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Abstract 
Carbon Nanotubes (CNTs) are grown using chemical self-

assembly. As a result, it is extremely difficult to ensure exact 
positioning and uniform density of CNTs. Density variations in CNT 
growth can compromise reliability of Carbon Nanotube Field Effect 
Transistor (CNFET) circuits, and result in increased delay variations. 
A parameterized model for CNT density variation is presented based 
on experimental data extracted from aligned CNT growth. This model 
is used to quantify the impact of such variations on design metrics 
such as noise margins and delay variations of CNFET circuits. Finally, 
we analyze correlation that exists in aligned CNT growth, and 
demonstrate how the reliability of CNFET circuits can be significantly 
improved by taking advantage of such correlation. 
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1. Introduction 
Carbon Nanotube Field Effect Transistors (CNFETs) show 

promise as extensions to Silicon CMOS. Ideal CNFET circuits show 
13X better Energy-Delay Product (EDP) advantage over 32 nm 
Silicon CMOS [Deng 07a]. This analysis assumes that the CNFETs 
consist of multiple aligned semiconducting Carbon Nanotubes (CNTs) 
with a uniform density of 250 CNTs/μm [Deng 07a]. However, 
current CNT synthesis processes are far from being perfect: 
1. A third of the CNTs are grown as metallic [Kang 07], creating 
source-drain shorts in the CNFETs causing excessive leakage and 
reduced noise margins in CNFET circuits. Hence, metallic CNTs (m-
CNTs) must be removed [Zhang 06, Collins 01]. However, current m-
CNT removal techniques are not perfect as they do not remove all m-
CNTs and also inadvertently remove some s-CNTs.  
2. Although CNT growth on quartz yields a large fraction (> 99%) of 
aligned CNTs [Kang 07, Patil 08a], there exists a non-negligible 
fraction of misaligned and mis-positioned CNTs which may cause 
incorrect logic functionality [Patil 08b]. Layout design principles 
described in [Patil 08b] can enable CNFET circuits immune to such 
misaligned and mis-positioned CNTs.  
3. The average density of CNTs obtained today is 10-50 CNTs/μm 
[Kocabas 07]. Advances in CNT synthesis are essential to improve 
this average density from this value to the required density of 250 
CNTs/μm. However, mere increase in average CNT density is not 
enough. Large variations are present in the CNT density. CNFETs 
fabricated using these CNTs not only have large variation in their 
performance but also have a significant probability of complete failure 
in the case when there is no CNT present in the CNFET, since the 
locations of the CNTs cannot be determined during layout design. The 
presence and removal of m-CNTs introduce additional variations 
resulting in increased performance (delay) variations and also 
increased probability of failure. 

In this paper, we characterize CNT density variations using 
Scanning Electron Microscopy (SEM) and Atomic Force Microscopy 
(AFM) images (e.g., Fig. 1.1) of aligned CNTs grown on quartz. The 
impact of these variations on CNFET circuits is analyzed. Since the 
CNTs are aligned over long distances (>100 μm), correlation exists 
between CNFETs at different locations. We show that such 
correlations in CNTs can be effectively utilized to design CNFET 
circuits with significantly improved noise margin characteristics and 
reduced delay variations. 

The key contributions of this paper are: 

1) Characterization of CNT density distributions from SEM and AFM 
images of aligned CNT growth samples.  

2) A parameterized model based on renewal theory [Cox 62] for CNT 
density variations fitted to experimental data. 

3) Quantitative analysis of the impact of non-uniform CNT density 
distribution, together with m-CNT growth, and m-CNT removal, on 
circuit performance metrics such as noise margin and delay 
variations. 

4) Special layout design guidelines for CNFET-based circuits in the 
presence of CNT density variations by utilizing CNT density 
correlation. 
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Figure 1.1. (a) SEM image of aligned CNTs on quartz with catalyst 
stripes of size 0.5 μm.  SEM (b) and AFM (c) images of aligned CNTs 

between catalyst stripes. 

