than 0. 
The number of centralized instruction window entry is 
always less than or equal to n, but we will assume it to be 
equal to n. 

3. Mispredicted speculative branch can only cause a pipeline 
flush once it becomes non-speculative.  

4. For the sake of the recorder’s simplicity, and to avoid any 
global at-speed routing, each recorder is a simple 
circular buffer, without any capability of removing 
misspeculated instructions once they are placed in.  

5. Individual pipeline stages, except the execution stage, are 
within their own clock domain. 

6. Identical functional units are within a single clock domain. 
For example, if there are three ALUs, they are all in a 
single clock domain. If there are 2 Load/store units, they 
are in a single clock domain, but separate from the clock 
domain that ALUs are in.   

7. When an external interrupt occurs, we stop fetching new 
instructions and allow the instructions that are already in 
the pipeline to retire. Thus an interrupt never causes a 
pipeline flush.  
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8. When an exception is detected, instead of handling it 
using OS, a hard post-trigger will be activated and halt 
the processor. Thus, the system operation is stopped 
before any pipeline flush is initiated by the exception. 
Consequence is that no instruction will ever cause 
pipeline flush twice, and thus all instructions causing a 
pipeline flush will always eventually commit.  

9. All branch misprediction will only cause a pipeline flush 
after execute stage. 

We use the following ID assignment scheme: 
1. IDs are assigned as instructions exit the fetch stage and 

enter the decode stage.  
2. If an ID X has been assigned in the previous cycle, and 

there are k instructions that exit the fetch and enter the 
decode stage in the current cycle, then k IDs, X+1 
(mod4n), X+2 (mod4n)…X+k (mod4n), are assigned to 
the k instructions.  

3. When an ID Y causes a pipeline flush, the first instruction, 
which is fetched after the flush completes, gets the ID 
Y+2n+1 (mod4n).  

A.1 Interpreting recorder data within a pipeline stage 
First of all, given the recorder contents, we need to identify 

the eldest and the youngest entries. The identification is aided 
by two values that are scanned out with the recorder content 
after a failure is detected by a hard post-trigger: the write 
pointer and the full flag. The full flag indicates whether the 
recording has ever been overwritten or not. The full flag is 
cleared when the recording begins and is set when the write 
pointer wraps around from 1023 to 0 during code execution. 
Figure A.1.1 illustrates how to identify the eldest and the 
youngest entries of a recorder’s N-entry circular buffer given 
the full flag. If the full flag is cleared, 0th entry is the eldest and 
(X-1)th entry is the youngest entry. If the full flag is set, then a 
wrap around happened in the circular buffer, where Xth entry is 
the eldest and (X-1)th entry is the youngest. Once the eldest and 
the youngest entries are identified, the wrapped entries are 
unwrapped, so that all recorder contents now have their eldest 
entry at the bottom and the youngest entry at the top. After 
which, the compacted idle cycles are expanded back. For 
example, an idle entry with idle cycle count of 5 will expand to 
occupy 5 entries.  

 
Figure A.1.1: Identification of the eldest and youngest entries of a recorder’s 
N-entry circular buffer given the full flag. At the time of failure, the write 
pointer was pointing at address X.  

 
Then for each pipeline stage, except the execution stage, we 

collect all the modified recorder contents associated with the 
stage, and juxtapose them so that the youngest entries are 
aligned. For the execution stage, juxtapose the recorder 
contents associated with each clock domain. Figure A.1.2 
shows an example after juxtaposing recorder contents 
associated with a 4-way pipeline stage. Since the recorders 
within the same clock domain are all synchronized and their 
recordings stop simultaneously, aligning the youngest entry is 
sufficient to obtain the relative timing information among the 
recorders in the same clock domain, without using any explicit 
timestamps. After juxtaposing, the footprints in the same row 
correspond to the same clock cycle.  

 
Figure A.1.2: Juxtaposing recorder contents associated with a 4-way pipeline 
stage 
 

The length of history recorded by each recorder is not 
necessarily the same; some recorders encountered more idle 
cycles, and thus have recorded longer history. Given the 
juxtaposed recorder contents, since the post-analysis relies on 
each row to be complete, we discard all the incomplete rows. 
Thus, for a given pipeline stage, except the execution stage, if 
the recorder with the shortest history has M entries after 
expansion, then only M youngest entries from each of the 
recorder in the same pipeline stage will be kept. Figure A.1.3 
shows that after discarding incomplete rows, we are left with an 
M-by-4 matrix of instruction footprints. 

