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Supplementary online material748

Appendix A. Finding the equilibria749

To find the equilibria of eq. 2 we set the left-hand-sides of eq. 2 to zero and solve for nine variables. This750

procedure begins by considering marginal variables for the disease and sentiment subsystems (eq. 3).751

Subsystems. Summing over the disease variables to write eq. 2 in terms of U , A, and P yields the following752

SIR model that is equivalent to eq. 1:753

U ′ = b− cAU − (w + b)U

A′ = cAU − (s+ b)A

P ′ = sA− bP.

(18)

Setting the left-hand sides of eq. 18 to zero yields two choices for the equilibrium value of A: either Â = 0,754

in which case Û = b/(w + b), or Â > 0, in which case Û = (s + b)/c and Â = b/(s + b) − (w + b)/c. These755

results are summarized in Table 5.756

Summing over the sentiment variables to write eq. 2 in terms of S, I, and R yields the following equations:757

S′ = b− rIS − (vp+ b)S

I ′ = rIS − (g + b)I

R′ = gI − bR,

(19)

where p = (SP )/S. Setting the left-hand sides of eq. 19 to zero yields two choices for the equilibrium758

value of I: either Î = 0, in which case Ŝ = 1 − v(ŜP )/b, or Î > 0, in which case Ŝ = (g + b)/r and759

Î = [b− v(ŜP )]/(g + b)− b/r. These results are also summarized in Table 5.760

To recover a standard SIR model (eq. 1) from the disease subsystem (eq. 19), we need p ≈ 1, so almost761

all disease-susceptible individuals must be pro-vaccine. We would therefore require that the undecided SU762

state has a short residence time and that the pro-vaccine decision rate is much faster than the anti-vaccine763

transmission. Informally, this scenario requires a large pro-vaccine decision rate w that greatly exceeds the764

anti-vaccine transmission rate c.765

DSFE and DFE. Each of the four choices for the pair (Â, Î) leads to one of the four possible equilibria.766

Setting the left-hand-sides of eq. 2 to zero and solving for all nine variables, making use of the results in767

Table 5, yields the equilibria.768

For the DSFE (eq. 6) and the DFE (eq. 8), the zero values for Î and Â (Table 5) lead to many of the769

variables being zero at equilibrium, with the rest straightforward to obtain. Finding the SFE and EE requires770

more work, as described in the following sections.771

Equilibrium Ŝ Î R̂ Û Â P̂

DSFE 1− vw
(v+b)(w+b) 0 vw

(v+b)(w+b)
b

w+b 0 w
w+b

DFE 1− v
v+b

[
s
c (C0 − 1) + w

c

]
0 v

v+b

[
s
c (C0 − 1) + w

c

]
s+b
c

b
s+b −

w+b
c

s
c (C0 − 1) + w

c

SFE g+b
r

b−vŜP
g+b −

b
r 1− g

r −
b−vŜP
g+b

b
w+b 0 w

w+b

EE g+b
r

b−vŜP
g+b −

b
r 1− g

r −
b−vŜP
g+b

s+b
c

b
s+b −

w+b
c

s
c (C0 − 1) + w

c

Table 5. Equilibrium values of marginal compartment variables from eq. 2. For

the SFE, ŜP = [bR0 + v + w −
√

(bR0 + v + w)2 − 4vw]/(2R0v) (eq. 10). For the

EE, ŜP is obtained from eq. 11.
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SFE. For the SFE (eq. 10), the zero value of Â (Table 5) means that ŜA = 0. Thus, substituting the result772

for Î in Table 5 into the third equation of eq. 2 yields ŜU in terms of ŜP . Inserting this result into the first773

equation of eq. 2 yields a cubic polynomial in ŜP :774

0 = v2R2
0(ŜP )3 −

[
2vbR2

0 + v(w + v)R0

]
(ŜP )2 +

[
b2R2

0 + b(w + v)R0 + wv
]

(ŜP )− wb. (20)

The polynomial in eq. 20 has three roots. One root is b/v. If ŜP = b/v, then Î 6 0 (see Table 5), which775

is impossible given that the SFE requires Î > 0. The other two roots are:776

ŜP =
(bR0 + v + w)±

√
(bR0 + v + w)2 − 4vw

2R0v
. (21)

Note that the quantity b2R2
0 + 2bR0(v + w) + (v − w)2 under the radical is always nonnegative.777

The condition Î > 0 determines which root, positive or negative for the sign of the radical, is the778

equilibrium solution. By substituting the positive root of eq. 21 for ŜP into Î = [b − v(ŜP )]/(g + b) − b/r779

(Table 5), we obtain Î > 0 ⇐⇒
√

(bR0 + v + w)2 − 4vw < bR0− (2b+v+w). If the right-hand side of this780

expression is negative, then it is not possible to satisfy this condition. For the right-hand side to be positive,781

we require R0 > (2b+ v + w)/b. If the right-hand side is positive, then we can square both sides to obtain782

