
Technical Report (version 1.2) – last updated Dec 10th, 2008

1

Abstract—The objective of IFRA, Instruction Footprint

Recording and Analysis, is to overcome the challenges associated
with a very expensive step in post-silicon validation of processors
– localization of bugs in a system setup. Special recorders are
inserted into the processor to record semantic information about
data and control flows of instructions passing through various
design blocks. The recording is done concurrently during the
normal operation of the processor in a post-silicon system
validation setup. Upon the detection of a problem, the recorded
information is scanned out and analyzed offline for bug
localization. Special program analysis techniques, together with
the test program binary of the application executed during
post-silicon validation, are used for the analysis. IFRA does not
require full system-level reproduction of bugs or system-level
simulation. Simulation results on a complex super-scalar
processor demonstrate that IFRA is effective in accurately
localizing electrical bugs with very little impact on overall chip
area.

Index Terms—post-silicon validation, silicon debug,
design-for-debug, electrical bug, circuit marginality

I. INTRODUCTION
OST-SILICON validation involves operating one or more
manufactured chips in actual application environment to

validate correct behaviors across specified operating conditions.
According to recent industry reports, post-silicon validation is
becoming significantly expensive. Intel reported a headcount
ratio of 3:1 for design vs. post-silicon validation [Patra 07].
[Yeramilli 06] observes that the increasing use of design
resources and equipment costs in post-silicon validation makes
it prohibitively expensive in the future. According to
[Abramovici 06], post-silicon validation may consume 35% of
average chip development time.

Post-silicon validation involves three major steps [Josephson
06, Livengood 99, Wagner 06, Sarangi 07]: 1) detecting a
problem (e.g., through system crash, segmentation fault or error
detection) by applying proper stimulus; 2) localizing and
identifying the root cause of the problem; and, 3) fixing or

Part of this paper was presented at the Design Automation Conference (DAC)
2008, S.B. Park, S. Mitra, “IFRA: Instruction Footprint Recording and Analysis
for Post-Silicon Bug Localization in Processors”.

S.B. Park and T. Hong are with the Department of Electrical Engineering,
Stanford University, (e-mail: sbpark84@stanford.edu, tedhong@stanford.edu).

S. Mitra is with the Departments of Electrical Engineering and Computer
Science, Stanford University, Stanford, CA 94305 USA (e-mail:
subh@stanford.edu).

bypassing the problem. For the second step, post-silicon bug
localization involves identifying the bug location and an
instruction sequence that exposes the bug. The bug localization
step often dominates post-silicon validation efforts [Josephson
06] and is the focus of this paper.

Major factors that contribute to the high cost of current
post-silicon bug localization approaches (details in Sec. V) are:

1. Failure reproduction involves returning the hardware to
an error-free state, and re-executing the failure-causing
stimulus (including instruction sequences, interrupts, and
operating conditions) to reproduce the same failure. In a system
environment, it may be very costly to reproduce a failure,
especially for electrical bugs [Josephson 01], which manifest
themselves only under certain operating conditions. Examples
of electrical bugs include setup and hold time problems,
synchronization problems, noise, and circuit marginalities. The
expense of the reproduction is exacerbated by the presence of
asynchronous I/Os, and multiple clock domains. Techniques to
make failures reproducible [Heath 04, Sarangi 06, Silas 03], are
intrusive to system operation and may not expose important
bugs.

2. RTL system simulation for obtaining golden responses is
several orders of magnitude slower than silicon speed, and also
requires expensive external logic analyzers to record all
primary I/O signals in cycle accurate fashion [Silas 03].

The objective of IFRA, Instruction Footprint Recording and
Analysis, is to overcome these post-silicon bug localization
challenges. Figure 1.1 shows a post-silicon debug flow using
IFRA. During chip design, a processor is augmented with
low-cost hardware recorders (Sec. II) for recording instruction
footprints – semantic information describing data and control
flows of dynamic instructions as they pass through various
parts of the processor. During post-silicon validation,
instruction footprints are recorded concurrently with system
operation in a circular fashion to capture the last few thousand
cycles of history before a failure manifests. After the failure
manifests, the recorded footprints are scanned out through a
Boundary-scan JTAG interface. The footprints, together with
the test program binary executed during post-silicon validation,
are then post-processed using special analysis techniques (Sec.
III), in order to identify the bug location and the bug exposing
stimulus. The location is provided in terms of
microarchitectural blocks, such as control FSMs for various
arrays of storage elements, pipeline registers, adders, decoders,
etc. The stimulus is provided in terms of a short instruction
sequence that enters each microarchitectural block. These

IFRA: Instruction Footprint Recording and Analysis
for Post-Silicon Bug Localization in Processors

Sung-Boem Park, Ted Hong, Subhasish Mitra, Senior Member, IEEE

P

Technical Report (version 1.2) – last updated Dec 10th, 2008

2

analysis techniques do not require failure reproducibility or
RTL simulation.

Design
Phase

Post-Si
Validation

Failure
detected?

Record special info. in
recorders / Run tests

Insert recorders
inside chip design

Scan out recorder
contents

Post-analyze offline

Localized Bug: (location, stimulus)

Yes

No

Non-instrusive
No failure reproduction
Single test run sufficient

No system simulation
Self-consistency against

test program binary

Figure 1.1. Post-silicon debug flow using IFRA.

Once a bug is localized using IFRA, existing circuit-level
debug techniques [Caty 05, Josephson 06] can then quickly
identify the root cause of bugs, resulting in significant gains in
productivity, cost, and time-to-market.

In this paper, we demonstrate the effectiveness of IFRA for
an Alpha 21264-like superscalar processor model. This model
is sufficiently complex, yet its structured architecture provides
opportunities for efficient bug localization. The primary goal of
IFRA is to localize electrical bugs, since they require
considerable post-silicon validation efforts [Patra 07].
Extensive IFRA simulations demonstrated:

1. For 75% of injected bugs, IFRA pinpointed their exact
location-time pairs. For 21% of injected bugs, IFRA correctly
identified their location-time pairs together with 2 to 6 other
candidates, on average. IFRA completely missed correct
location–time pairs for only 4% of injected bugs.

2. IFRA does not require any system-level simulation or
failure reproducibility.

3. IFRA hardware introduces a very small area impact of 1%
(including 60KBytes of distributed on-chip storage).

Major contributions of this paper are:
1. Introduction of IFRA to bridge a major gap between

system-level and circuit-level debug, by allowing quick
localization of bugs to a few design blocks from anomalous
system-level behaviors.

2. Low cost methodology for recording control and data
flows of dynamic instructions in a compact and non-intrusive
manner.

3. Off-line program analysis techniques to analyze the
recorded information for bug localization without requiring
system-level simulation and failure reproduction.

4. Demonstration of the effectiveness of IFRA for a complex
super-scalar processor.

Section II describes the hardware support required for IFRA.
Section III describes the off-line program analysis techniques
performed on the recorded information. Section IV presents
simulation results, followed by an overview of related work in
Sec. V, and conclusions in Sec. VI.

II. IFRA HARDWARE SUPPORT
We use an Alpha 21264-like superscalar processor model

[Alpha 99] to explain the IFRA recording infrastructure. The
shaded parts in Fig. 2.1 indicate the three hardware
components: an ID assignment unit, a set of distributed
recorders with dedicated storage, and a post-trigger generator.

As an instruction is fetched, the ID assignment unit tags it
with an ID that will uniquely identify it later during the
post-analysis. The ID is under the same control as the
instruction it is associated with. For example, the ID receives
the same stall and invalidate/flush signals as the instruction
does, and when the instruction is stored in a queue, the ID is
also stored in a queue receiving the same control signal.

While the tagged instruction flows through each of the
pipeline stages, it generates an instruction footprint and stores it
into the recorder associated with the pipeline stage. Each
footprint consists of:

1. The instruction’s identification number that was tagged
2. Auxiliary information, which tells us what the instruction

did in the microarchitectural blocks contained in that pipeline
stage.

The post-trigger generator is responsible for detecting a
failure, stopping the recording and draining the footprints out
of the recorders through the scan chain. The rest of the section
will go through each of the three hardware components in more
details.