Eldest entry

Youngest entry

Eldest entry

Youngest entryYoungest entryYoungest entry

Eldest entry

Way-1 Way-2 Way-3 Way-4

Eldest entry Eldest entry Eldest entry

Discarded

M
-ro

w
s

 
Figure A.1.3: Discarding incomplete rows from the example shown in Fig A.1.2 
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For the recorders associated with the out-of-order pipeline 

stages (issue and execute), we keep the footprint matrix as it is, 
which will be refer to as issue-stage footprint matrix and 
execute-stage footprint matrix. For the recorders associated 
with the in-order pipeline stages (fetch, decode, etc), we 
convert it to a one-dimensional array of footprints, where the (i, 
j) entry in the matrix corresponds to (4i+j)th entry in the array. 
We will refer to the array as fetch-stage footprint array, 
decode-stage footprint array, etc, hereafter.  

In summary, we have found the relative timing information 
among the recorders associated with a single pipeline stage. 
The next section explains a method of finding relative timing 
information across multiple pipeline stages that could be in 
different clock domains.  

A.2. Telling apart two instructions with the same ID  
Finding the relative timing information across multiple 

pipeline stages is split into two steps. The first step, described 
in the current section, provides a theorem that could be used to 
tell apart any two instructions with the same ID. The theorem 
proven in the first step is used in the second step, described in 
Sec. A.3, to identify all the footprints associated with 
uncommitted instructions and then to link all the footprints 
together.  

Theorem 1: The relative order in which two instructions with 
the same ID appear in any footprint array or footprint matrix 
will never differ from the relative program order of the two 
instructions. The program order is defined to be the order in 
which instructions will execute in a single-issue, single-stage 
pipeline processor. 

In other words, if there are two instructions X and Y that 
have the same ID, and X is before Y in program order, then we 
claim that X will always occupy a younger entry than Y in any 
footprint arrays. In addition, for a footprint matrix, X will 
always occupy a younger row than Y. For footprint arrays, 
theorem 1 holds trivially, because instructions enter the 
in-order pipeline stages in program order. For footprint 
matrices that are associated with out-of-order pipeline stages, 
we use lemma 1.1-1.5 to prove the theorem.  

Lemma 1.1: If an reorder buffer entry is occupied by an 
instruction with ID X, the instruction in the next entry (younger 
entry) either has the ID X+1 (mod 4n) or X+1+2n (mod 4n), at 
any given time. 

Proof: There are two cases to consider: whether the 
instruction with ID X causes a flush or not. If X is a 
flush-causing instruction, then all the instructions having the ID 
of X+p (mod 4n), where 1<= p<= n-1, will get flushed from the 
pipeline, and the newly fetched instruction will have the ID of 
X+2n+1 (mod 4n), as described in the ID-assignment scheme. 
If X does not cause a pipeline flush, then the next instruction in 
program order, which is the instruction with ID of X+1 (mod 
4n) is placed in the next entry.  

Lemma 1.2: If an reorder buffer entry is occupied by an 
instruction with ID X, the instruction in the kth younger entry 
either has the ID X+k (mod 4n) or X+k+2n (mod 4n), at any 

given time. 
Proof: Lemma 1.2 is an extension of lemma 1.1, and it will 

be proven using induction.  
Base case of k =1 is true since it is precisely lemma 1.1. 
Inductive case: Suppose lemma 1.2 is true for kth younger 

entry, thus the kth younger entry either contains an instruction 
with ID X+k (mod 4n) or X+k+2n (mod 4n). Let’s consider the 
two cases separately. If the entry has the ID X+k (mod 4n), then 
according to lemma 1.1, the next entry, the (k+1)th entry should 
contain the ID of X+k+1 (mod 4n) or X+k+1+2n (mod 4n). If 
the entry has the ID X+k+2n (mod 4n), then the next entry, the 
(k+1)th entry should contain the ID of X+k+2n+1 (mod 4n) or 
X+k+2n+1+2n (mod 4n). The last ID is equivalent to X+k+1 
(mod 4n), because 4n (mod 4n) = 0. Thus, lemma 1.2 holds for 
all k, where k is a positive integer.  

Lemma 1.3: If a reorder buffer entry is occupied by an 
instruction with ID X, the instruction in the kth younger entry 
has an ID distinct from X, at any given time, where 1<=k<=n.  

Proof: From lemma 1.2, the kth younger entry either has the 
ID X+k (mod 4n) or X+k+2n (mod 4n). Let’s consider the two 
cases separately.  