Î > 0 ⇐⇒ 2b+ v + w

b
< R0 < 1 +

vw

b(b+ v + w)
. (22)

The right-hand condition of eq. 22 simplifies to (b+v+w)2 < vw, which is impossible for nonnegative values783

of the parameters. Hence, the positive root in eq 21 is never the SFE equilibrium value of SP . The negative784

root of eq. 21 must therefore be the SFE equilibrium value of SP whenever such an equilibrium exists.785

Substituting the negative root of eq. 21 for ŜP into Î = [b − v(ŜP )]/(g + b) − b/r (Table 5) yields786

Î > 0 ⇐⇒
√

(bR0 + v + w)2 − 4vw > 2b+v+w− bR0. If the right-hand side of this expression is negative,787

then the condition is always satisfied. For the right-hand side to be negative, we require R0 > (2b+v+w)/b.788

If the right-hand side is positive, then we can square both sides to obtain789

Î > 0 ⇐⇒ R0 >
1

1− vw
(v+b)(w+b)

. (23)

It can be shown that R0 > (2b + v + w)/b implies the right-hand condition of eq. 23, so the condition in790

eq. 23 is necessary and sufficient for the existence of the SFE.791

EE. The EE (eq. 12) can be obtained by first solving for x = rÎ, setting the left-hand sides of eq. 2 to792

zero. Substituting the result for Â from Table 5 into the first equation of eq. 2 yields ŜU in terms of x.793

Substituting this result into the second equation of eq. 2 yields ŜI in terms of x. Substituting both results794

into the third equation of eq. 2, writing ŜP in terms of x using the result for Î in Table 5, yields795

0 = E(x) = (x+ s+ b) (x+ v + b) (x+ bC0)

[
b

v

(
1− 1

R0

)
− x

vR0

]
− wbx− b2 [w + s(C0 − 1)] . (24)

Polynomial E(x) (eq. 24) can be written E(x) = Q(x) − L(x), where Q(x) is a factorizable quartic

polynomial and L(x) is a line:

Q(x) = (x+ s+ b) (x+ v + b) (x+ bC0)

[
b

v

(
1− 1

R0

)
− x

vR0

]
(25)

L(x) = wbx+ b2 [w + s (C0 − 1)] . (26)

A positive real root x∗ of E(x) yields the desired equilibrium quantity rÎ. Once rÎ is obtained, the other796

equilibrium values follow. Roots of E(x) are intersections between Q(x) and L(x), points x∗ where Q(x∗) =797

L(x∗). The following argument proves that there is at most one positive real root x∗ of E(x), and obtains798

the existence condition for this root.799
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We can assume C0 > 1 because we are at the EE, so that C0 = 1/Û > 1 (Table 5). We can also assume800

R0 > 1 because R0 = 1/Ŝ > 1 (Table 5). Then Q(0) = bC0(s + b)(v + b)(b/v)(1 − 1/R0) > 0, so Q(x) is801

downward-pointing and has three negative real roots (−s− b, −v− b, and −bC0) and one positive real root,802

b (R0 − 1). We can see that Q(−b) = L(−b) = b2s(C0 − 1), so Q(x) and L(x) intersect at −b.803

Note that all three negative roots of Q(x) are less than −b. Local optima of Q(x) are at roots of Q′(x),804

which is a cubic equation; there can therefore be at most three local optima. There must be at least one805

local optimum between two nondegenerate real roots. Q(x) has four real roots, so there must be at least806

three local optima. There are therefore exactly three local optima, only one of which can possibly be located807

at an x-value greater than −b. This optimum must be a maximum, as Q(x) is downward-pointing and the808

positive real root is unique. As x increases from −b, Q(x) must therefore either monotonically decrease (the809

rightmost local maximum occurs at x 6 −b) or increase then decrease (the rightmost local maximum occurs810

for x > −b). Because Q(−b) = L(−b), the former case yields no intersection for x > −b, and the latter case811

yields exactly one such intersection. Q(x) and L(x) therefore have at most one positive intersection.812

For this intersection to be positive, Q(x) must stay above L(x) until after x = 0. Thus, for the positive813

intersection x∗ between Q(x) and L(x) to exist, and therefore the positive real root of E(x) and an endemic814

equilibrium to exist, we require Q(0) > L(0), which is equivalent to815

R0 >
1

1− v
v+b

(
s
s+b + w−s

c

) . (27)

It is possible to write down the positive real root of E(x), but it is unwieldy:816

x
∗
= −

1

3
[b(2−R0+C0)+s+v]−

2
4
3 {b2[(C0 + R0 − 1)(C0 + R0)− C0(R0 + 1) + 1]− R0 + R2

0}+ (s− v)2 + sv + b(1 + R0 − C0)(s+ v)(
18− 2

2
3

)(
W +

√
X2 − 4Y 3

) 1
3

,

(28)

where

W = b3[−2R3
0 + 3(1− C0)R2

0 + 3(1− 2C0 + C2
0 )− 2(1− C0)3]