2. Characterization and Modeling of CNT Density Variations 
In order to characterize CNT density variations, we analyzed SEM 

and AFM images (Fig. 1.1) of aligned CNTs grown on single crystal 
quartz wafers. Aligned CNTs were grown on single-crystal quartz wafers 
using Fe nanoparticles as the catalyst patterned at predefined stripes 
using lithography as shown in Fig. 1.1a  [Kang 07, Patil 08a]. In this 
paper, we focus on the CNTs between catalyst stripes. We performed 
image processing on such SEM and AFM images (e.g. Fig. 1.1b and 1.1c) 
to extract the locations of ~1,500 CNTs. Further, a parameterized 
analytical model is derived and fitted to the experimentally extracted 
CNT density distribution. We assume that the CNT density distribution 
does not vary across the CNT sample. 

2.1. CNT Count and Spacing Distribution 
We can represent a CNFET as a box with width W and length L1

 
with CNTs aligned along the L direction (Fig. 2.1a). CNT count is 
defined as the number of CNTs that completely bridge the upper and the 
lower sides of the box (and is, hence, equal to the number of CNTs that 
connect source and drain contacts in the corresponding CNFET). We 
denote CNT count by N(W, L) since it is a function of width (W) and 
length (L). N(W, L) is a random variable that depends on the location of 
this box. 

To simplify the analysis, we consider the 1-D limit of the function  
N (W, L) as L approaches 0: 

),(lim)(
0

LWNWN
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=   (2.1) 

Such simplification is acceptable because, for relatively aligned 
CNT growth and small channel-length2 (Length(CNT) >> L) CNFETs, 
the difference between the number of CNTs passing through the upper 
side of the box and the number of CNTs passing through the lower side 
of the box is negligible.  
                                                                 
1 The length (L) of the box is equal to sum of CNT channel length and the 

lengths of the source and drain doped CNTs regions.  
2 Aligned CNT growth processes produce CNTs with lengths >  

100 μm [Kang 07]. 
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CNT spacing, denoted by S, is defined as the distance between 
neighboring CNTs measured perpendicular to the direction of L as L 
approaches 0.  Figure 2.1b shows the CNT spacing distribution 
extracted from SEM images of CNTs (e.g., Fig. 1.1) by considering all 
possible pairs of CNTs in the images. 

We number the CNTs in the box from 1 through N. The CNT 
immediately outside the box to the left is numbered 0. Let Sj (j = 1, 2, 
3…) be the spacing random variables from the  
(j-1)th CNT to the jth CNT (Fig. 2.2). Figure 2.2 shows the correlation 
coefficients (ρ) between pairs of these CNT spacings extracted from 
the images. Chi-squared independence test [Ross 05] on the pairs of 
CNT spacing (Fig 2.2) shows that hypothesis that the CNT spacing is 
independent is accepted. 
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Figure 2.1. (a) CNT count model. (b) CNT spacing distribution. 
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Figure 2.2. Correlation Coefficient and χ2 independence test results 

for CNT spacing.  

2.2. Derivation of CNT Count Distribution from Spacing 
Distribution 

The distribution of CNT count, N(W), is important for 
characterizing the statistical performance of CNFETs because it 
decides the drive current of a CNFET. However, extracting the 
distribution of N(W) experimentally can be time-consuming since this 
distribution can be dependent on W. Spacing distribution, on the other 
hand, is width independent and easy to extract experimentally. 
Renewal theory [Cox 62, Cameron 98] can be applied to derive CNT 
count distribution from CNT spacing distribution.  

Based on the results from Sec. 2.1, we assume that CNT spacing, 
Sj (j = 1, 2, 3 …) is identical and independently distributed (i.i.d), with 
probability density function (pdf) fS(s), cumulative distribution 
function (cdf) FS(s), mean μS and standard deviation σS. 