To prove X+k (mod 4n) ≠ X (mod 4n), it is sufficient to 
prove X< X+k < X+4n: 

1<= k <= n  
 X+1 <= X+k <= X+n 
 X< X+k <X+n, because X<X+1 and X+n < X+4n for 

n>0.  
To prove X+k+2n (mod 4n) ≠ X (mod 4n), it is sufficient to 

prove X<X+k+2n<X+4n: 
1<= k <= n  

 X + 1 + 2n <= X + k +2n <= X + 3n 
 X<X+k+2n<X+4n, because X<X+1+2n and X+3n < 

X+4n for n>0.  
Lemma 1.4 : All instructions in an n-entry reorder buffer 

have distinct ID at any given time.  
Lemma 1.4 is a corollary of lemma 1.3.  
Lemma 1.5: The relative issue/execution order of two 

instructions with the same ID will never differ from the relative 
program order of the two instructions.  

Only the instructions that coexist in the reorder buffer can 
switch their relative issue/execution order from the program 
order [Shen 05]. For example, if X is before Y in program 
order, and if there exists a time when both X and Y coexist in 
the reorder buffer, then Y has a chance of getting 
issued/executed earlier than X. However, X will always 
commit before Y. From corollary 1.4, no two instructions that 
were assigned the same ID can ever coexist in the reorder 
buffer in any given time. Thus the lemma 1.5 holds.  

Since the issue-stage recorder and execution-stage recorder 
records instruction footprints as instructions gets issued and 
finish executing respectively, theorem 1 is a corollary of lemma 
1.5. If one records the youngest committed instruction and 
there were no pipeline flushes, then theorem 1 would be 
sufficient to link all the instructions in all the footprint arrays 
and matrices together using the following algorithm.  

1. Select the youngest committed instruction in the 
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dispatch-stage footprint array and find its instruction ID. For 
each of the footprint array and matrices in other pipeline stages, 
find the youngest instruction footprint with the same instruction 
ID as the youngest committed instruction. All these footprints 
correspond to footprints of a single dynamic instruction and 
they should all be linked together. 

2. Repeat step 1 for all the committed instructions starting 
from the youngest to the oldest committed instructions present 
in the dispatch-stage footprint array.  

The algorithm relies on linking instructions from the 
youngest entries, since the relative orders of instructions with 
the same ID will never swap. However, in the presence of 
pipeline flushes, which are common in today’s processor 
supporting at least one of exceptions or branch prediction, the 
algorithm breaks. The algorithm relies on ID of a fetched 
instruction to always exist at each of the pipeline stages. If an 
ID of a fetched instruction is not present in one of the pipeline 
stages, then the linking algorithm will simply link the older 
instruction with the same ID. However this is a wrong ID to 
link to. Even if we somehow find out that the instruction was 
flushed, we do not know, especially in the out-of-order pipeline 
stages, whether it was flushed before the instruction was 
dispatched, issued, or executed. The next two sections will 
present a method and prove that it can identify all the 
uncommitted instruction in all the pipeline stages, so that the 
above algorithm can be used to link footprints.  

A.3 Identification of uncommitted instructions 
The aim of this section is to tell whether each footprint is 

committed or not, and to tell whether it is flush-causing and/or 
flushed or neither. Section A.3.1 and A.3.2 provides method for 
footprints recorded in in-order pipeline stages and out-of-order 
pipeline stages respectively. For each of the cases, two 
categories of uncommitted instructions are addressed: 
uncommitted instructions that were in-flight at the time of hard 
post-trigger activation and instructions that were removed (aka 
flushed) from the pipeline on discovery of branch 
misprediction.  

A.3.1 Uncommitted instructions in in-order pipeline stages 
Identifying uncommitted instructions in recorders associated 

with the in-order pipeline stages (fetch, decode, dispatch) are 
trivial. The first category of uncommitted instructions, which 
were in-flight at the time of post-trigger activation, is identified 
by recording the ID of the youngest committed instruction in 
the commit-stage. Any IDs occurring after the ID of the 
youngest committed instructions are labeled as uncommitted, 
as illustrated in Fig. A.3.1.  

 
Figure A.3.1: Since ID 7 is the last committed instruction, ID 8 and 9 that occur 
after 7 are IDs of uncommitted instructions. 

The uncommitted instructions of the second category are 
identified using theorem 2.  

Theorem 2: A pipeline flush in a footprint array is 
characterized by a jump in ID. 