− 3b2[(s+ v)((C2
0 + 4C0R0 +R2

0 − 4R0 − 2C0 + 1)]

− 3b[(C0 −R0 − 1)(s2 − 4sv + v2)− 9vwR0] + 2(s2 − v2)(s− v)− sv(s+ v)

X = −2b3R3
0 − 3b2R2

0[b(C0 − 1) + s+ v] + 3bR0[b2(C0 − 1)2 − 4b(s+ v)(C0 − 1) + s2 − 4sv + v2 + 27bvw]

+ 2b3(C3
0 − 1)− 3b2C2

0 (2b+ s+ v) + 3bC0[2b(b+ s+ v)− (s2 − 4sv + v2)]

− 3b2(s+ v) + 3b(s2 − 4sv + v2) + 2(s2 − v2)(s− v)− sv(s+ v)

Y = b2[c20 − C0 + 1 + (C0 +R0)(R0 − 1)] + s2 − sv + v2 − b(s+ v)(C0 −R0 − 1).

Appendix B. Stability conditions for the DSFE817

We use a linear stability analysis to determine the stability conditions for the four equilibria. An equilibrium818

is stable via this analysis if the eigenvalues of the Jacobian matrix evaluated at that equilibrium all have819

negative real part (Guckenheimer and Holmes, 1990). As the nine variables in eq. 2 sum to 1, we can drop one820

of them; we drop RP . Element (i, j) of the 8× 8 Jacobian matrix J of the system in eq. 2—without RP—is821

computed by taking the derivative of the ith equation in eq. 2 with respect to the variable in the jth equation822

(Guckenheimer and Holmes, 1990). Note that in eq. 2, we use I = IU + IA+ IP and A = SA+ IA+RA;823
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to compute the Jacobian matrix, we must first replace I and A in eq. 2 with these expressions.824

J =


−rI−cA−w−b −c(SU) 0 −r(SU) −(r+c)(SU) −r(SU) 0 −c(SU)

cA c(SU)−rI−s−b 0 −r(SA) c(SU)−r(SA) −r(SA) 0 c(SU)
w s −rI−v−b −r(SP ) −r(SP ) −r(SP ) 0 0
rI −c(IU) 0 r(SU)−cA−g−w−b r(SU)−c(IU) r(SU) 0 −c(IU)
0 rI+c(IU) 0 r(SA)+cA r(SA)+c(IU)−g−s−b r(SA) 0 c(IU)
0 0 rI r(SP )+w r(SP )+s r(SP )−g−b 0 0
0 −c(RU) 0 g −c(RU) 0 −cA−w−b −c(RU)
0 c(RU) 0 0 c(RU)+g 0 cA c(RU)−s−b

 .
(29)

For the DSFE, we have the following eigenvalues:

λ1 = −s− b− g < 0

λ2 = −w − b− g < 0

λ3 = −s− b < 0

λ4 =
bc

w + b
− s− b

λ5 =
rb

w + b

(
1 +

w

v + b

)
− g − b

λ6 = −w − b < 0

λ7 = −w − b < 0

λ8 = −v − b < 0.

The conditions for stability of the DSFE are therefore

λ4 < 0 ⇐⇒ C0 < 1 +
w

b
(30)

λ5 < 0 ⇐⇒ R0 <
1

1− vw
(v+b)(w+b)

. (31)

Appendix C. Stability conditions for the DFE825

Using the Jacobian matrix (eq. 29), we have the following eigenvalues for the DFE:

λ1 = −bC0 < 0

λ2 = −s− b < 0

λ3 = −s− b− g < 0

λ4 = −bC0 − g < 0

λ5 = r

[
1− v

v + b

(
s

s+ b
+
w − s
c

)]
− b− g

λ6 = −b− v < 0

λ7 =
1

2

[
−bC0 +

√
(bC0)2 + 4(s+ b) [(w + b)− bC0)]

]
λ8 =

1

2

[
−bC0 −

√
(bC0)2 + 4(s+ b) [(w + b)− bC0)]

]
< 0.

The conditions for stability of the DFE are therefore

λ5 < 0 ⇐⇒ R0 <
1

1− v
v+b

(
s
s+b + w−s

c

) (32)

λ7 < 0 ⇐⇒ C0 > 1 +
w

b
. (33)
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Appendix D. Stability conditions for the SFE826

Using the Jacobian matrix (eq. 29), we have the following eigenvalues for the SFE:

λ1 = −s− b− g < 0

λ2 = −s− rÎ − b < 0

λ3 =
bc

w + b
− s− b

λ4 = −w − b < 0

λ5 = −w − b− g < 0.

The remaining eigenvalues are the roots of the following cubic equation:827

x3+
[
2(rÎ + b) + v + w

]
x2+

[
(rÎ)2 + rÎ(3b+ g + v + w) + (v + b)(w + b)

]
x+rÎ(g+b)[2(rÎ+b)+v+w−bR0].