ID-Assignment
Unit

Issue Queue

Recorder REG

Recorder REG

Recorder

Recorder REG

Branch PredictorI-TLBI-Cache
Fetch Queue

Decoders

Recorder REGReg Alias TableReg Free List
Dependency Checker

Phys.
Reg File

ID
Queue

ALU MUL Branch LSU

Reorder Buffer ID
Queue

Reg Alias
Table

FETCH

DECODE

DISPATCH

ISSUE

EXECUTE

COMMIT

Post-
Trigger

Generator

Instruction Flow
Instruction ID Flow (Part of Instruction Footprint)
Auxiliary Info. Flow (Part of Instruction Footprint)
Post-Trigger Control

Key

Recorder REG

Fig. 2.1. Superscalar processor augmented with recording infrastructure. The
figure only shows the flow for a single way for simplicity.

A. ID-assignment Unit
A special ID assignment scheme is used so that all

uncommitted instructions can be identified during the
post-analysis, and to ensure that no instructions with identical
IDs change their relative orders in any of the recorders. The
scheme is as follows. For a processor with at most n
instructions in-flight, each instruction ID is log24n bits wide.
Instruction IDs are assigned to individual instructions as they

Technical Report (version 1.2) – last updated Dec 10th, 2008

3

exit the fetch stage and enter the decode stage as shown in Fig.
2.2.If an ID X has been assigned in the previous cycle, and
there are k instructions that exit the fetch stage in the current
cycle, then k IDs, X+1 (mod 4n), X+2 (mod 4n)…X+k (mod
4n) are assigned to the k instructions. When an instruction with
ID Y causes a pipeline flush, ID of Y+2n+1 (mod 4n) is
assigned to the first instruction that is fetched after the flush
completes.

Fig. 2.2. The area enclosed by the dashed line indicates the ID-assignment unit
for a 2-way processor. Shaded parts indicate the newly added hardware.

In Appendix A, we formally prove how the specified ID
assignment scheme can be used to uniquely identify each
instruction during the post-analysis, even in the presence of
pipeline flushes, multiple clock domains, and dynamic voltage
and frequency scaling in each of the clock domains.

B. Instruction Footprint Recorder
Fig. 2.3 shows the internal structure of the recorder. One

recorder is associated with one way of a pipeline stage (e.g.,
four recorder’s are associated with a 4-way fetch stage). Each
recorder records footprints of instructions as they leave the
pipeline stage. The main circular buffer acts as storage for
instruction footprints and each buffer entry contains three
fields: 1-bit idle field, instruction ID/idle cycle count field and
auxiliary information field.

Fig. 2.3. Recorder’s internal structure

Idle = 1 indicates that no instruction has passed by (i.e.,
NOPs detected), and the number of consecutive idle cycles are
stored in the second field, with the third field left blank. The
Idle cycle FSM is responsible for maintaining idle cycle counts.
Idle=0 indicates that an instruction has passed by and left its
instruction ID in the second field and its auxiliary information
in the third field. For example, in Fig 2.3, the first three entries

of the circular buffer correspond to instructions with IDs 2, 5,
12. Next, there are NOPs for 24 cycles, followed by an entry for
instruction with ID 22.

The auxiliary information records information specific to the
pipeline stage where the recorder is inserted. Table 2.1 shows
auxiliary information collected in each pipeline stage of an
Alpha 21264-like 4-way superscalar processor (detailed
configuration in Sec IV). The third column indicates the
number of bits of auxiliary information for each recorder, and
the last column indicates the total number of recorder required
for each pipeline stage. The commit-stage recorder has a
different structure from the rest; it has a single register that
records the ID of the youngest committed instruction, rather
than having a circular buffer.

TABLE 2.1. AUXILIARY INFORMATION FOR EACH PIPELINE STAGE.
Pipeline
stage

Auxiliary information # bits Num

Fetch Program Counter 32 4

Decode Decoding results 4 4

Dispatch 2-bit residue of reg. name 6 4

Issue 3-bit residue of operands 6 4

ALU,
MUL

3-bit residue of result 3 4

Branch None 0 2

LSU 3-bit residue of result;
memory address

35 2

Commit Exceptions ~0 4

C. Post-trigger Generators
In order to ensure that the entire error-to-failure history is

captured using reasonably sized recorders, we assume the
presence of early failure detection mechanisms, post-triggers,
for the failure scenarios listed in Table 2.2. Detection of any
one of the failure scenarios terminates the recording.

TABLE 2.2. FAILURE SCENARIOS AND POST-TRIGGERS.
Failure
Scenario

Post-triggers
Soft Hard

Array error - Parity check
Arith. error - Residue check
Exceptions - In-built exceptions
Deadlock Short (2 mem loads)

instruction
retirement gap

Long (2 secs)
instruction
retirement gap

Segfault Tlb-miss + Tlb-refill Segfault from OS;
Address equals 0

We assume the presence of parity bits for arrays (e.g. register
file, reorder buffer, register rename table, register free list,
scheduler, and various queues). We also assume the presence of
residue codes for arithmetic units in ALUs and address
calculators. Such parity bits and residue codes exist in several
commercial processors [Ando 03, Leon 06, Sanda 08].
Unimplemented instruction exceptions and arithmetic
exceptions are already present in most processors. This refers
to the first three scenarios.

Unlike the first three failure scenarios listed in Table 2.2, the
last two failure scenarios may be detected several millions of
cycles after an error occurs. In order to prevent the history

Technical Report (version 1.2) – last updated Dec 10th, 2008

4

recorded in the recorders to be overwritten during this time, we
introduce the notion of soft and hard post-triggers. A hard
post-trigger fires when there is an evident sign of failure, while
a soft post-trigger fires when there is an early symptom of
possible failure. A hard post-trigger causes the recording and
the processor operation to terminate. A soft post-trigger causes
the recording in all recorders to pause, but allows the processor
to keep running. If a hard post-trigger for the failure
corresponding to the symptom occurs within a pre-specified
amount of time, the processor stops. If a hard post-trigger does
not fire within the specified time, the recording resumes
assuming that the symptom was false.

For deadlocks, a soft post trigger event fires when no
instruction retires within the time required to perform two
memory loads. The corresponding hard post trigger event is
two additional seconds of no retirement.

For segmentation fault (or segfault), there is a single hard
post-trigger to detect null-pointer dereference, and a pair of soft
and hard post-triggers to detect illegal reading/writing into
unallocated memory or writing into read-only memory.
Null-pointer dereference is detected by adding simple hardware
to detect whether the memory address equals zero in the
Load/Store unit. For other illegal memory accesses, TLB-miss
is used as the soft post-trigger. If a segfault is not declared by
the OS while servicing the TLB-miss, the recording is resumed
on TLB-refill. Since the recording is paused in the event of a
soft post-trigger, there may be a period of time that may act as a
blind spot during post-silicon validation.

III. POST-ANALYSIS TECHNIQUES
After a hard post-trigger fires, all recorder entries, together

with the write addresses of the circular buffers, are scanned out
through the JTAG interface. The localization analysis begins
by combining recorder contents with the test program binary in
a process called footprint linking (Sec. III.A). The end result
shows where each dynamic instruction was present and what
each instruction was doing at each time instance. Next, four
high-level post-analysis techniques (Sec. III.B) targeting
different parts of the processor are run on the linked footprints.
If one or more high-level techniques identify inconsistency in
the flow, low-level post-analysis techniques (Sec. III.C) are
performed starting from the earliest occurrence of the
inconsistency. If no inconsistency is found, the low-level
analysis starts from the youngest entries of the recording.

A. Footprint Linking
During system run, a fetched instruction drops multiple

footprints across multiple recorders. Footprint linking is a
process of relating the multiple footprints back to the single
instruction that dropped the footprints. This method works for a
processor supporting pipeline flushes, out-of-order execution
and multiple clock domains, where each domain can undergo
dynamic voltage and frequency scaling. The algorithm
completes the following five steps.

1. Within recorders associated with the in-order pipeline
stages, identify all the instructions that caused a pipeline flush.

2. Identify all the uncommitted and committed instructions.
3. Select the youngest committed instruction in the

dispatch-stage recorder and find its instruction ID. For each of
the other recorders, find the youngest footprint with the same
ID as the youngest committed instruction. All these footprints
correspond to a single dynamic instruction and they should be
linked together.

4. Step 3 is repeated for all the committed instructions
starting from the youngest to the eldest committed instructions
present in the dispatch-stage recorder.