Proof: Let X be the ID of a flush-causing instruction. At the 
time of pipeline flush, in the recorders associated with in-order 
pipeline stages, only IDs from X+1 (mod 4n) to X+n-1 (mod 
4n) can exist after the ID X. The newly fetched instruction will 
get ID X+2n+1 (mod 4n), as described in the ID-assignment 
scheme. We prove that X+2n+1 (mod 4n) – X+k (mod  4n) >1 
for all k between 1 and n-1: 

 X+2n+1 (mod 4n)– X+k (mod 4n) = 2n+1-k (mod 4n) 
Since 1<=k<=n-1, 2n>=2n+1-k>=n+1 

4n>2n>=2n+1-k>=n+1>1 for n>0 
4n>2n+1-k>1 
2n+1-k (mod 4n)  ≠  0 and  ≠ 1  
2n+1-k (mod 4n) >1 
X+2n+1 (mod 4n) – X+k (mod 4n) >1 for all k between 1 

and n-1 
In order to find the uncommitted instructions using theorem 

2, start from the youngest recorder entry, and look for any 
consecutive ID entries that do not differ by 1. For the example 
shown in Fig. A.3.2, there is a jump between ID 20 and ID 6. 
Once found, subtract 2n+1 from the younger of the two ID 
entries to identify the flush causing instruction, which is ID 3 in 
the example. All IDs between 3 and 20 are uncommitted 
instructions.   

 
Figure A.3.2: Assumes n=8; Flush causing instruction ID is 3, and ID 4,5,6 are 
flushed instructions.  

A.3.2. Uncommitted instruction in out-of-order pipeline stages 
We will first of all identify the flushed instructions and then 

identify the uncommitted instructions that were in-flight at 
post-trigger activation. Since the identification method for 
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issue-stage and execute-stage footprint matrices are the same, 
we only consider the issue-stage footprint matrix without the 
loss of generality.  

The identification of the flushed instruction must be done in 
conjunction with linking of the committed instructions. If the 
youngest committed instruction is flush-causing, we pause 
linking and immediately search for the flushed instructions, a 
method of which is described in the following paragraph. If it is 
not a flush-causing instruction, we can link the IDs 
corresponding to the youngest committed instruction using the 
algorithm presented in Sec. A.2, even if there could be as many 
as n instructions above the top-most committed instruction in 
the dispatch-stage footprint array. A simple application of 
lemma 1.4 tells us that none of these uncommitted instructions 
above the top-most committed instruction have the same ID as 
the top-most committed instruction. Thus, if the top-most 
committed instruction has ID Q, the top-most ID Q in the 
issue-stage footprint matrix corresponds to the youngest 
committed instruction, and they are linked together. The 
linking is continued for the committed instructions in the 
dispatch-stage footprint array, starting from the top-most 
committed instruction and working your way downwards until 
you encounter a flush-causing instruction. After which, we 
have to search for the flushed instructions. 

For the rest of this section, let’s denote W to be the ID of the 
flush-causing instruction and denote X to be the ID of an 
instruction that got flushed by ID W. The relationship between 
X and W is given by X = W+k (mod 4n), where 1<=k <=n-1. 
We would like to find out whether the flushed ID X reached the 
issue stage during the system validation run, and if it did, 
identify which ID X in the issue-stage footprint matrix 
corresponds to the flushed instruction.  

In order to find whether the flushed instruction reached and 
left the issue stage, we only need to check for the presence of 
ID X in certain consecutive rows of the footprint matrix. The 
rows are bounded by a younger isolating row at the top and an 
older isolating row at the bottom. The elder isolating row is 
always below the row that contains the flushed ID X, if there is 
any, and always above the row that contains another instance of 
ID X that is the youngest among the ID Xs dispatched before 
the flushed ID X. Similarly, the younger isolating row is always 
above the row that contains the flushed ID X, if there is any, 
and always below the row that contains another instance of ID 
X that is the eldest among the ID Xs dispatched after the 
flushed ID X. If one has the ability to find the elder and the 
younger isolating row for a particular flushed ID, then it is 
trivial to find out whether the flushed instruction left the issue 
stage; if there is an ID X in the rows bounded by the isolating 
rows, then that is the flushed ID X we were looking for, if there 
is not any, we can conclude that the flushed instruction did not 
leave the issue stage. We will later show that the younger 
isolating row is unnecessary, but let’s assume its necessity for 
now, for easier understanding.  

A.3.2.1 Identifying the younger isolating row 
We do not need a strict isolator between the flushed ID X and 

another ID X that is the eldest among the ID Xs dispatched after 
the flushed ID X. This fact is because of how we do the linking 
operation: we start from the youngest committed instructions 
and work our way towards the elder instructions using the 
algorithm in Sec A.2. .Thus, a one-way isolator is sufficient, 
where the flushed ID X cannot exist above, but the other X can 
exist below the isolating row.  