(34)

We can show that the roots of eq. 34 all have negative real part—and that therefore none of these eigenvalues828

affect the stability of the SFE—by using the Routh-Hurwitz criterion concerning the signs of coefficients of829

the polynomial and the signs of certain functions of the coefficients (Gantmacher, 1960; Meinsma, 1995).830

For the polynomial in eq. 34 to satisfy the Routh-Hurwitz criterion, and to therefore conclude that all831

its roots have negative real part, we require first that all coefficients of the polynomial have the same sign.832

Label the coefficient of xi in eq. 34 bi. Then we have:833

b0 = rÎ(g + b)[2(rÎ + b) + v + w − bR0]

b1 = (rÎ)2 + rÎ(3b+ g + v + w) + (v + b)(w + b)

b2 = 2(rÎ + b) + v + w

b3 = 1.

(35)

For i = 1, 2, 3, bi > 0, as sums of positive quantities (eq. 35). For b0, note that at the SFE, Î = [b −834

v(ŜP )]/(g + b) − b/r > 0 (Table 5), so rÎ = bR0 − vR0(ŜP ) − b by eq. 4. Because 0 6 ŜP 6 Ŝ = 1/R0835

(Table 5), we have the following bounds on rÎ:836

b(R0 − 1)− v 6 rÎ 6 b(R0 − 1). (36)

The condition b0 > 0 is equivalent to rÎ > 1
2 (bR0 − v − w − 2b). From eq. 36, rÎ > bR0 − b − v >837

bR0 − v − w − 2b > 1
2 (bR0 − v − w − 2b). Consequently, b0 > 0, so all coefficients of eq. 34 are positive.838

For the second part of the Routh-Hurwitz criterion, we must also show that several terms computed from

these coefficients are positive. A cubic polynomial has only one additional condition that must be shown:

b2b1 − b3b0 > 0. We have

b2b1 − b3b0 = b2b1 − rÎ(g + b)(b2 − bR0)

= b2

[
(rÎ)2 + rÎ(3b+ g + v + w) + (v + b)(w + b)− rÎ(g + b)

]
+ rÎ(g + b)bR0

= b2

[
(rÎ)2 + rÎ(2b+ v + w) + (v + b)(w + b)

]
+ rÎ(g + b)bR0 > 0.

We conclude that by the Routh-Hurwitz criterion, all roots of the polynomial in eq. 34—which are eigenvalues

λ6, λ7, and λ8—have negative real part. Hence, provided the SFE exists (i.e. the condition in eq. 23 is

satisfied), the stability condition for the SFE is:

λ3 < 0 ⇐⇒ C0 < 1 +
w

b
.
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Appendix E. Stability conditions for the EE839

Using the Jacobian matrix (eq. 29), we have the following eigenvalues for the EE:

λ1 = −bC0 − g < 0

λ2 = −s− b− g < 0

λ3 =
1

2

[
−bC0 −

√
(bC0)2 + 4(s+ b)(w + b− bC0)

]
< 0

λ4 =
1

2

[
−bC0 +

√
(bC0)2 + 4(s+ b)(w + b− bC0)

]
.

The remaining eigenvalues are the roots of a quartic equation:840

x
4
+
[
3rÎ + b(2 + C0) + s+ v

]
x
3

+
[
3(rÎ)

2
+ rÎ [b(5 + 2C0) + g + 2(s+ v)] + b

2
(1 + 2C0) + sv + b(1 + C0)(s+ v)

]
x
2

+
[
(rÎ + s+ b)(rÎ + v + b)(rÎ + bC0) + (g + b)

[
3(rÎ)

2 − (bR0 − bC0 − 2b− s− v)(rÎ)
]]
x

+ (g + b)rÎ
[
(rÎ + bC0)(rÎ + b+ s+ v) + sv + (rÎ + b− bR0)(2rÎ + v + b+ s+ bC0)

]
= 0.

(37)

841

One condition required for stability of the EE is:842

λ4 < 0 ⇐⇒ C0 > 1 +
w

b
. (38)

As we did with the SFE, we use the Routh-Hurwitz criterion to show that the roots of eq. 37 all have negative843

real part—and that therefore none of these eigenvalues affect the stability of the EE. Eq. 37 has coefficients844

b0 = (g + b)rÎ
[
(rÎ + bC0)(rÎ + b+ s+ v) + sv + (rÎ + b− bR0)(2rÎ + v + b+ s+ bC0)

]
b1 = (rÎ + s+ b)(rÎ + v + b)(rÎ + bC0) + (g + b)

[
3(rÎ)2 − (bR0 − bC0 − 2b− s− v)(rÎ)

]
b2 = 3(rÎ)2 + rÎ [b(5 + 2C0) + g + 2(s+ v)] + b2(1 + 2C0) + sv + b(1 + C0)(s+ v)

b3 = 3rÎ + b(2 + C0) + s+ v

b4 = 1.