5. Step 3 is repeated on the uncommitted instructions.
6. PCs from the fetch-stage recorder are mapped to the

instructions in the binary.

B. High-level Analysis
1) Data Dependency Analysis

Our first post-analysis approach is to verify whether data
dependency order is preserved, i.e., if there is a
producer-consumer relationship in the serial execution trace,
whether the consumer instruction executes after the producer
instruction has produced its result. The analysis is performed
on instruction issue sequence (obtained from issue-stage
recorders) and the serial execution trace (derived from the
fetch-stage recorders and commit-stage recorders). Consider
the example in Fig. 3.1. Architectural register names (rather
than physical register names) are obtained from the assembly
code instruction mapping done in step 6 of the linking.

Fig. 3.1 illustrates an example of data dependency analysis.
Since instruction with ID 0 shown in the serial trace produces a
value on R0, while the instruction with ID 3 consumes a value
from R0, data dependency exists between those two
instructions. Instruction with ID 0 enters the ALU while the
instruction with ID 3 enters the multiplier (shown in the
execution-stage recorders). Assume that the two functional
units are in different clock domains, and also assume that the
ALU has a latency of 3 cycles. Since the two dependent
instructions are in different clock domains with a possibility of
dynamic frequency scaling, it is not possible to directly check
their relative timing. However, we know that the issue-stage
recorders must be in a single clock domain, and thus know that
the instructions with ID 3 and ID 5 must be issued at the same
time (shown in the issue-stage recorders). In this case, the
distance between 0x03 and 0x00 is only two cycles, which is
shorter than the 3-cycle latency of the ALU. This implies the
consumer instruction with ID 3 was issued prematurely, before
the producer instruction with ID 0 has completed.

Fig.3.1. Data dependency analysis example.

Any inconsistency identified using this analysis is then

Technical Report (version 1.2) – last updated Dec 10th, 2008

5

further analyzed by the low-level analysis described in Sec.
III.C and Appendix B to identify an error in one of following
microarchitectural blocks of the processor: registers at
dispatch, issue, execute stages; issue buffer entries and issue
buffer’s control; forwarding paths among dispatch, issue,
execute stages; register files; register renaming of dispatch
stage.

2) Program Control Flow Analysis
Our second post-analysis technique verifies program control

flow. There are four illegal cases that are checked for:
1. Transition in the absence of control flow transition

instruction (instruction that changes the PC, e.g., branch,
jump).

2. No transition in the presence of unconditional transition
instruction (instruction that always changes PC value)

3. Illegal target in the presence of direct transition (with
target address that does not depend on a register value).

4. Illegal target in the presence of indirect transition (with
target address that depends on a register value).

Fig. 3.2 shows an example serial execution trace (derived
from recorder data from fetch and commit stage) illustrating all
four illegal cases. The first two cases can be checked by
checking PC. The third case can be easily checked since the
instruction itself contains all the necessary information to
compute the target address. The fourth case is checked by
checking whether the address addition has been done correctly
using residue arithmetic.

A violation in the program control flow is further analyzed
by the low-level analysis to identify an error in one of the
following microarchitectural blocks: address calculator in
execution stage; all pipeline registers between fetch and
execution stages; forwarding path between execution and fetch
stage; speculation recovery; register renaming.

Fig. 3.2. Four illegal cases of control flow transitions.

3) Load/Store Analysis
The third post-analysis technique involves verifying that a

stored value to a memory address matches the value that is later
loaded from that same address. In the absence of DMA activity,
which may modify the memory content, any mismatch
indicates a bug in the load/store unit or memory system (cache,
memory controller, memory, etc) external to the processor core.
In order to check for such mismatches, for each load/store
instruction, memory addresses and residue of memory contents
in Load/Store-unit recorders are recorded. A detailed
localization approach can be found in Appendix B. Memory
addresses affected by DMA activities may be factored out
during post-analysis by recording the instructions sent to DMA
engines using external logic analyzer.

4) Decoding Analysis
This technique checks whether all committed instructions are

decoded correctly and whether they pass through the correct
sequence of modules without disappearing or being distorted in
the middle. Recording part of the decoded instruction bits
(which functional unit should the instruction go to, how many
operands it uses and whether it requires a destination register)
verifies the operation of the decoder. Checking that instructions
went to the correct functional units ensures that there was no
corruption in the decoded opcode field of pipeline registers.
Corruption of pointers or states associated with regular array
structures is checked by observing whether instructions appear
or disappear in the middle of a pipeline. For example,
corruption of the empty flag bit of an issue buffer results in
sudden disappearance of instructions.

C. Low-level Analysis
The low-level analysis mainly involves checking for

consistency in residue bits collected by recorders (shown in
Table 2.1). Residues of operands used by consumer
instructions must match the residues of results produced by
producer instructions. Additionally, the residues of physical
registers used by consumers must match the residues of
physical registers in which the producers placed their results.
The localization refinement comes from comparing the right set
of residues, in addition to knowing which post-triggers were
activated and knowing which high-level post-analysis
techniques detected inconsistencies. A brief description of the
low-level analysis can be found in Appendix B.

IV. RESULTS
We evaluated IFRA by injecting errors into a

micro-architectural simulator augmented with IFRA, as
described in Sec. II. Post-analysis techniques described in Sec.
III are used for bug localization. We used Simplescalar 3.0
architectural simulator [Simplescalar] with Alpha 21264
configuration (4-way pipeline, 64 maximum instructions
in-flight, 2 ALUs, 2 multipliers, 2 load/store units). For this
particular configuration, there are 200 different
microarchitectural blocks. The number does not include the
array-like structures and arithmetic units that are protected by
parity and residue respectively. Each block has an average size
equivalent of 10K 2-input NAND gates. The microarchitectural
blocks can be inferred from low-level analysis shown in
Appendix B. Seven benchmarks from SPECint2000 (bzip2, gcc,
gap, gzip, mcf, parser, vortex) were chosen as validation test
programs. The recorders were designed to collect information
according to the setup described in Table 2.1. Each recorder
was sized to have 1,024 entries.

All bugs were modeled as single bit-flips to target
hard-to-repeat electrical bugs that pose major post-silicon
validation challenges. Many electrical bugs affect speed paths
[Silas03], and speed paths manifest themselves as incorrect
values arriving at flip-flops for certain input combinations and
operating conditions.

Errors were injected in one of 1,191 flip-flops (Table 4.1).

Technical Report (version 1.2) – last updated Dec 10th, 2008

6

Note that, no errors were injected in array-like structures since
they have built-in parities for error detection. Errors were
injected in input / output registers and various control registers
controlling the array structures. Pipeline registers in Table 4.1
include decoded opcode, register specifiers, immediate data,
address, offset, etc. Valid bits indicate whether a given
instruction is valid or not in a pipeline register.

TABLE 4.1. ERROR INJECTION BITS.
Description # bits
PC, next PC 128
Memory Address used by Load/Store 128
Input/Output latch of Array Structures 82
Pointers to Array structures 23
Control states of Array Structures 4
Pipeline Registers 800
Valid Bits 26
Upon error injection, the following scenarios are possible:
1. The error has no effect at the system level.
2. The error does not cause any post-trigger mechanism to

trigger, but produces incorrect program output.
3. Failure manifestation with short error latency, where

recorders successfully capture the history from error injection
to failure manifestation (including situations where recording is
stopped upon activation of soft post-triggers).

4. Failure manifestation with long error latency, where
1024-entry recorders fail to capture the history from error
injection to failure (including soft triggers).

Cases 1 and 2 are related to coverage of validation test
programs and post-triggers, and are not the focus of this paper.
Hence, error injection runs resulting in these cases are ignored
and not reported. Any error injection run which does not result
in the activation of any post-trigger within 100K cycles from
error injection are included in this category. For errors resulting
in cases 3 and 4, we report results in Tables 4.2 and 4.3. For
case 4, we pessimistically report that our IFRA approach
completely misses correct bug location-time pair (included
under “completely missed” category in Tables 4.2). All error
injections were performed after a million cycles from the
beginning of the program in order to demonstrate that the
history between error injection and failure manifestation is
sufficient for effective post-silicon bug localization as is the
case with IFRA.