Theorem 3: Suppose there is a flush-causing ID W, and a 
flushed ID X that is flushed by W. Then the younger isolating 
row for ID X can be found using the following method: in the 
issue-stage footprint matrix, from the row containing the 
flush-causing ID W, search upwards until you encounter the 
first row that contains W+2n+1 (mod 4n).  

Proof:  In the ID assignment scheme, W+2n+1 (mod 4n) is 
assigned to the newly fetched instruction after the flush 
completes. Thus, by definition, ID W+2n+1 (mod 4n) must 
have entered the recorders strictly after all the previously 
flushed instructions.  

If the ID W+2n+1 (mod 4n) cannot be found because the 
recording stopped before fetching a new instruction after the 
flush, then use the row above the top most row as the younger 
isolating row.  

A.3.2.2 Identifying the elder isolating row  
Theorem 4: Suppose there is a flush-causing ID W, and a 

flushed ID X that is flushed by W. Then the elder isolating row 
for ID X can be found using the following method: in the 
issue-stage footprint matrix, from the younger isolating row, 
search downwards until you encounter the first row that 
contains either X-n (mod 4n) or X-3n (mod 4n).  

We use lemma 4.1-4.4 to prove the theorem 
Lemma 4.1: If an instruction with ID X is occupying a 

reorder buffer entry, then the instruction in the kth older entry 
either has the ID X-k (mod 4n) or X-k-2n (mod 4n).  

Proof: It will be done using induction 
Base case: Let instruction with ID Z be the instruction 

occupying the previous entry (1st older entry). If Z is not a 
flush-causing instruction, then X = Z+1 (mod 4n) or Z = X-1 
(mod 4n). If Z is a flush-causing instruction, then X = Z+2n+1 
(mod 4n) or Z = X-2n-1 (mod 4n) 

Inductive case: Let instruction with ID Z(k) be the 
instruction occupying kth older entry. Assume Z(k) = X-k (mod 
4n) or X-k-2n (mod 4n). There are two cases to consider.  

If Z(k) = X-k (mod 4n) and its previous instruction is not a 
flush-causing instruction, then Z(k+1) = X-k-1 (mod 4n) = X 
–(k+1) (mod 4n). If it is a flush-causing instruction, then 
Z(k+1)=X-k-2n-1 (mod 4n) = X-2n – (k+1) (mod 4n). 

If Z(k) = X-k-2n (mod 4n) and its previous instruction is not 
a flush-causing instruction, then Z(k+1) = X-k-2n-1 (mod 4n) = 
X-2n-(k+1) (mod 4n). If it is a flush-causing instruction, then 
Z(k+1)=X-k-2n-2n-1 (mod 4n) = X-k-1 (mod 4n) = X-(k+1) 
(mod 4n).  

Lemma 4.2: Before instruction with ID X enters the re-order 
buffer, an instruction with ID X-n (mod 4n) or X-3n (mod 4n) 
must have existed and committed.  

Proof: By lemma 4.1, just before ID X enters the re-order 
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buffer, the youngest entry contains ID X-1 (mod 4n) or X-2n-1 
(mod 4n). Also by lemma 4.1, the nth older entry contains ID 
X-n (mod 4n) or X-3n (mod 4n). Suppose X-n (mod 4n) was 
the one that was present, but did not commit. That implies that 
X-2n+j (mod 4n), where 1<=j<=n-1 is a flush-causing 
instruction that flushed X-n (mod 4n). After the flush, X+j+1 
(mod 4n) is the ID of the newly fetched instruction. However, 
we have skipped the ID W, which is in the range X-k (mod 4n), 
where 1<=k<=n-1. We have a contradiction. The same 
argument can be made to say that if X-3n (mod 4n) was present 
before W, it must have committed.  

Lemma 4.3: The flushed instruction with ID X, if it exists, 
cannot co-exist with any of ID X-n (mod 4n) and X-3n (mod 4n) 
in the reorder buffer at any given time. Consequence is that ID 
X will always be in a row above the row that contains either X-n 
(mod 4n) or X-3n (mod 4n).  

Proof: Suppose X-n (mod 4n), rather than X-3n (mod 4n) is 
the committed one that is first encountered below the younger 
isolating row. Then lemma 1.4 tells us that the following IDs 
can be present in the reorder buffer at the same time as X-n 
(mod 4n): X-n+j (mod 4n), X-n+2n+j (mod 4n), where 
1<=j<=n-1. However, none of them equals X. Now suppose 
X-3n (mod 4n) is the one of the two IDs that is first encountered 
below the younger isolating row. Lemma 1.4 tells us that the 
following IDs can be present in the reorder buffer at the same 
time as X-3n (mod 4n): X-3n+j (mod 4n), X-3n+2n+j (mod 4n), 
where 1<=j<=n-1. Again, none of them equals X.  