Let SSn denote the sum of n successive CNT spacings: 
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The pdf of SSn can be extracted experimentally or derived by 
convolving the individual distributions: 
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where fS1(s) = fS2(s)=… = fSn(s) = fS(s). 
First, we will consider the case when the left side of the box is to 

the right of CNT 0 by an infinitesimal amount, as shown in Fig. 2.2, 
then. 
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where Prob(I) represents the probability of event I, and FSSn(W) the 
cumulative distribution of SSn. From (2.4), it is clear that the probability 
distribution of N(W) is 
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WFSS  is defined as 1 so that (2.5) holds for all non-negative integers 

n.  
Equation (2.5) calculates the distribution of N(W) for the cases 

when the left side of the box is to the right of CNT 0 by an infinitesimal 
amount as shown in Fig. 2.2a. In reality, the left side of the box 
corresponding to a CNFET can be at any random position. In this case, 
the spacing distribution of the spacing from the left side of the box to the 
first CNT inside the box, denoted by S1*, is not necessarily equal to the 
original distribution of S1. [Cox 62] found that the pdf of S1* is given by 
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If (2.6) is used in place of fS1(w) in (2.3), a more strict result can be 
derived in place of (2.5) [Cox 62]. It can be shown that the only case 
when S1* has the exact same distribution as S1 is when the spacing 
distributions are exponential. In this case, N(W) follows Poisson 
distribution with parameter W/μS.  

2.3. Asymptotic Count Distribution 
The methodology discussed in Sec. 2.2 can be used to derive the 

distribution N(W) for arbitrary W. When W ∞, the asymptotic 
distribution of N(W) can be shown [Cox 62] to follow a Gaussian 
distribution as a result of the central limit theorem.  The asymptotic 
mean and variance of N(W) are derived [Cox 62] as 
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Therefore, we have 
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In practice, we find that W does not need to be very large to reach 
this asymptotic limit. Figure 2.3 shows the experimental count 
distribution N for a box of W = 2 μm along with the predicted 
distributions derived by both the exact calculation (2.5) and Gaussian 
approximation (2.9). Both predictions give similar results when 
compared with the experimentally extracted distribution when used in 
the analysis of CNFET circuits (Sec. 4). In this case, the average CNT 
count under this gate is only 8.9. Since the growth of m-CNTs and their 
removal make CNFETs with fewer CNTs unreliable for VLSI 
integration (more details in Sec. 3), the Gaussian approximation is 
appropriate for most practical cases.  

As shown in (2.9), the only growth characteristics needed to derive 
the asymptotic CNT count distribution are the mean (μS) and variance (σS) 
of CNT spacing.  In count data analysis, the index of dispersion or Fano 
factor is defined as the ratio of variance to the mean [Cameron 98]. The 
index of dispersion of the CNT count distribution can be calculated from 
the coefficient of variation of the inter-CNT spacing (γ = σS / μS) as given 
in (2.10).  
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The index of dispersion is an important factor in determining the 
variation in CNFET circuit. In our extracted data, the index of dispersion 

 correlation 
coefficient 

p-value
of χ2 
test 

S1, S2 0.0517 0.93 
S1, S3 -0.0025 0.90 
S1, S4 -0.0408 0.60 
S1, S5 0.0054 0.79 
S1, S6 -0.0033 0.91 
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equals 0.50. For a Poisson distribution the index of dispersion is equal 
to 1. This implies that the experimental CNT count distribution has 
less variation than that of a Poisson distribution. 
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Figure 2.3. Experimentally extracted CNT count distribution 

compared to predicted distributions (exact method and Gaussian 
approximation). 

2.4. Count and Spacing Distributions for Semiconducting 
CNTs 

The discussion in Sec. 2.1 to 2.3 applies to all CNTs, regardless of 
their types (s- or m-CNTs). In practice, m-CNTs must be removed and 
the distributions of interest after m-CNT removal are the spacing and 
count distributions of the s-CNTs. We derive such distributions by 
assuming that the probability of any CNT being an m-CNT (s-CNT) is 
pm (ps), independent of the types any of its neighboring CNTs, with pm 
+ ps = 1. 

Consider the spacing between two s-CNTs separated by a random 
number of m-CNTs. We label the first s-CNT as CNT 0 and the 
subsequent s-CNT as CNT M (with M-1 m-CNTs between the two s-
CNTs). Then according to the above assumption, M is a geometrically 
distributed random variable [Ross 01]. The spacing between the two s-
CNTs can be modeled as the following stochastic sum of the original 
spacing distribution: 
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In general, this distribution can be derived from its moment 
generating function, which is the composite function of the moment 
generating functions of M and S. But for the asymptotic case described 
in Sec. 2.3, we only need to find the mean and variance of the s-CNT 
spacing distribution 
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Using (2.9), the s-CNT count distribution can be approximated 
from μ(Ss-CNT) and σ2(Ss-CNT). Then the index of dispersion (γ2