Tables 4.2 and 4.3 present results from 800 error injections
that resulted in cases 3 and 4. The “exactly located” category
represents the cases in which the error injection location and
time exactly matched with the localized hardware block and the
stimulus. The percentage of bugs belonging to this category
must be very high for an effective bug localization technique.
The “candidate located” category represents the cases in which
the IFRA produced several localized hardware blocks with
stimulus, and at least one of them matched with the error
injection location and time. The “completely missed” category
represents the cases where the error injection location and time
did not match any of the localized hardware blocks and
stimulus. An effective bug localization technique must have
very few “completely missed” cases. It is clear from Table 4.2

that a large percentage of bugs were uniquely located to
correct location-time pair, while very few bugs were
completely missed, demonstrating the effectiveness of
IFRA. For “candidate located” cases, Table 4.3 reports
statistics on the number of possible candidates. It is clear from
Table 4.3 that the number of such candidates is very small.

TABLE 4.2 IFRA BUG LOCALIZATION SUMMARY.
Exactly Localized 75%
Correctly Localized with Candidates 21%
Completely Missed 4%

TABLE 4.3. STATISTICS FOR “CANDIDATE LOCATED” CASES.

Post-analysis
technique

Number of candidates
Mean Min. Max. Std.Dev

Data dependency 6.3 2 34 7
Control-flow 5.3 2 10 4.2
Load / Store 2 2 2 0
Decoding 2.4 2 3 0.55
Our synthesis result (Synopsys Design Compiler with TSMC

0.13 microns library) shows that the area impact of IFRA
infrastructure is 1% on the Illinois Verilog Model [IVM] (an
open-source RTL implementation of Alpha-like core)
assuming a 2MB on-chip cache, which is typical of the current
desktop/server processors. The overhead is largely dominated
by the circular buffers present in the recorders, because of the
absence of any global at-speed routing and the simplicity of the
recorder’s control. Total information storage for all recorders
adds up to 60 Kbytes, which is a very small fraction of total
on-chip storage.

V. RELATED WORK
Related work on post-silicon validation can be broadly

classified into six categories: scan dump [Caty 05, Dahlgren
03], check-pointing with deterministic replay [Silas 03, Sarangi
06], embedded trace buffers for hardware debugging [Anis 07],
on-chip program and data tracing [MacNamee 00],
fault-tolerant computing [Austin 99, Lu 82, Oh 02], and on-line
assertion checking [Abramovici 06, Bayazit 05, Chen08].

Debugging techniques using scan dump, checkpointing with
deterministic replay, and embedded trace buffers require
failures to be reproducible. Moreover, they require simulation
for comparison of observed states against golden responses. If
easy failure reproduction support is present, it will also help
IFRA by allowing recorders to record unlimited lengths of
history through repeated recording and dumping.

On-chip storage of program and data traces [MacNamee 00],
commonly used in embedded processors (e.g. ARM,
Motorola’s MPC, Infineon’s Tricore), have some similarity
with IFRA in that they also store program flow of the software
executed on the processor. However, they are fundamentally
different because they target software debugging running on
correct hardware, thus need to store very different forms of
information than IFRA.

The difference between IFRA and traditional fault-tolerant
computing is that the latter mainly focuses on error detection
and recovery, while IFRA focuses on bug localization. That

Technical Report (version 1.2) – last updated Dec 10th, 2008

7

FRA does not interfere with the system behavior (no code
modification or resource conflicts) is essential.

On-line assertion checking techniques are complementary to
IFRA in that such techniques can be efficiently used to generate
post-triggers and also for fine-grained bug localization together
with the post-analysis techniques supported by IFRA.

VI. CONCLUSION
IFRA targets the problem of post-silicon bug localization in

a system setup, which is a major challenge in processor
post-silicon design validation. The major novelty of IFRA is in
the introduction of a high-level abstraction for bug localization
through new low-cost hardware recorders hat record semantic
information about instruction data and control flows
concurrently in a system setup, and special analysis techniques
that analyze the recorded data for localization after failure
detection. These design and analysis techniques enable IFRA to
overcome major post-silicon bug localization challenges. 1. It
helps bridge a major gap between system-level and circuit-level
debug. 2. Failure reproduction is not required. 3.
Self-consistency checks associated with the analysis techniques
eliminate the need for full system-level simulation.

IFRA raises several interesting research questions that can be
explored in the future. 1. Sensitivity analysis and
characterization of the inter-relationships between
post-analysis techniques, architectural features, error detection
mechanisms, FRS sizes and bug types. 2. Wider variety of
post-triggers based on assertions, e.g., [Abramovici 06, Bayazit
05], and symptoms [Wang 04]. 3. Applicability of IFRA for
homogeneous / heterogeneous multi-core systems, and
system-on-chips (SoCs) consisting of non-processor designs. 4.
Applicability of IFRA to directed diagnostic test generation and
fault diagnosis.

APPENDIX A: FOOTPRINT LINKING
During system run, a fetched instruction drops multiple

footprints across multiple recorders. Footprint linking is a
process of relating the multiple footprints back to the single
instruction that dropped the footprints. There are three
challenges involved in linking, due to the structure of modern
superscalar processors:

1. Instructions may get issued and execute out of program
order.

2. With speculative execution, many instructions may get
removed in the middle of the pipeline when there is a
branch misprediction or an exception.

3. Not all recorders will be placed in the same clock
domain, and each clock domain can undergo dynamic
voltage and frequency scaling.

We show that by assigning instruction IDs with log24n bits,
where n is the maximum number of instructions-in-flight, to
each instruction footprint, we can link all footprints together in
the presence of the above three challenges. The proof is split
into three; Section A.1 describes how to relate footprints within
a pipeline stage and describes a method of creating a basic data

structure that is to be used for further analysis. Section A.2
addresses the first challenge and Sec. A.3 addresses the second
challenge. While doing so, we do not use any explicit
timestamps or global synchronization mechanisms to show that
the third challenge is overcome.

The reader must be aware that other shorter ID widths such
as log2(2n+2) bits or log22n bits can be used instead of the
log24n bits presented in this paper. However, log2(2n+2) bits
requires an expensive modulo 2n+2 operation, and also has a
more complicated proof. ID width of log22n requires extra
buffers to store flushed instructions and the proof is not as clean
as the one for log24n bits. Thus we have chosen to present the
proof for the log24n bits case. Note that the end results of all
three variations are the same: footprints in distributed buffers
are all linked together after identifying all the uncommitted
instructions.

The reader should also be aware that using program counter
value instead of the IDs does not work. The trouble comes
when executing a loop, which produces multiple instances of
the same instruction with the same PC value. In the presence of
out-of-order execution, these multiple instances may execute
out-of-order, after which, it would be impossible to tell which
footprint corresponds to which instance of the instruction.

We make the following assumptions on the underlying
superscalar processor structure [Shen 05]. The last assumption
is the only limitation of the current linking method, and
requires further investigation.

1. There are four in-order pipeline stages (fetch, decode,
dispatch, commit) and two out-of-order pipeline stages
(issue, execute), as shown in Fig 2.1. Input to the
centralized instruction window takes place in-order
(process called dispatch), and output from the
instruction window takes place out-of-order (process
called issue).

2. n is the number of instructions-in-flight and also the
number of reorder buffer entries, and it is greater than 0.
The number of centralized instruction window entry is
always less than or equal to n, but we will assume it to be
equal to n.

3. Mispredicted speculative branch can only cause a pipeline
flush once it becomes non-speculative.

4. For the sake of the recorder’s simplicity, and to avoid any
global at-speed routing, each recorder is a simple
circular buffer, without any capability of removing
misspeculated instructions once they are placed in.

5. Individual pipeline stages, except the execution stage, are
within their own clock domain.

6. Identical functional units are within a single clock domain.
For example, if there are three ALUs, they are all in a
single clock domain. If there are 2 Load/store units, they
are in a single clock domain, but separate from the clock
domain that ALUs are in.

7. When an external interrupt occurs, we stop fetching new
instructions and allow the instructions that are already in
the pipeline to retire. Thus an interrupt never causes a
pipeline flush.

Technical Report (version 1.2) – last updated Dec 10th, 2008

8

8. When an exception is detected, instead of handling it
using OS, a hard post-trigger will be activated and halt
the processor. Thus, the system operation is stopped
before any pipeline flush is initiated by the exception.
Consequence is that no instruction will ever cause
pipeline flush twice, and thus all instructions causing a
pipeline flush will always eventually commit.

