Supplemental Materials

\mathbf{Color}	Order	Scientific name	Location	H	n	p_1	p_2	p_3	p_{10}	p_{14}	p_{18}
Red	Clionaida	Cliona delitrix	USA	1.10	3	0.333	0.333	0.333	0.0000	0.0000	0.0000
Yellow	Dictyoceratida	Dysidea avara	Spain	1.11	65	0.488	0.398	0.076	0.0004	0.0003	0.0003
Blue	Haplosclerida	Amphimedon chloros	Israel	1.11	1678	0.865	0.010	0.010	0.0032	0.0017	0.00012

Table S1: Three sponge microbiomes highlighted in Figure 6.

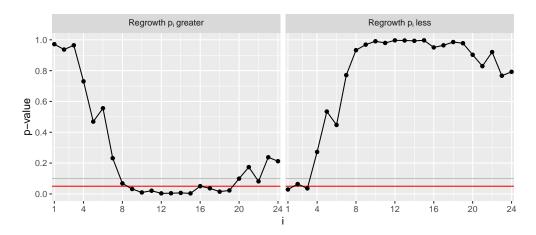


Figure S1: Wilcoxon rank sum P-values for comparisons of p_i between regrowth and non-regrowth reefs, for i from 1 to 24. The red line denotes the P=0.05 significance threshold, and the gray line denotes P=0.10. The left-hand panel presents P-values under the alternative hypothesis that p_i is greater for regrowth reefs than for non-regrowth reefs; the right-hand panel presents P-values under the alternative hypothesis that p_i is lower for regrowth reefs.

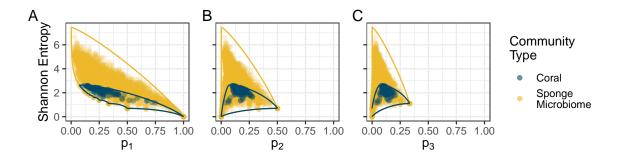


Figure S2: Bounds on Shannon entropy for truncated coral (navy) and sponge microbiome communities (orange), as functions of the abundance of the *i*th-most abundant taxon. (A) i = 1. (B) i = 2. (C) i = 3. The coral bounds assume n = 14, and the sponge bounds assume n = 1,734; vectors are truncated to these lengths then normalized to have sum equal to 1.