(39)

We see that as sums of positive quantities, bi > 0 for i = 2, 3, 4. We must next show b0, b1 > 0.845

Additional bounds on rÎ. To aid in the proof, we derive further bounds on the value of rÎ for the EE in

addition to eq. 36. In particular, we obtain a tighter bound on rÎ than eq. 36 by noticing that a necessary

condition for the EE is w 6 b(C0 − 1) (from the requirement λ4 < 0, eq. 38). We can create a new function

Lm(x) = b2(C0 − 1)(x+ s+ b),

which is greater than or equal to L(x) (eq. 26) if x > 0.846

Consider the process we used to study the roots of eq. 24 in Appendix A. Let Em(x) = Q(x) − Lm(x).847

Then for some x1 > 0, Em(x1) = 0 implies Q(x1) = Lm(x1) > L(x1). From our discussion in Appendix A,848

we know that for a positive intersection x∗ between Q(x) and L(x) to exist, Q(x) > L(x) for 0 6 x < x∗849

and Q(x) < L(x) for x∗ < x. Thus, x1 < x∗, so a real positive root of Em(x)—in particular, the largest850

positive real root, when it exists—provides a lower bound on the real positive root of E(x) (eq. 24), which851

is the equilibrium value of rÎ. Of the four roots of Em(x), two are always negative (−b and −s− b), one is852

x1 =
1

2

[
bR0 − bC0 − b− v +

√
(bR0 − bC0 − b− v) (1 + 4bC0) + 4b2C2

0

]
, (40)

and the other is the same as that in eq. 40 except for a negative sign in front of the radical term; this root853

is therefore smaller than x1 and we do not need to consider it.854
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b1 > 0 in eq. 39. Note that b1 (eq. 39) is the following cubic polynomial G(t) evaluated at t = rÎ:

G(t) = (t+ s+ b)(t+ v + b)(t+ bC0) + (g + b)
[
3t2 − (bR0 − bC0 − 2b− s− v)t

]
.

This expression consists of the sum of a positive cubic polynomial and an upward-pointing parabola with roots855

at 0 and t1 = 1
3 (bR0 − bC0 − 2b− s− v). If t1 6 0, then G(t) > (t+s+b)(t+v+b)(t+bC0) > 0 for all t > 0. If856

t1 > 0, thenG(t) > (t+s+b)(t+v+b)(t+bC0) > 0 for all t > t1. Thus, G(t) > 0 for all t > max(0, t1). Because857

rÎ > 0—guaranteed by eq. 27—to show that the coefficient b1 of x in eq. 37 is positive, it suffices to show that858

rÎ > t1. The result follows immediately from eq. 36, as rÎ > bR0−v− b > bR0− bC0−2b− s−v = 3t1 > t1.859

b0 > 0 in eq. 39. To evaluate the sign of b0 (eq. 39) at equilibrium, we consider two quadratic polynomials.

First, we examine q(t), the negative of the quadratic polynomial for which the lower bound x1 (eq. 40) is

the larger root (taking the negative does not change the root):

q(t) = t2 + [b(1 + C0 −R0) + v] t− b2C0(R0 − 1) + vb(C0 −R0).

The second polynomial, g(t), is equal to the quadratic part of b0 (eq. 39) when evaluated at t = rÎ:860

g(t) = 3t2 + 2 [b(2 + C0 −R0) + s+ v] t− b2C0(R0 − 1) + b(1 + C0 −R0)(s+ b+ v) + sv. (41)

Because b0 = (g+ b)rÎg(rÎ), the signs of g(t) (eq. 41) and b0 (eq. 39) are the same. We must show g(t) > 0.861

We first note that g(t) and q(t) are upward-pointing parabolas that intersect at x2 = −s − b < 0 and862

2x3 = bR0 − bC0 − b− v. In addition, q(0)− g(0) = 2(s+ b)x3, so x3 and q(0)− g(0) have the same sign. If863

q(0) > g(0), then x3 > 0. In this case, q(t) > g(t) at t = 0 but then q(t) becomes less than g(t) for t > x3,864

with no further change in relative size, as no further intersections occur between g(t) and q(t) for t > x3.865

Crucially, x3 < x1 6 rÎ (eq. 40), so g(rÎ) > g(x1) > q(x1) = 0, which is what we wanted to show.866

If instead g(0) < q(0), then both intersections x2 and x3 are negative, so the relationship g(t) > q(t)867

continues to be true for all t > 0, and in particular we have g(t) > g(x1) > q(x1) = 0. In either case,868

g(t) > 0, and so b0 (eq. 39) is positive. We can therefore proceed with using the Routh-Hurwitz criterion.869

Notation for demonstrating that the additional terms of the Routh-Hurwitz criterion are870

positive. We define the following always-positive quantities to simplify the notation:871

ks = t+ s+ b

kv = t+ v + b

kc = t+ bC0.