9. All branch misprediction will only cause a pipeline flush
after execute stage.

We use the following ID assignment scheme:
1. IDs are assigned as instructions exit the fetch stage and

enter the decode stage.
2. If an ID X has been assigned in the previous cycle, and

there are k instructions that exit the fetch and enter the
decode stage in the current cycle, then k IDs, X+1
(mod4n), X+2 (mod4n)…X+k (mod4n), are assigned to
the k instructions.

3. When an ID Y causes a pipeline flush, the first instruction,
which is fetched after the flush completes, gets the ID
Y+2n+1 (mod4n).

A.1 Interpreting recorder data within a pipeline stage
First of all, given the recorder contents, we need to identify

the eldest and the youngest entries. The identification is aided
by two values that are scanned out with the recorder content
after a failure is detected by a hard post-trigger: the write
pointer and the full flag. The full flag indicates whether the
recording has ever been overwritten or not. The full flag is
cleared when the recording begins and is set when the write
pointer wraps around from 1023 to 0 during code execution.
Figure A.1.1 illustrates how to identify the eldest and the
youngest entries of a recorder’s N-entry circular buffer given
the full flag. If the full flag is cleared, 0th entry is the eldest and
(X-1)th entry is the youngest entry. If the full flag is set, then a
wrap around happened in the circular buffer, where Xth entry is
the eldest and (X-1)th entry is the youngest. Once the eldest and
the youngest entries are identified, the wrapped entries are
unwrapped, so that all recorder contents now have their eldest
entry at the bottom and the youngest entry at the top. After
which, the compacted idle cycles are expanded back. For
example, an idle entry with idle cycle count of 5 will expand to
occupy 5 entries.

Figure A.1.1: Identification of the eldest and youngest entries of a recorder’s
N-entry circular buffer given the full flag. At the time of failure, the write
pointer was pointing at address X.

Then for each pipeline stage, except the execution stage, we

collect all the modified recorder contents associated with the
stage, and juxtapose them so that the youngest entries are
aligned. For the execution stage, juxtapose the recorder
contents associated with each clock domain. Figure A.1.2
shows an example after juxtaposing recorder contents
associated with a 4-way pipeline stage. Since the recorders
within the same clock domain are all synchronized and their
recordings stop simultaneously, aligning the youngest entry is
sufficient to obtain the relative timing information among the
recorders in the same clock domain, without using any explicit
timestamps. After juxtaposing, the footprints in the same row
correspond to the same clock cycle.

Figure A.1.2: Juxtaposing recorder contents associated with a 4-way pipeline
stage

The length of history recorded by each recorder is not
necessarily the same; some recorders encountered more idle
cycles, and thus have recorded longer history. Given the
juxtaposed recorder contents, since the post-analysis relies on
each row to be complete, we discard all the incomplete rows.
Thus, for a given pipeline stage, except the execution stage, if
the recorder with the shortest history has M entries after
expansion, then only M youngest entries from each of the
recorder in the same pipeline stage will be kept. Figure A.1.3
shows that after discarding incomplete rows, we are left with an
M-by-4 matrix of instruction footprints.

Eldest entry

Youngest entry

Eldest entry

Youngest entryYoungest entryYoungest entry

Eldest entry

Way-1 Way-2 Way-3 Way-4

Eldest entry Eldest entry Eldest entry

Discarded

M
-ro

w
s

Figure A.1.3: Discarding incomplete rows from the example shown in Fig A.1.2

Technical Report (version 1.2) – last updated Dec 10th, 2008

9

For the recorders associated with the out-of-order pipeline

stages (issue and execute), we keep the footprint matrix as it is,
which will be refer to as issue-stage footprint matrix and
execute-stage footprint matrix. For the recorders associated
with the in-order pipeline stages (fetch, decode, etc), we
convert it to a one-dimensional array of footprints, where the (i,
j) entry in the matrix corresponds to (4i+j)th entry in the array.
We will refer to the array as fetch-stage footprint array,
decode-stage footprint array, etc, hereafter.

In summary, we have found the relative timing information
among the recorders associated with a single pipeline stage.
The next section explains a method of finding relative timing
information across multiple pipeline stages that could be in
different clock domains.

A.2. Telling apart two instructions with the same ID
Finding the relative timing information across multiple

pipeline stages is split into two steps. The first step, described
in the current section, provides a theorem that could be used to
tell apart any two instructions with the same ID. The theorem
proven in the first step is used in the second step, described in
Sec. A.3, to identify all the footprints associated with
uncommitted instructions and then to link all the footprints
together.

Theorem 1: The relative order in which two instructions with
the same ID appear in any footprint array or footprint matrix
will never differ from the relative program order of the two
instructions. The program order is defined to be the order in
which instructions will execute in a single-issue, single-stage
pipeline processor.

In other words, if there are two instructions X and Y that
have the same ID, and X is before Y in program order, then we
claim that X will always occupy a younger entry than Y in any
footprint arrays. In addition, for a footprint matrix, X will
always occupy a younger row than Y. For footprint arrays,
theorem 1 holds trivially, because instructions enter the
in-order pipeline stages in program order. For footprint
matrices that are associated with out-of-order pipeline stages,
we use lemma 1.1-1.5 to prove the theorem.

Lemma 1.1: If an reorder buffer entry is occupied by an
instruction with ID X, the instruction in the next entry (younger
entry) either has the ID X+1 (mod 4n) or X+1+2n (mod 4n), at
any given time.

Proof: There are two cases to consider: whether the
instruction with ID X causes a flush or not. If X is a
flush-causing instruction, then all the instructions having the ID
of X+p (mod 4n), where 1<= p<= n-1, will get flushed from the
pipeline, and the newly fetched instruction will have the ID of
X+2n+1 (mod 4n), as described in the ID-assignment scheme.
If X does not cause a pipeline flush, then the next instruction in
program order, which is the instruction with ID of X+1 (mod
4n) is placed in the next entry.

Lemma 1.2: If an reorder buffer entry is occupied by an
instruction with ID X, the instruction in the kth younger entry
either has the ID X+k (mod 4n) or X+k+2n (mod 4n), at any

given time.
Proof: Lemma 1.2 is an extension of lemma 1.1, and it will

be proven using induction.
Base case of k =1 is true since it is precisely lemma 1.1.
Inductive case: Suppose lemma 1.2 is true for kth younger

entry, thus the kth younger entry either contains an instruction
with ID X+k (mod 4n) or X+k+2n (mod 4n). Let’s consider the
two cases separately. If the entry has the ID X+k (mod 4n), then
according to lemma 1.1, the next entry, the (k+1)th entry should
contain the ID of X+k+1 (mod 4n) or X+k+1+2n (mod 4n). If
the entry has the ID X+k+2n (mod 4n), then the next entry, the
(k+1)th entry should contain the ID of X+k+2n+1 (mod 4n) or
X+k+2n+1+2n (mod 4n). The last ID is equivalent to X+k+1
(mod 4n), because 4n (mod 4n) = 0. Thus, lemma 1.2 holds for
all k, where k is a positive integer.

Lemma 1.3: If a reorder buffer entry is occupied by an
instruction with ID X, the instruction in the kth younger entry
has an ID distinct from X, at any given time, where 1<=k<=n.

Proof: From lemma 1.2, the kth younger entry either has the
ID X+k (mod 4n) or X+k+2n (mod 4n). Let’s consider the two
cases separately.

To prove X+k (mod 4n) ≠ X (mod 4n), it is sufficient to
prove X< X+k < X+4n:

1<= k <= n
 X+1 <= X+k <= X+n
 X< X+k <X+n, because X<X+1 and X+n < X+4n for

n>0.
To prove X+k+2n (mod 4n) ≠ X (mod 4n), it is sufficient to

prove X<X+k+2n<X+4n:
1<= k <= n

 X + 1 + 2n <= X + k +2n <= X + 3n
 X<X+k+2n<X+4n, because X<X+1+2n and X+3n <

X+4n for n>0.
Lemma 1.4 : All instructions in an n-entry reorder buffer

have distinct ID at any given time.
Lemma 1.4 is a corollary of lemma 1.3.
Lemma 1.5: The relative issue/execution order of two

instructions with the same ID will never differ from the relative
program order of the two instructions.