Lemma 4.4: Another instance of ID X that is the youngest 
among the ID Xs dispatched before the flushed ID X, does not 
coexist with any of X-n (mod 4n) and X-3n (mod 4n) in the 
reorder buffer. Consequence is that the other instance of ID X 
will always occur in a row below the row containing either X-n 
(mod 4n) or X-3n (mod 4n).  

Proof: Suppose X-4n (mod 4n) is in the reorder buffer. Then 
lemma 1.4 tells us that the following IDs can be present in the 
reorder buffer at the same time as X-4n (mod 4n): X-4n+j (mod 
4n), X-4n+2n+j (mod 4n), where 1<=j<=n-1. However, none of 
them equal X-n (mod 4n) or X-3n (mod 4n).  

A.3.2.3 Uncommitted instructions in-flight at the time of 
post-trigger activation 

After linking all the committed instructions and identifying 
all the flushed instructions, what is left at the end are the 
uncommitted instructions in-flight at the time of post-trigger 
activation, making the identification trivial.  

A.4 Summary 
Figure A.4.1 shows the overall flow of the linking process. 

Note that while linking, we did not use any explicit 
synchronization or timestamps. Furthermore, even if the 
frequency of each pipeline stages varies dynamically, since we 
did not rely on any timing information, the linking process still 
works.  

Identify all flush-causing, flushed, 
and committed instructions in the 

in-order stage FRS

Get the youngest committed 
instruction from an out-of-order 

stage FRS

Flush-causing 
instruction?

Find younger/older 
barrier

Identify flushed 
instructions and 

label them

Link the committed 
instruction with in-
order stage FRS

Get next youngest 
committed 
instruction

Yes

No

 
Figure A.4.1: Overall flow of the linking process 

APPENDIX B: SUMMARY OF LOW-LEVEL ANALYSIS 
1) IF array error ( 1.0) 
2) IF arithmetic error ( 2.0) 
3) IF alignment exception ( 10.0) 
4) IF unimplemented instruction exception ( 11.0) 
5) IF integer overflow exception ( 12.0) 
6) IF deadlock ( 21.0) 
7) IF instruction access segfault ( 13.0) 
8) IF data access segfault ( 14.0) 
9) IF control flow analysis violation ( 13.0) 
10) IF data dependency analysis violation ( 20.0) 
11) IF load/store analysis violation ( 21.0) 
 
1.0 Error in array element OR ( 3.0) 
2.0 Error in arithmetic unit OR ( 3.0) 
3.0 Error in exception generation unit 
4.0 Error in register value at the output of execution stage 

( 6.0) OR  
IF using arithmetic unit ( 2.0) 
IF using load/store unit ( 21.0) 
IF using complex ALU, then error in complex ALU 
IF using branch unit ( 2.0) 

5.0 Error in speculative register alias table 
(-->16.0) OR ( 15.0) OR ( 18.0) 
IF there exist previous read to the same architectural register 
name and it mismatches 

IF there exist another read or write to the same architectural 
register name before the previously mentioned one 

 IF first read/write matches with thir read, but mismatches 
with second read then error in second read 

 IF first read/write matches with second read but 
mismatches with third read 

  IF there exist a fourth read 
IF third read matches fourth read, then storage 
between second and third read is faulty 
 IF there exist read/write before third read to 

hamming-distance-1 address 
IF third read equals hamming-distance-1 
address’s value, then addressing was faulty 
ELSE value reading was faulty 

ELSE IF fourth read matches second read, then 
third read faulty 

ELSE third read OR storage faulty 
IF there exist previous write to the same architectural register 
name and it mismatches 

IF there exist another read afterwards 
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IF First write matches third read, but mismatches second 
read, then second read is faulty 
ELSE IF second read and third read matches but 
mismatches with first write, then first write or storage 
between first write and second read are faulty 
ELSE first write, second read and storage in between are 
all faulty 

6.0 Error in register value at the input of execution stage 
Displacement selection multiplexor ( 7.0) 
OR forwarding path ( 8.0)  

7.0 Displacement selection multiplexor 
IF instruction is supposed to take immediate 
 IF operand residue doesn’t match immediate residue 
  IF repeated inputs don’t match output,  
   THEN error in multiplexor 
  ELSE Error in opcode or immediate ( 17.0) 
ELSE 