(42)

Using the quantities in eq. 42, we can write coefficients from eq. 39 used in eqs. 43 and eqs. 44 as

b0 = [(g + b)(kskc + kvkc + kskv)− br(ks + kv + kc − x− b)] t

b1 = kskvkc + [(g + b)(ks + kv + kc)− br] t

b2 = kskc + kvkc + kskv + (g + b)t

b3 = ks + kv + kc

b4 = 1.

The Routh-Hurwitz criterion for a quartic polynomial requires the following two terms to be positive:

b3b2 − b4b1 > 0 (43)

(b3b2 − b4b1)b1 − b23b0 > 0. (44)
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Demonstrating that the condition in eq. 43 is satisfied. We can verify eq. 43 directly by noting that

b3b2 − b4b1 can be written as the following polynomial d(t) evaluated at t = rÎ:

d(t) = (ks + kc)(kv + kc)(ks + kv) + brt.

Because ks, kv, and kc are greater than 0 if t > 0, d(rÎ) > 0, so the condition in eq. 43 is satisfied.872

Demonstrating that the condition in eq. 44 is satisfied.873

Refining the condition in eq. 44. To verify eq. 44, we note that the quantity (b3b2 − b4b1)b1 − b23b0 can be874

written as the following polynomial p(t), evaluated at t = rÎ:875

p(t) = kskvkc(ks + kv)(ks + kc)(kv + kc) + tp1(t) + brt2 [(g + b)(ks + kv + kc)− br] , (45)

where

p1(t) = br
[
(ks + kv + kc)

2(ks + kv + kc − t− b)− (ks + kv)(ks + kc)(kv + kc) + kskvkc
]

+ (g + b)
[
(ks + kv + kc)(ks + kv)(ks + kc)(kv + kc)− (ks + kv + kc)

2(kskv + kskc + kvkc)
]
.

Our goal is to show that p(rÎ) > 0. By inspection, the first of three terms in p(t) (eq. 45) is always876

positive. With a reminder that R0 = r
g+b , the third term being positive is equivalent to:877

0 < brt2 [(g + b)(ks + kv + kc)− br]

0 < (g + b)(ks + kv + kc)− br

bR0 < ks + kv + kc

bR0 < 3t+ 2b+ s+ v + bC0

3t > bR0 − 2b− s− v − bC0.

(46)

From eq. 36, we have that rÎ > bR0 − v− b > bR0 − 2b− s− v− bC0 >
1
3 (bR0 − 2b− s− v − bC0), and the878

condition in eq. 46 is satisfied at t = rÎ.879

The first and third terms of p(t) (eq. 45) are positive at t = rÎ. If we can show that the second term880

is also positive at t = rÎ, then we have shown that p(rÎ) > 0 and that therefore the condition in eq. 44 is881

satisfied. The second term is positive if and only if p1(t) > 0 at t = rÎ. Rearranging p1(t) > 0 yields:882

bR0

[
(ks + kv + kc)

2(ks + kv + kc − t− b)− (ks + kv)(ks + kc)(kv + kc) + kskvkc
]
> kskvkc(ks + kv + kc).

(47)

We can demonstrate that the refined condition in eq. 47 is satisfied by bounding the left-hand side of883

eq. 47 from below and demonstrating that this lower bound exceeds the right-hand side. We can bound the884

left-hand side of eq. 47 from below as follows:885

bR0

[
(ks + kv + kc)

2(ks + kv + kc − t− b)− (ks + kv)(ks + kc)(kv + kc) + kskvkc
]

> bR0

[
(ks + kv + kc)

2(ks + kv + kc − t− b)− (ks + kv)(ks + kc)(kv + kc)− kskvkc
]

= bR0 (ks + kv + kc)
[
k2s + k2v + k2c + kskv + kskc + kvkc − (ks + kv + kc)(t+ b)

]
= (ks + kv + kc) [p2(t) + kskvkc] ,

(48)

where886

p2(t) = bR0

[
3t2 + 3(s+ v + bC0 + b)t+ bC0(s+ v + bC0 + b) + s2 + v2 + sv + b2 + 2b(s+ v)

]
− (t+ s+ b)(t+ v + b)(t+ bC0).

(49)
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Using this lower bound from eq. 48, we obtain a new condition that implies eq. 47:887

(ks + kv + kc) [p2(t) + kskvkc] > kskvkc(ks + kv + kc)

p2(t) + kskvkc > kskvkc

p2(t) > 0.