s-CNT) of 
s-CNT count distribution can be derived as 

msCNTs pp +=−
22 γγ  (2.14) 

where γ is the coefficient of variation of the inter-CNT spacing for all 
CNTs. γ2

s-CNT is a weighed average of γ2 and 1 with weights ps and pm 
respectively. The experimentally extracted value for γ is 0.50 (Sec. 
2.3). For a pm of 1/3, γ2

s-CNT equals 0.67. Thus, m-CNTs increase the 
variation of the CNT count distribution in the case of our 
experimentally extracted CNT density distribution. 

2.5. Spatial Correlation in Count distribution 
For analyzing the circuit level impact of CNT density variations, 

it is also necessary to characterize the spatial correlation of the CNT 
count distribution. We find that the spatial correlation of CNT count 
for aligned CNT growth is direction-dependent.  
1) Count distribution in the x-direction is highly uncorrelated. 

Figure 2.4a plots the correlation coefficient of CNT count as a 
function of the x distance (shown in the figure) between two boxes with 
the width of both boxes equal to 1 μm, caculated based on 
experimentally extracted data. When the x distance between the two 
boxes is less than 1 μm, the two count distributions exhibits positive 
correlation since they share some CNTs. However, when the x distance 
increases beyond the width of boxes, the correlation coefficient drops to 
around 0.  
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Figure 2.4. CNT correlation in x-direction (a) and y-direction (b). 
Based on experimentally extracted data. 

 

2) Count distribution in the y-direction is highly correlated  
Figure 2.4b shows the correlation coefficient of CNT count as a 

function of the y distance between the two boxes. As shown in Fig. 2.4b, 
the correlation coefficient remains above 0.9 up to a y distance of 6 
microns. This is a direct result of well-aligned CNT growth. The gradual 
decrease in the correlation coefficient is mainly due to CNTs terminating 
in the middle of the two boxes (Fig 2.4b). 

Note that Fig. 2.4 only shows the case for local correlations for the 
within catalyst stripes (Fig 1.1b). For larger y distances between boxes 
that spans across catalyst stripes, e.g. for larger circuits, a change in 
correlation should be expected. For chip level statistical analysis, such 
change must be carefully characterized and modeled. For this paper, we 
focus on CNFET circuits between catalyst stripes.  

3. Impact of CNT Density Variation on CNFET Reliability 
An important failure case of a CNFET is when there is no s-CNT left 

in the CNFET [Zhang 08]. We can derive the probability of such failure 
using the CNT density distributions derived in Sec. 2. In the case of 
ideal removal of m-CNTs (all m-CNTs are removed without removing 
any s-CNTs), each CNT has a probability pf = pm of not being an s-CNT. 
In situations when there is inadvertent removal of s-CNTs, this 
probability increases to 

rssmf pppp +=   (3.1)  

where prs is the probability that an s-CNT will be inadvertently removed. 
We generalize the above discussion by considering pf as the failure 
probability for each CNT. Then, for a CNFET with N independent CNTs 
(before any removal), the failure probability for the CNFET (pF) is given 
by 

N
fF pp =  (3.2) 

Equation (3.2) shows that the failure probability of a CNFET 
exponentially decreases with the number of CNTs. When CNT density 
variation is taken into account, pF is derived below based on the notion 
of conditional probability 
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where W is the width of the CNFET.  
For a given CNFET width, CNT density variation (or equivalently 

variation in N(W)) always results in a higher probability of failure (pF) 
compared to the case with uniform CNT density. To prove this, the 
arithmetic mean-geometric mean inequality can be applied to (3.3), 
which gives 
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The right hand side of inequality in (3.4) is the failure probability 
of the uniform density case3. 

To quantify such degradation in pF due to CNT density variation, 
we can define Nmin as the minimum average CNT count μ(N(W)) for a 
target value of failure probability (pF). Such definition of Nmin 
corresponds to the minimum CNFET width circuit designers must 
satisfy for a certain average inter-CNT spacing of the given 
technology. Table 3.1 shows the values of Nmin with varying pm and prs 
for uniform CNT density as well as in the presence of CNT density 
variation using Gaussian approximation. As shown in the table, CNT 
density variation significantly increases Nmin for all cases especially 
for small values of CNT failure probability (pf). 