IF immediate has been obtained from non-immediate field 
of the instruction 

THEN opcode or immediate ( 17.0) 
   ELSE physical register file ( 5.0) 

8.0 Forwarding path 
  IF data dependency analysis violation 
   THEN muxes + select signals 
  ELSE ( 4.0) OR ( 9.0) 

9.0 Error in physical register file 
( 4.0) OR wrong physical register name from RAT ( 5.0) OR 
Similar analysis to 5.0 except use register value instead of 
physical register name and use physical register name instead of 
architectural register name 

10.0 Error in decoder part 1 
( 6.0) OR ( 3.0) OR 
 (Size bits flipped between output of decode to input of address 

generator) OR 
IF instruction is unaligned access 
  (Wrong decode: unaligned decoded to aligned) OR 
(Unaligned access bit flipped between output of decode and input 
of address generator)  

11.0 Error in decoder part 2 
( 3.0) OR 
 IF exception at decode stage 
  Wrong instruction written from icache (parity protection) OR 
  ( 13.0) OR 

IF fetched instruction doesn’t match with instructions in 
binary  
THEN error in fetch queue OR alignment&rotate unit 

ELSE instruction word flip between fetch queue and input of 
decode stage OR wrong opcode decode OR wrong 
instruction written in fetch queue 

 ELSE IF exception at execution stage 
  Do the same check as above but the following is in addition: 

Bitflip in doecded opcode field from output of decode stage to 
input of execute stage 

12.0 Integer overflow  
( 2.0) OR ( 3.0) OR ( 4.0)  

13.0 Error in PC 
IF control flow violation case 1 
 IF instruction went to branch unit 
  THEN opcode corruption ( 17.0) 
 ELSE faulty nextPC select mux 
IF control flow violation case 2 
 IF instruction went to non-branch unit 

  THEN opcode corruption ( 17.0) 
 ELSE faulty nextPC select mux 
IF control flow violation case 3,4 
 THEN ( 4.0) 

14.0 Error in address generator 
( 6.0) OR ( 2.0) 

15.0 Error in architectural register name 
Wrong decode or wrong decoded bits propagation ( 16.0) 

16.0 Wrong physical register name from register free list 
17.0 Error in decoded bit propagation 

IF decoded bits differ with re-simulated result THEN error 
18.0 Speculation recovery 

IF after flush, results of flushed instruction are used rather than 
results prior to flush THEN incorrectly not initiated recovery 
IF latest results are not seen but older results are seen 

  THEN incorrectly initiated recovery 
19.0 Error in architectural register alias table 

Similar analysis to 5.0 but physical register name and architectural 
register names come from output of reorder buffer 

20.0 Error in scheduler 
Scheduler array OR  
IF ID duplication (from decode analysis) 
  Incorrectly cleared issued bits in the array OR  

Queue pointer flip 
   IF ID disappearance (from decode analysis) 
  Incorrectly cleared valid bit in array 
  OR queue pointer flip 
  IF deadlocked 
  IF ID disappearance then valid bit flip from issue until 

execution 
  ELSE incorrectly setting valid bit in array 

21.0 Error in load/store unit (load/store analysis) 

ACKNOWLEDGMENT 
The authors would like to thank B. Gottlieb, N. Hakim, D. 

Josephson, P. Patra, J. Stinson from Intel Corporation, O. 
Mutlu from Microsoft Research, and E. Rentschler from AMD 
for their discussions and assistance during the course of this 
research.  

REFERENCES 
[Abramovici 06] Abramovici, et al., “A Reconfigurable Design-for Debug 

Infrastructure for SOCs”, Proc. Design Automation Conf. , 2006. 
[Alpha 99] Alpha 21254 Microprocessor Hardware Reference Manual, July 

1999. 
[Ando 03] Ando, H., et al., “A 1.3-GHz Fifth-Generation SPARC64 

Microprocessor”, IEEE JSSC, vol.38, no.11, pp. 1896-1905, Nov 2003. 
[Anis 07] Anis, E. and N. Nicolici, “On using lossless compression of debug 

data in embedded logic analyzers”, Proc. Intl. Test Conf., 2007. 
[Austin 99] Austin, T.M., “DIVA: A Reliable Substrate for Deep Submicron 

Microarchitecture Design”, Proc. Intl. Symp. on Microarchitecture, 1999. 
[Bayazit 05] Bayazit, A.A. and S. Malik, “Complementary Use of Runtime 

Validation and Model Checking”, Proc. Intl. Conf. on Computer-aided 
Design, 2005. 