(50)

Showing p2(t) > 0 implies eq. 47, the refinement of the condition of eq. 44.888

Outlining the demonstration of the refined condition in eq. 50. We will now build up to demonstrating that889

eq. 50 is true through a series of smaller computations. To show that eq. 50 holds for t = rÎ, it suffices to890

show first that p2(t) (eq. 49) has at most one positive real root, and then that eq. 50 holds for t = 0 and891

some value t2 > rÎ. If p2(t) has at most one positive real root, then p2(t) has at most one sign change for892

t > 0. If eq. 50 holds for t = 0 and some value t2 > rÎ, then p2(t) has the same sign throughout [0, t2], the893

possible interval in which t = rÎ resides, which implies that eq. 50 is true for t = rÎ.894

p2(t) (eq. 49) has one positive real root. To show that p2(t) (eq. 49) has at most one positive real root (in895

particular exactly one such root), we use Descartes’ rule of signs, which states that the upper bound for the896

number of positive real roots of a polynomial is the number of sign changes between its coefficients from897

lowest order to highest order.898

The coefficients of p2(t) are

c0 = bR0

[
bC0(s+ v + bC0 + b) + s2 + v2 + sv + b2 + 2b(s+ v)

]
− bC0(s+ b)(v + b)

c1 = 3(b+ bC0 + s+ v)bR0 − (b2 + 2b2C0 + bs+ bC0s+ bv + bC0v + sv)

c2 = 3bR0 − b(2 + C0)− s− v

c3 = −1.

The cubic coefficient c3 is obviously negative. The quadratic coefficient c2 is positive if899

3bR0 > 2b+ bC0 + s+ v. (51)

The linear coefficient c1 is positive if900

3bR0 >
b2 + 2b2C0 + bs+ bC0s+ bv + bC0v + sv

b+ bC0 + s+ v

=
(b+ bC0 + s+ v)(2b+ bC0 + s+ v)−

[
b2(1 + C0 + C2

0 ) + s2 + sv + v2 + b(2 + C0)(s+ v)
]

b+ bC0 + s+ v

= (2b+ bC0 + s+ v)− b2(1 + C0 + C2
0 ) + s2 + sv + v2 + b(2 + C0)(s+ v)

b+ bC0 + s+ v
.

(52)

Notice that eq. 51 implies eq. 52. It is therefore impossible for the quadratic coefficient to be positive but901

the linear coefficient to be negative. So, for c1, c2, and c3, we either have −/− /−, +/− /−, or +/+ /− as902

coefficient signs. If we can show that the constant term in p2(t) is positive, then our possible coefficient signs903

are +/− /− /−, +/+ /− /−, or +/+ /+ /−, all of which have exactly one sign change. By Descartes’ rule904

of signs, p2(t) would have at most one positive real root. We now show that c0, the constant term of p2(t)905

(eq. 49) is positive. Note that this is equivalent to applying t = 0 to eq. 50, and thus will also demonstrate906

that eq. 50 holds for t = 0. Applying t = 0 to eq. 50 yields p2(0) > 0 if907

bR0

[
bC0(s+ v + bC0 + b) + s2 + v2 + sv + b2 + 2b(s+ v)

]
> bC0(s+ b)(v + b). (53)
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Using the existence condition for the endemic equilibrium rÎ from eq. 27 yields908

bR0 >
b

1− v
v+b

(
s
s+b + w−s

c

)
>

b

1− v
v+b

(
s
s+b −

s
c

)
=

bC0(s+ b)(v + b)

b2C0 + sv + bC0(s+ v)

bR0[bC0(s+ v + b) + sv] > bC0(s+ b)(v + b).

(54)

The left-hand side of this condition is strictly less than the left-hand side of eq. 53. Hence, the sign of909

the constant term of p2(t) is positive, which means that by Descartes’s rule of signs, p2(t) has at most one910

positive real root. In fact, p2(t) has exactly one positive real root: its leading coefficient c3 is negative and911

it has positive y-intercept p2(0) > 0, so it must have at least one positive real root as well.912

Further refining the remaining condition for p2(rÎ) > 0. In the previous section, we have shown that p2(t)913

has one real positive root. In the process, we have also shown that p2(0) > 0. p2(t) is a downward-pointing914

cubic polynomial with positive y-intercept and one real positive root, so it must change sign only once on915

the interval t ∈ [0,∞). If we can show that p2(t2) > 0 for some t2 > rÎ > 0, then we know that this sign916

change must occur for t > t2, and so p2(rÎ) > 0.917

Let t2 = bR0 − b. We know that t2 > rÎ by eq. 36. Evaluating p2(t2) yields:

p2(t2) = bR0

[
3 (bR0 − b)2 + 3(s+ v + bC0 + b) (bR0 − b) + bC0(s+ v + bC0 + b) + s2 + v2 + sv + b2 + 2b(s+ v)

]
− (bR0 + s)(bR0 + v)(bR0 + bC0 − b)

= bR0

[
2(bR0)2 + 2 (b(C0 − 1) + s+ v) bR0 +

(
s2 + v2 + b2(C0 − 1)2

)]
− b(C0 − 1)sv

= p3(bR0),

where

p3(t) = t
[
2t2 + 2[b(C0 − 1) + s+ v]t+

(
s2 + v2 + b2(C0 − 1)2

) ]
− b(C0 − 1)sv.