 

Table 3.1.  Minimum average number of CNTs per CNFET (Nmin) for 
CNFET failure probability (pF) = 10-8 with uniform CNT density and 

in the presence of CNT density variation. 
pm 33% 33% 10% 10% 

prs 16% 0% 16% 0% 

pf 43.7% 33% 24.4% 10% 

Nmin (uniform density) 23 17 13 8 

Nmin (with density 
variation) 29 24 20 18 

4. Circuit Level Impact of CNT Correlation 

4.1. CNT Count Correlation between CNFETs 
The correlation of CNT counts between two arbitrary CNFETs 

(shown in Fig. 4.1) is considered in this section. We assume the 
following two simplifications based on the results in Sec. 2.5: 
1) CNT counts from non-overlapping sections of the CNFETs along 

the x-direction are completely uncorrelated (Fig 2.4a);  
2) CNT counts from equally-sized overlapping sections of CNFETs 

along the x-direction are completely correlated independent of 
their y-locations. Figure 2.4b shows that this correlation in fact 
decreases with increasing y-distance between the 2 CNFETs. 
This slight decrease in correlation is neglected in this part and 
more detailed models can be used to extend the results shown 
below. 

y CNFET 1
W1, N1 N1P  = N2P

{ N1 – N1P, N1P } uncorrelated
{ N2 – N2P, N2P } uncorrelated
{ N1 – N1P, 

N2 – N2P } uncorrelated

N1PN1-N1P

N2P N2-N2P

WP

CNFET 2
W2, N2 x  

Figure 4.1. CNT count correlation between arbitrary CNFETs. 
 

Let W1 (W2), N1 (N2) represent the width and CNT count of CNFET 
1(2), and WP, N1P = N2P represent the width and CNT counts of the 
overlapping CNFET sections in the x direction. Then 

                                                                 
3  Even with uniform CNT density, the CNT count distribution of a CNFET is 

actually bimodal with possible values of N = [W/s]-1 and [W/s]+1, where s 
is the uniform inter-CNT spacing. However, the failure probability of this 
case is very close to the unimodal case and all the discussions are valid. 

)()()()(
)()()(

)])([()(

111121

1211
2
1

12111121

PPPP

PPP

PPPP

NNNNNN
NNNNN

NNNNNNNN

−+−+
+−−+=

−+−+=

μμμμ
μμμ

μμ
 (4.1) 

 It can be further shown that the covariance between N1 and N2 is 
given by: 
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where σ2 (N1P) or σ2 (N2P) can be calculated using (2.8). The correlation 
coefficient between N1 and N2 is then: 
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4.2. Utilizing CNT Correlation to Optimize Layout of Cross-
Coupled Inverters  

In this section, we describe a way to utilize the correction discussed 
in Sec 4.1 to improve the reliability of CNFET circuits. We consider a 
non-ideal m-CNT removal process which removes m-CNTs with 
probability prm and inadvertently removes s-CNTs with probability prs. 
Consider a pair of cross-coupled inverters (Fig. 4.2) each with a p-type 
CNFET (PFET) and an n-type CNFET (NFET). Static noise margin 
(SNM), defined as the maximum nested square between the normal and 
mirrored voltage transfer curves (VTCs) for the two inverters [Lohstroh 
83], is used as a metric for the robustness of the cross-coupled inverters 
(Fig 4.2b). When m-CNTs are present, the inverters do not give a full 
rail-to-rail output, which reduces the gain as well as the noise margin 
(Fig. 4.2c).   