Only the instructions that coexist in the reorder buffer can
switch their relative issue/execution order from the program
order [Shen 05]. For example, if X is before Y in program
order, and if there exists a time when both X and Y coexist in
the reorder buffer, then Y has a chance of getting
issued/executed earlier than X. However, X will always
commit before Y. From corollary 1.4, no two instructions that
were assigned the same ID can ever coexist in the reorder
buffer in any given time. Thus the lemma 1.5 holds.

Since the issue-stage recorder and execution-stage recorder
records instruction footprints as instructions gets issued and
finish executing respectively, theorem 1 is a corollary of lemma
1.5. If one records the youngest committed instruction and
there were no pipeline flushes, then theorem 1 would be
sufficient to link all the instructions in all the footprint arrays
and matrices together using the following algorithm.

1. Select the youngest committed instruction in the

Technical Report (version 1.2) – last updated Dec 10th, 2008

10

dispatch-stage footprint array and find its instruction ID. For
each of the footprint array and matrices in other pipeline stages,
find the youngest instruction footprint with the same instruction
ID as the youngest committed instruction. All these footprints
correspond to footprints of a single dynamic instruction and
they should all be linked together.

2. Repeat step 1 for all the committed instructions starting
from the youngest to the oldest committed instructions present
in the dispatch-stage footprint array.

The algorithm relies on linking instructions from the
youngest entries, since the relative orders of instructions with
the same ID will never swap. However, in the presence of
pipeline flushes, which are common in today’s processor
supporting at least one of exceptions or branch prediction, the
algorithm breaks. The algorithm relies on ID of a fetched
instruction to always exist at each of the pipeline stages. If an
ID of a fetched instruction is not present in one of the pipeline
stages, then the linking algorithm will simply link the older
instruction with the same ID. However this is a wrong ID to
link to. Even if we somehow find out that the instruction was
flushed, we do not know, especially in the out-of-order pipeline
stages, whether it was flushed before the instruction was
dispatched, issued, or executed. The next two sections will
present a method and prove that it can identify all the
uncommitted instruction in all the pipeline stages, so that the
above algorithm can be used to link footprints.

A.3 Identification of uncommitted instructions
The aim of this section is to tell whether each footprint is

committed or not, and to tell whether it is flush-causing and/or
flushed or neither. Section A.3.1 and A.3.2 provides method for
footprints recorded in in-order pipeline stages and out-of-order
pipeline stages respectively. For each of the cases, two
categories of uncommitted instructions are addressed:
uncommitted instructions that were in-flight at the time of hard
post-trigger activation and instructions that were removed (aka
flushed) from the pipeline on discovery of branch
misprediction.

A.3.1 Uncommitted instructions in in-order pipeline stages
Identifying uncommitted instructions in recorders associated

with the in-order pipeline stages (fetch, decode, dispatch) are
trivial. The first category of uncommitted instructions, which
were in-flight at the time of post-trigger activation, is identified
by recording the ID of the youngest committed instruction in
the commit-stage. Any IDs occurring after the ID of the
youngest committed instructions are labeled as uncommitted,
as illustrated in Fig. A.3.1.

Figure A.3.1: Since ID 7 is the last committed instruction, ID 8 and 9 that occur
after 7 are IDs of uncommitted instructions.

The uncommitted instructions of the second category are
identified using theorem 2.

Theorem 2: A pipeline flush in a footprint array is
characterized by a jump in ID.

Proof: Let X be the ID of a flush-causing instruction. At the
time of pipeline flush, in the recorders associated with in-order
pipeline stages, only IDs from X+1 (mod 4n) to X+n-1 (mod
4n) can exist after the ID X. The newly fetched instruction will
get ID X+2n+1 (mod 4n), as described in the ID-assignment
scheme. We prove that X+2n+1 (mod 4n) – X+k (mod 4n) >1
for all k between 1 and n-1:

 X+2n+1 (mod 4n)– X+k (mod 4n) = 2n+1-k (mod 4n)
Since 1<=k<=n-1, 2n>=2n+1-k>=n+1

4n>2n>=2n+1-k>=n+1>1 for n>0
4n>2n+1-k>1
2n+1-k (mod 4n) ≠ 0 and ≠ 1
2n+1-k (mod 4n) >1
X+2n+1 (mod 4n) – X+k (mod 4n) >1 for all k between 1

and n-1
In order to find the uncommitted instructions using theorem

2, start from the youngest recorder entry, and look for any
consecutive ID entries that do not differ by 1. For the example
shown in Fig. A.3.2, there is a jump between ID 20 and ID 6.
Once found, subtract 2n+1 from the younger of the two ID
entries to identify the flush causing instruction, which is ID 3 in
the example. All IDs between 3 and 20 are uncommitted
instructions.

Figure A.3.2: Assumes n=8; Flush causing instruction ID is 3, and ID 4,5,6 are
flushed instructions.

A.3.2. Uncommitted instruction in out-of-order pipeline stages
We will first of all identify the flushed instructions and then

identify the uncommitted instructions that were in-flight at
post-trigger activation. Since the identification method for

Technical Report (version 1.2) – last updated Dec 10th, 2008

11

issue-stage and execute-stage footprint matrices are the same,
we only consider the issue-stage footprint matrix without the
loss of generality.

The identification of the flushed instruction must be done in
conjunction with linking of the committed instructions. If the
youngest committed instruction is flush-causing, we pause
linking and immediately search for the flushed instructions, a
method of which is described in the following paragraph. If it is
not a flush-causing instruction, we can link the IDs
corresponding to the youngest committed instruction using the
algorithm presented in Sec. A.2, even if there could be as many
as n instructions above the top-most committed instruction in
the dispatch-stage footprint array. A simple application of
lemma 1.4 tells us that none of these uncommitted instructions
above the top-most committed instruction have the same ID as
the top-most committed instruction. Thus, if the top-most
committed instruction has ID Q, the top-most ID Q in the
issue-stage footprint matrix corresponds to the youngest
committed instruction, and they are linked together. The
linking is continued for the committed instructions in the
dispatch-stage footprint array, starting from the top-most
committed instruction and working your way downwards until
you encounter a flush-causing instruction. After which, we
have to search for the flushed instructions.

For the rest of this section, let’s denote W to be the ID of the
flush-causing instruction and denote X to be the ID of an
instruction that got flushed by ID W. The relationship between
X and W is given by X = W+k (mod 4n), where 1<=k <=n-1.
We would like to find out whether the flushed ID X reached the
issue stage during the system validation run, and if it did,
identify which ID X in the issue-stage footprint matrix
corresponds to the flushed instruction.

In order to find whether the flushed instruction reached and
left the issue stage, we only need to check for the presence of
ID X in certain consecutive rows of the footprint matrix. The
rows are bounded by a younger isolating row at the top and an
older isolating row at the bottom. The elder isolating row is
always below the row that contains the flushed ID X, if there is
any, and always above the row that contains another instance of
ID X that is the youngest among the ID Xs dispatched before
the flushed ID X. Similarly, the younger isolating row is always
above the row that contains the flushed ID X, if there is any,
and always below the row that contains another instance of ID
X that is the eldest among the ID Xs dispatched after the
flushed ID X. If one has the ability to find the elder and the
younger isolating row for a particular flushed ID, then it is
trivial to find out whether the flushed instruction left the issue
stage; if there is an ID X in the rows bounded by the isolating
rows, then that is the flushed ID X we were looking for, if there
is not any, we can conclude that the flushed instruction did not
leave the issue stage. We will later show that the younger
isolating row is unnecessary, but let’s assume its necessity for
now, for easier understanding.

A.3.2.1 Identifying the younger isolating row
We do not need a strict isolator between the flushed ID X and

another ID X that is the eldest among the ID Xs dispatched after
the flushed ID X. This fact is because of how we do the linking
operation: we start from the youngest committed instructions
and work our way towards the elder instructions using the
algorithm in Sec A.2. .Thus, a one-way isolator is sufficient,
where the flushed ID X cannot exist above, but the other X can
exist below the isolating row.

Theorem 3: Suppose there is a flush-causing ID W, and a
flushed ID X that is flushed by W. Then the younger isolating
row for ID X can be found using the following method: in the
issue-stage footprint matrix, from the row containing the
flush-causing ID W, search upwards until you encounter the
first row that contains W+2n+1 (mod 4n).