[Caty 05] Caty, O, P. Dahlgren and I. Bayraktaroglu, “Microprocessor Silicon 
Debug based on Failure Propagation Tracing”, Proc. Intl. Test Conf., 
2005. 

[Chen 08] Chen, K., S. Malik, and P. Patra. "Runtime Validation of Memory 
Ordering Using Constraint Graph Checking". Proc. Intl. Symp. on 
High-Performance Computer Architecture, 2008. 

[Dahlgren 03] Dahlgren, P., P. Dickinson and I. Parulkar, “Latch Divergence in 
Microprocessor Failure Analysis”, Proc. Intl. Test Conf., 2003. 

[Heath 04] Heath M.W., W.P. Burleson and I.G. Harris, “Synchro-Tokens: 
Eliminating Nondeterminism to Enable Chip-Level Test of 



Technical Report (version 1.2) – last updated Dec 10th, 2008 
 

14

Globally-Asynchronous Locally-Synchronous SoC’s”, Proc. Conf. on 
Design, Automation and Test in Europe, pp1532-1546, 2004. 

[IVM] http://www.crhc.uiuc.edu/ACS. 
[Josephson 01] D. Josephson, S. Poehhnan, V. Govan, “Debug methodology 

for the McKinley processor”, Proc. Intl. Test Conf., pp451-460, 2001.  
[Josephson 06] Josephson, D., “The Good, the Bad, and the Ugly of Silicon 

Debug”, Proc. Design Automation Conf..,  2006. 
[Leon 06] Leon, A.S., B. Langley, and J.L Shin “The UltraSPARC T1 

Processor: CMT Reliability”, Proc. Custom Integrated Circuits Conf., 
2006. 

[Livengood 99] Livengood, R. and D. Medeiros, “Design for (physical) Debug 
for Silicon Microsurgery and Probing of Flip-chip Packaged Integrated 
Circuits”, Proc.Intl.Test Conf., 1999. 

[Lu  82] Lu, D.J. “Watchdog Processors and Structural Integrity Checking”, 
IEEE T COMPUT., pp.681-685, July 1982. 

[MacNamee 00] MacNamee, C. and D. Heffernan, “Emerging On-chip 
Debugging Techniques for Real-time Embedded Systems”, Computing & 
Control Engineering Journal, vol.11, no.6, pp.295-303, Dec 2000. 

[Oh 02] Oh, N., S. Mitra and E.J.McCluskey, “ED4I: Error Detection by 
Diverse Data and Duplicated Instructions”, IEEE T COMPUT, vol.51, 
no.2, pp.180-199, Feb 2002. 

[Patra 07] Patra, P., “On the Cusp of a Validation Wall”, IEEE DES TEST 
COMPUT, vol.24 no.2, pp.193-196, Mar 2007. 

[Parker 03] Parker K.P., The Boundary-Scan Handbook, 3rd ed., Springer, 
2003.  

[Sanda 08] Sanda P.N. et al., “Soft-error resilience of the IBM POWER6 
processor”, IBM Journal of Research and Development, vol.52, no.3, 
2008. 

[Sarangi 06] Sarangi, S.R., B.Greskamp and J.Torrellas, “CADRE: 
Cycle-Accurate Deterministic Replay for Hardware Debugging”, Intl. 
Conf. on Dependable Systems and Networks, 2006. 

[Sarangi 07] Sarangi, S.R., et al., “Patching Processor Design Errors with 
Programmable Hardware”, IEEE MICRO, vol.27, no.1, pp.12-25, Jan 
2007. 

[Silas 03] Silas, I., et al., “System-Level Validation of the Intel Pentium M 
Processor”, Intel Technical Journal, May 2003. 

[simplescalar] www.simplescalar.com. 
[Trong 07] Trong, S.D., et al., “P6 Binary Floating-Point Unit”, Proc. Intl. 

Symp. on Computer Arithmetic, 2007. 
[Wagner 06] Wagner, I., V. Bertacco and T. Austin, “Shielding Against Design 

Flaws with Field Repairable Control Logic”, Proc. Design Automation 
Conf., 2006. 

[Wang 04] Wang, N.J., et al., “Characterizing the effects of Transient Faults on 
a High Performance Processor Pipeline”. Intl. Conf. on Dependable 
Systems and Networks, 2004. 

[Yerramilli 06] Yerramilli, S., “Addressing Post-Silicon Validation Challenge: 
Leverage Validation & Test Synergy (Invited Address)”, Intl. Test Conf., 
2006. 

 