Suppose that SNMR is the required static noise margin that such 
cross-coupled inverters must satisfy. Given the CNT density distribution, 
CNT processing parameters (prm, prs) and the width of the CNFETs (W), 
we can calculate the probability that a gate will fail to satisfy this SNM 
requirement. We refer to this as PNMV or probability of noise margin 
violation. We show that the layout of such cross-coupled inverters can be 
optimized to reduce the PNMV by up to three-orders of magnitude. Five 
different layout styles are studied as shown in Fig. 4.3. The different 
styles have different degrees of correlation among the four CNFETs 
comprising the cross-coupled inverters. The symmetries in VTCs caused 
by such correlation are also shown in Fig 4.3. Style 1 (Fig. 4.3a) has 
perfect correlation among the drive strengths of all four CNFETs. Style 2 
(Fig. 4.3b) has perfect correlation between the PFET and NFET of each 
inverter, while the CNFETs in the different inverters are uncorrelated. 
Style 3 (Fig. 4.3c) has perfect correlation between the PFET of one 
inverter and the PFET of the second inverter and similarly for the NFETs. 
Style 4 (Fig. 4.3d) has perfect correlation between the PFET of one 
inverter and the NFET the other and vice versa. Style 5 (Fig. 4.3e) has 
completely uncorrelated CNTs. A CNFET SPICE model [Deng 06] with 
a 32 nm CNFET technology is used to simulate the VTCs. This SPICE 
model has been calibrated to experimental data with 90% accuracy 
[Amlani 06]. We assume a uniform CNT diameter of 1.5 nm and pm = 
1/3. SNMR is assumed to be Vdd / 4 and prs = 16%4  
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(a)     (b)             (c) 

Figure 4.2 Cross-coupled CNFET inverters (a) with Voltage Transfer 
Curves without m-CNTs (b) and with m-CNTs (c). 
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Figure 4.4 shows the PNMV for the 5 layout styles as a function 
of the survival probability of m-CNTs (1 – prm). Symmetry in the 
VTCs of the two CNFET inverters, introduced by correlation among 
CNFETs, plays an important role in determining the PNMV. Layout 
styles 1, 2 and 3 ensure symmetry between the two “eye-openings” of 
the VTC curves and therefore have low PNMV values. Style 4 has the 
highest PNMV for all values of prm because of the anti-symmetry in 
the VTC curves (Fig. 4.3d). Style 5 has no inherent symmetry because 
all the CNFETs are uncorrelated and has intermediate values of 
PNMV.  
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Figure 4.4. PNMV as a function of the m-CNT removal rate for 

five different layout styles shown in Fig. 4.3. Gaussian 
approximation of CNT count distribution is used with μ(N) = 20. 

 

When the removal probability of m-CNTs is very high  
(1- prm < 10-6), there are negligible number of surviving m-CNTs. In 
this limiting case, failure of this circuit is due to no CNTs left in the 
CNFETs because of either inadvertent removal of s-CNTs or CNT 
density variation as discussed in Sec. 3. PNMV value in this case for 
layout styles 1, 2, 3 and 5 (style 4 is an exception because of its anti-
symmetry) can be given by  

F
k

F kppPNMV ≈−−= )1(1  (4.4) 
where k is number of uncorrelated CNFETs in the circuit and pF is the 
failure probability for each one of them, calculated using equation 
(3.4). Style 1 is has the lowest PNMV because of perfect correlation 
between the 4 CNFETs (k = 1). Styles 2 and 3 (k = 2) and style 5 (k = 
4) have higher values of PNMV. 

For lower probabilities of m-CNT removal (1 - prm >10-6), the 
presence of m-CNTs can no longer be ignored and becomes the 
dominant factor in PNMV. In this case, style 1 does not perform as 
well as styles 2, 3 and 5, since the presence of m-CNTs will cause 

equal degradation of all four correlated CNFETs in style 1, while 
such equal degradation is unlikely in the case of uncorrelated 
CNFETs in styles 2, 3 and 5. 

4.3. Delay Variations 
Suppose inverter I1 has N1 s-CNTs, driving inverter I2 with N2 s-

CNTs. We assume that the NFET and PFET of each inverter are 
perfectly correlated, similar to layout style 2 (Fig. 4.3b) discussed in Sec. 
4.2. The first order delay model can be written as: 
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where CI is the interconnect capacitance, C0 is the capacitance per CNT, 
I0 is the drive current per CNT. Second order effects such as diameter 
dependence of CNT capacitance and current drive, and the charge-
screening effect are not included [Deng 07b, Kshirsagar 08]. 