Proof: In the ID assignment scheme, W+2n+1 (mod 4n) is
assigned to the newly fetched instruction after the flush
completes. Thus, by definition, ID W+2n+1 (mod 4n) must
have entered the recorders strictly after all the previously
flushed instructions.

If the ID W+2n+1 (mod 4n) cannot be found because the
recording stopped before fetching a new instruction after the
flush, then use the row above the top most row as the younger
isolating row.

A.3.2.2 Identifying the elder isolating row
Theorem 4: Suppose there is a flush-causing ID W, and a

flushed ID X that is flushed by W. Then the elder isolating row
for ID X can be found using the following method: in the
issue-stage footprint matrix, from the younger isolating row,
search downwards until you encounter the first row that
contains either X-n (mod 4n) or X-3n (mod 4n).

We use lemma 4.1-4.4 to prove the theorem
Lemma 4.1: If an instruction with ID X is occupying a

reorder buffer entry, then the instruction in the kth older entry
either has the ID X-k (mod 4n) or X-k-2n (mod 4n).

Proof: It will be done using induction
Base case: Let instruction with ID Z be the instruction

occupying the previous entry (1st older entry). If Z is not a
flush-causing instruction, then X = Z+1 (mod 4n) or Z = X-1
(mod 4n). If Z is a flush-causing instruction, then X = Z+2n+1
(mod 4n) or Z = X-2n-1 (mod 4n)

Inductive case: Let instruction with ID Z(k) be the
instruction occupying kth older entry. Assume Z(k) = X-k (mod
4n) or X-k-2n (mod 4n). There are two cases to consider.

If Z(k) = X-k (mod 4n) and its previous instruction is not a
flush-causing instruction, then Z(k+1) = X-k-1 (mod 4n) = X
–(k+1) (mod 4n). If it is a flush-causing instruction, then
Z(k+1)=X-k-2n-1 (mod 4n) = X-2n – (k+1) (mod 4n).

If Z(k) = X-k-2n (mod 4n) and its previous instruction is not
a flush-causing instruction, then Z(k+1) = X-k-2n-1 (mod 4n) =
X-2n-(k+1) (mod 4n). If it is a flush-causing instruction, then
Z(k+1)=X-k-2n-2n-1 (mod 4n) = X-k-1 (mod 4n) = X-(k+1)
(mod 4n).

Lemma 4.2: Before instruction with ID X enters the re-order
buffer, an instruction with ID X-n (mod 4n) or X-3n (mod 4n)
must have existed and committed.

Proof: By lemma 4.1, just before ID X enters the re-order

Technical Report (version 1.2) – last updated Dec 10th, 2008

12

buffer, the youngest entry contains ID X-1 (mod 4n) or X-2n-1
(mod 4n). Also by lemma 4.1, the nth older entry contains ID
X-n (mod 4n) or X-3n (mod 4n). Suppose X-n (mod 4n) was
the one that was present, but did not commit. That implies that
X-2n+j (mod 4n), where 1<=j<=n-1 is a flush-causing
instruction that flushed X-n (mod 4n). After the flush, X+j+1
(mod 4n) is the ID of the newly fetched instruction. However,
we have skipped the ID W, which is in the range X-k (mod 4n),
where 1<=k<=n-1. We have a contradiction. The same
argument can be made to say that if X-3n (mod 4n) was present
before W, it must have committed.

Lemma 4.3: The flushed instruction with ID X, if it exists,
cannot co-exist with any of ID X-n (mod 4n) and X-3n (mod 4n)
in the reorder buffer at any given time. Consequence is that ID
X will always be in a row above the row that contains either X-n
(mod 4n) or X-3n (mod 4n).

Proof: Suppose X-n (mod 4n), rather than X-3n (mod 4n) is
the committed one that is first encountered below the younger
isolating row. Then lemma 1.4 tells us that the following IDs
can be present in the reorder buffer at the same time as X-n
(mod 4n): X-n+j (mod 4n), X-n+2n+j (mod 4n), where
1<=j<=n-1. However, none of them equals X. Now suppose
X-3n (mod 4n) is the one of the two IDs that is first encountered
below the younger isolating row. Lemma 1.4 tells us that the
following IDs can be present in the reorder buffer at the same
time as X-3n (mod 4n): X-3n+j (mod 4n), X-3n+2n+j (mod 4n),
where 1<=j<=n-1. Again, none of them equals X.

Lemma 4.4: Another instance of ID X that is the youngest
among the ID Xs dispatched before the flushed ID X, does not
coexist with any of X-n (mod 4n) and X-3n (mod 4n) in the
reorder buffer. Consequence is that the other instance of ID X
will always occur in a row below the row containing either X-n
(mod 4n) or X-3n (mod 4n).

Proof: Suppose X-4n (mod 4n) is in the reorder buffer. Then
lemma 1.4 tells us that the following IDs can be present in the
reorder buffer at the same time as X-4n (mod 4n): X-4n+j (mod
4n), X-4n+2n+j (mod 4n), where 1<=j<=n-1. However, none of
them equal X-n (mod 4n) or X-3n (mod 4n).

A.3.2.3 Uncommitted instructions in-flight at the time of
post-trigger activation

After linking all the committed instructions and identifying
all the flushed instructions, what is left at the end are the
uncommitted instructions in-flight at the time of post-trigger
activation, making the identification trivial.

A.4 Summary
Figure A.4.1 shows the overall flow of the linking process.

Note that while linking, we did not use any explicit
synchronization or timestamps. Furthermore, even if the
frequency of each pipeline stages varies dynamically, since we
did not rely on any timing information, the linking process still
works.

Identify all flush-causing, flushed,
and committed instructions in the

in-order stage FRS

Get the youngest committed
instruction from an out-of-order

stage FRS

Flush-causing
instruction?

Find younger/older
barrier

Identify flushed
instructions and

label them

Link the committed
instruction with in-
order stage FRS

Get next youngest
committed
instruction

Yes

No

Figure A.4.1: Overall flow of the linking process

APPENDIX B: SUMMARY OF LOW-LEVEL ANALYSIS
1) IF array error (1.0)
2) IF arithmetic error (2.0)
3) IF alignment exception (10.0)
4) IF unimplemented instruction exception (11.0)
5) IF integer overflow exception (12.0)
6) IF deadlock (21.0)
7) IF instruction access segfault (13.0)
8) IF data access segfault (14.0)
9) IF control flow analysis violation (13.0)
10) IF data dependency analysis violation (20.0)
11) IF load/store analysis violation (21.0)

1.0 Error in array element OR (3.0)
2.0 Error in arithmetic unit OR (3.0)
3.0 Error in exception generation unit
4.0 Error in register value at the output of execution stage

(6.0) OR
IF using arithmetic unit (2.0)
IF using load/store unit (21.0)
IF using complex ALU, then error in complex ALU
IF using branch unit (2.0)

5.0 Error in speculative register alias table
(-->16.0) OR (15.0) OR (18.0)
IF there exist previous read to the same architectural register
name and it mismatches

IF there exist another read or write to the same architectural
register name before the previously mentioned one

 IF first read/write matches with thir read, but mismatches
with second read then error in second read

 IF first read/write matches with second read but
mismatches with third read

 IF there exist a fourth read
IF third read matches fourth read, then storage
between second and third read is faulty
 IF there exist read/write before third read to

hamming-distance-1 address
IF third read equals hamming-distance-1
address’s value, then addressing was faulty
ELSE value reading was faulty

ELSE IF fourth read matches second read, then
third read faulty

ELSE third read OR storage faulty
IF there exist previous write to the same architectural register
name and it mismatches

IF there exist another read afterwards

Technical Report (version 1.2) – last updated Dec 10th, 2008

13

IF First write matches third read, but mismatches second
read, then second read is faulty
ELSE IF second read and third read matches but
mismatches with first write, then first write or storage
between first write and second read are faulty
ELSE first write, second read and storage in between are
all faulty

6.0 Error in register value at the input of execution stage
Displacement selection multiplexor (7.0)
OR forwarding path (8.0)

7.0 Displacement selection multiplexor
IF instruction is supposed to take immediate
 IF operand residue doesn’t match immediate residue
 IF repeated inputs don’t match output,
 THEN error in multiplexor
 ELSE Error in opcode or immediate (17.0)
ELSE

IF immediate has been obtained from non-immediate field
of the instruction

THEN opcode or immediate (17.0)
 ELSE physical register file (5.0)

8.0 Forwarding path
 IF data dependency analysis violation
 THEN muxes + select signals
 ELSE (4.0) OR (9.0)

9.0 Error in physical register file
(4.0) OR wrong physical register name from RAT (5.0) OR
Similar analysis to 5.0 except use register value instead of
physical register name and use physical register name instead of
architectural register name

10.0 Error in decoder part 1
(6.0) OR (3.0) OR
 (Size bits flipped between output of decode to input of address

generator) OR
IF instruction is unaligned access
 (Wrong decode: unaligned decoded to aligned) OR
(Unaligned access bit flipped between output of decode and input
of address generator)

11.0 Error in decoder part 2
(3.0) OR
 IF exception at decode stage
 Wrong instruction written from icache (parity protection) OR
 (13.0) OR

IF fetched instruction doesn’t match with instructions in
binary
THEN error in fetch queue OR alignment&rotate unit

ELSE instruction word flip between fetch queue and input of
decode stage OR wrong opcode decode OR wrong
instruction written in fetch queue

 ELSE IF exception at execution stage
 Do the same check as above but the following is in addition:

Bitflip in doecded opcode field from output of decode stage to
input of execute stage

12.0 Integer overflow
(2.0) OR (3.0) OR (4.0)

13.0 Error in PC
IF control flow violation case 1
 IF instruction went to branch unit
 THEN opcode corruption (17.0)
 ELSE faulty nextPC select mux
IF control flow violation case 2
 IF instruction went to non-branch unit

 THEN opcode corruption (17.0)
 ELSE faulty nextPC select mux
IF control flow violation case 3,4
 THEN (4.0)

14.0 Error in address generator
(6.0) OR (2.0)

15.0 Error in architectural register name
Wrong decode or wrong decoded bits propagation (16.0)

16.0 Wrong physical register name from register free list
17.0 Error in decoded bit propagation

IF decoded bits differ with re-simulated result THEN error
18.0 Speculation recovery

IF after flush, results of flushed instruction are used rather than
results prior to flush THEN incorrectly not initiated recovery
IF latest results are not seen but older results are seen

 THEN incorrectly initiated recovery
19.0 Error in architectural register alias table

Similar analysis to 5.0 but physical register name and architectural
register names come from output of reorder buffer

20.0 Error in scheduler
Scheduler array OR
IF ID duplication (from decode analysis)
 Incorrectly cleared issued bits in the array OR

Queue pointer flip
 IF ID disappearance (from decode analysis)
 Incorrectly cleared valid bit in array
 OR queue pointer flip
 IF deadlocked
 IF ID disappearance then valid bit flip from issue until

execution
 ELSE incorrectly setting valid bit in array

21.0 Error in load/store unit (load/store analysis)

ACKNOWLEDGMENT
The authors would like to thank B. Gottlieb, N. Hakim, D.

Josephson, P. Patra, J. Stinson from Intel Corporation, O.
Mutlu from Microsoft Research, and E. Rentschler from AMD
for their discussions and assistance during the course of this
research.

REFERENCES
[Abramovici 06] Abramovici, et al., “A Reconfigurable Design-for Debug

Infrastructure for SOCs”, Proc. Design Automation Conf. , 2006.
[Alpha 99] Alpha 21254 Microprocessor Hardware Reference Manual, July

1999.
[Ando 03] Ando, H., et al., “A 1.3-GHz Fifth-Generation SPARC64

Microprocessor”, IEEE JSSC, vol.38, no.11, pp. 1896-1905, Nov 2003.
[Anis 07] Anis, E. and N. Nicolici, “On using lossless compression of debug

data in embedded logic analyzers”, Proc. Intl. Test Conf., 2007.
[Austin 99] Austin, T.M., “DIVA: A Reliable Substrate for Deep Submicron

Microarchitecture Design”, Proc. Intl. Symp. on Microarchitecture, 1999.
[Bayazit 05] Bayazit, A.A. and S. Malik, “Complementary Use of Runtime

Validation and Model Checking”, Proc. Intl. Conf. on Computer-aided
Design, 2005.

[Caty 05] Caty, O, P. Dahlgren and I. Bayraktaroglu, “Microprocessor Silicon
Debug based on Failure Propagation Tracing”, Proc. Intl. Test Conf.,
2005.

[Chen 08] Chen, K., S. Malik, and P. Patra. "Runtime Validation of Memory
Ordering Using Constraint Graph Checking". Proc. Intl. Symp. on
High-Performance Computer Architecture, 2008.

[Dahlgren 03] Dahlgren, P., P. Dickinson and I. Parulkar, “Latch Divergence in
Microprocessor Failure Analysis”, Proc. Intl. Test Conf., 2003.

[Heath 04] Heath M.W., W.P. Burleson and I.G. Harris, “Synchro-Tokens:
Eliminating Nondeterminism to Enable Chip-Level Test of

Technical Report (version 1.2) – last updated Dec 10th, 2008

14

Globally-Asynchronous Locally-Synchronous SoC’s”, Proc. Conf. on
Design, Automation and Test in Europe, pp1532-1546, 2004.

[IVM] http://www.crhc.uiuc.edu/ACS.
[Josephson 01] D. Josephson, S. Poehhnan, V. Govan, “Debug methodology

for the McKinley processor”, Proc. Intl. Test Conf., pp451-460, 2001.
[Josephson 06] Josephson, D., “The Good, the Bad, and the Ugly of Silicon

Debug”, Proc. Design Automation Conf.., 2006.
[Leon 06] Leon, A.S., B. Langley, and J.L Shin “The UltraSPARC T1

Processor: CMT Reliability”, Proc. Custom Integrated Circuits Conf.,
2006.

[Livengood 99] Livengood, R. and D. Medeiros, “Design for (physical) Debug
for Silicon Microsurgery and Probing of Flip-chip Packaged Integrated
Circuits”, Proc.Intl.Test Conf., 1999.

[Lu 82] Lu, D.J. “Watchdog Processors and Structural Integrity Checking”,
IEEE T COMPUT., pp.681-685, July 1982.

[MacNamee 00] MacNamee, C. and D. Heffernan, “Emerging On-chip
Debugging Techniques for Real-time Embedded Systems”, Computing &
Control Engineering Journal, vol.11, no.6, pp.295-303, Dec 2000.

[Oh 02] Oh, N., S. Mitra and E.J.McCluskey, “ED4I: Error Detection by
Diverse Data and Duplicated Instructions”, IEEE T COMPUT, vol.51,
no.2, pp.180-199, Feb 2002.

[Patra 07] Patra, P., “On the Cusp of a Validation Wall”, IEEE DES TEST
COMPUT, vol.24 no.2, pp.193-196, Mar 2007.

[Parker 03] Parker K.P., The Boundary-Scan Handbook, 3rd ed., Springer,
2003.

[Sanda 08] Sanda P.N. et al., “Soft-error resilience of the IBM POWER6
processor”, IBM Journal of Research and Development, vol.52, no.3,
2008.

[Sarangi 06] Sarangi, S.R., B.Greskamp and J.Torrellas, “CADRE:
Cycle-Accurate Deterministic Replay for Hardware Debugging”, Intl.
Conf. on Dependable Systems and Networks, 2006.

[Sarangi 07] Sarangi, S.R., et al., “Patching Processor Design Errors with
Programmable Hardware”, IEEE MICRO, vol.27, no.1, pp.12-25, Jan
2007.

[Silas 03] Silas, I., et al., “System-Level Validation of the Intel Pentium M
Processor”, Intel Technical Journal, May 2003.

[simplescalar] www.simplescalar.com.
[Trong 07] Trong, S.D., et al., “P6 Binary Floating-Point Unit”, Proc. Intl.

Symp. on Computer Arithmetic, 2007.
[Wagner 06] Wagner, I., V. Bertacco and T. Austin, “Shielding Against Design

Flaws with Field Repairable Control Logic”, Proc. Design Automation
Conf., 2006.

[Wang 04] Wang, N.J., et al., “Characterizing the effects of Transient Faults on
a High Performance Processor Pipeline”. Intl. Conf. on Dependable
Systems and Networks, 2004.

[Yerramilli 06] Yerramilli, S., “Addressing Post-Silicon Validation Challenge:
Leverage Validation & Test Synergy (Invited Address)”, Intl. Test Conf.,
2006.