With a first order Taylor expansion ([Chang 03]), (4.5) can be written 
as 
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The variance of the delay caused by CNT density variation is then 
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The covariance term in (4.7) can be calculated using (4.2). Note that 
a positive correlation between N1 and N2 helps in reducing the overall 
delay variation. As an example, consider two inverter chains with all 
inverters equally sized: 

1)  Correlated inverter chain: CNTs in the PFETs and NFETs of all 
inverters are perfectly correlated. For example, all the inverters are laid 
out along in y-axis in Fig. 4.1. 
      2) Uncorrelated inverter chain: The NFET and the PFET within each 
inverter are still perfectly correlated but there is no correlation between 
CNTs in different inverters. For example, all the inverters are laid out 
along in x-axis in Fig. 4.1. 
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Figure 4.3. CNFET cross-coupled inverter layout styles 1 – 5 (a through e) with varying degrees of CNT correlation. 
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Using the same CNFET SPICE model described in Sec. 4.2, we 
performed Monte-Carlo simulations, each with 2000 samples, of these 
two inverter chains with different number of stages in the presence of 
CNT density variation and ideal m-CNT removal (defined in Sec. 3). 
Table 4.1 shows the simulation results using both the experimentally 
extracted CNT count distribution and the Gaussian approximation to 
CNT count distribution. The Gaussian approximation gives less than 
5% error when compared to the results using the experimentally 
extracted CNT count distribution. 

 

Table 4.1 Simulated delay variations for correlated and uncorrelated 
inverter chains (W = 3 μm for all CNFETs) using 2000 sample 

Monte Carlo simulations with experimentally extracted CNT count 
distribution. Results in parenthesis use the Gaussian CNT count 

distribution.  
 Correlated Uncorrelated 

No. of stages 3 5 10 3 5 10

μ(delay) (ps) 2.93 
(2.93) 

4.89 
(4.88) 

9.77 
(9.77) 

2.98 
(2.98) 

4.97
(4.97)

9.93
(9.93)

      σ(delay) (ps) 0.06 
(0.06) 

0.10 
(0.09) 

0.20 
(0.19) 

0.13 
(0.13) 

0.15
(0.15)

0.19
(0.18)

σ(delay) / μ(delay) 
(%) 

1.97 
(1.90) 

2.02 
(1.93) 

2.04 
(1.97) 

4.49 
(4.31) 

3.07
(2.91)

1.88
(1.83)

Average 
σ(delay) / μ(delay) 

per stage (%) 

1.97 
(1.90) 

2.02 
(1.93) 

2.04 
(1.97) 

8.90 
(8.53) 

8.72
(8.49)

8.57
(8.50)

 

The following observations can be made from the simulation 
results presented in Table 4.1: 
1. The correlated inverter chain gives lower per-stage variation. 

This effect can be shown from (4.7) since the covariance term is 
positive. In the limiting case when CI  0, the per-stage variation 
drops down to zero. However, the multiple stages are perfectly 
correlated, so the σ/μ for the delay per stage is the same as the 
σ/μ for the total delay.  

2. The uncorrelated inverter chain gives higher per-stage variation 
because the covariance term in (4.7) is zero. However, it can be 
shown that the delays of successive stages are negatively 
correlated resulting in faster than N  drop in delay variation as 
number of stages increases. Therefore, when logic depth is high, 
the variability is similar to what we can achieve in the correlated 
case. 

5. Conclusion 
Since CNTs are grown using chemical self-assembly, it can be 

extremely difficult to guarantee perfect alignment, positioning and 
uniform density of CNTs. Hence, we have to design circuits that can 
tolerate CNT imperfections. This paper shows that, in addition to 
imperfections caused due to mis-positioned CNTs and metallic CNTs, 
density variations in CNT growth result in compromised reliability 
and increased delay variation in CNFET circuits. To be able to 
analyze the effects of such CNT density variations, parameterized 
models supported by experimental data are needed. This paper 
presents such a model fitted to data from images of aligned CNTs. 
This model, with appropriate data input to account for CNT 
correlation, can be applied to statistical timing analysis or yield 
analysis of VLSI circuits. The correlation in aligned CNT growth has 
a significant impact on design metrics such as noise margin and delay 
variation. The reliability of CNFET circuits can be significantly 
improved by taking advantage of the correlation in aligned CNTs. 
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