To show p2(t2) > 0, it suffices to show918

p2(t2) = p3(bR0) > 0. (55)

To facilitate this proof, we rewrite p3(t) as follows:

p3(t) = t
[
t2 + bC0(s+ v + b) + sv + T (t)

]
− b(C0 − 1)sv,

where919

T (t) = [t+ s+ v + b(C0 − 1)]2 − 2[b(C0 − 1)(s+ v) + sv]− [bC0(s+ v + b) + sv]. (56)

Demonstrating that T (bR0) > 0. We can show that T (bR0) > 0 by noting that T (t) (eq. 56) is an upward-

pointing quadratic polynomial with larger root

t3 = b− bC0 − s− v +
√
b2C0 − 2bs+ 3bC0s− 2bv + 3bC0v + 3sv

If we can show that t3 6 b, then because T (t) (eq. 56) is upward-pointing and R0 > 1 (eq. 27), then we

would have T (bR0) > T (b) > T (t3) = 0. t3 6 b if and only if

bC0 + s+ v >
√
b2C0 − 2bs+ 3bC0s− 2bv + 3bC0v + 3sv

(bC0 + s+ v)2 > b2C0 − 2bs+ 3bC0s− 2bv + 3bC0v + 3sv

T1(bC0) > 0,
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where we can square both sides because both sides are positive, and920

T1(t) = t2 − (s+ v + b)t+ (s− v)2 + sv + 2b(s+ v). (57)

The quadratic polynomial T1(t) (eq. 57) is upward-pointing and has larger root

t4 =
1

2

[
s+ v + b+

√
(b− s− v)2 − 4 [s2 − sv + v2 + b(s+ v)]

]
.

If we can show that t4 6 b, then because T1(t) (eq. 56) is upward-pointing and C0 > 1 (eq. 38), T1(bC0) >

T1(b) > T1(t4) = 0. t4 6 b if and only if:

b >
1

2

[
s+ v + b+

√
(b− s− v)2 − 4 [s2 − sv + v2 + b(s+ v)]

]
b− s− v >

√
(b− s− v)2 − 4 [s2 − sv + v2 + b(s+ v)].

The condition for t4 to exist is

(b− s− v)2 > 4
[
s2 − sv + v2 + b(s+ v)

]
0 6 b2 − 6(s+ v)b− 3(s− v)2.

This condition is an upward-pointing parabola in terms of b with negative y-intercept. The value of b must

therefore be greater than the positive real root of this parabola, or

b > 3(s+ v) + 2
√

3(s2 + sv + v2)

b− s− v > 2
[
s+ v +

√
3(s2 + sv + v2)

]
> 0.

Thus, for t4 to exist, we need b− s− v > 0.921

Note that if t4 does not exist, then T1(t) > 0 for all t, and in particular, T1(bC0) > 0. We therefore have

addressed the case where b− s−v 6 0 and the case where t4 does not exist but b− s−v > 0. If b− s−v > 0

and t4 exists, then we have:

(b− s− v)2 > (b− s− v)2 − 4
[
s2 − sv + v2 + b(s+ v)

]
(b− s− v)2 > (b− s− v)2 − 4

[
(s− v)2 + sv + b(s+ v)

]
,

which is always true. Hence, t4 6 b if t4 exists, so T1(bC0) > 0. In turn, t3 6 b, and T (bR0) > 0.922

Demonstrating p2(rÎ) > 0 through the refined condition in eq. 55. Using the fact that T (bR0) > 0, we can

proceed to demonstrate the condition in eq. 55:

p3(bR0) = bR0

[
(bR0)2 + bC0(s+ v + b) + sv + T (bR0)

]
− b(C0 − 1)sv

> bR0

[
(bR0)2 + bC0(s+ v + b) + sv

]
− b(C0 − 1)sv

> bR0 [bC0(s+ v + b) + sv]− b(C0 − 1)sv

> bC0(v + b)(s+ b)− b(C0 − 1)sv

= b [bC0(s+ v + b) + sv]

> 0,

where the third inequality follows from eq. 54. Thus, eq. 55 is satisfied, which implies that eq. 50 holds at923

t = bR0 − b. Eq. 50 then holds at t = rÎ 6 t2, implying that all three terms of eq. 45 are positive at t = rÎ,924

satisfying eq. 44. By the Routh-Hurwitz criterion, all roots of eq. 37—λ5, λ6, λ7, and λ8—have negative925

real part. None of these eigenvalues contributes to determining stability of the EE. Provided the EE exists926

(i.e. the condition in eq. 27 is satisfied), the stability condition for the EE is therefore eq. 38.927

Boundary assignments for stability conditions in Table 3. Table 3 summarizes the results from928

Appendices A-E. The stability conditions for the DSFE come from eq. 30 and eq. 31, for the DFE from929
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eq. 33 and eq. 32, for the SFE from eq. 23 and eq. D, and for the EE from eq. 27 and eq. 38. As all these930

inequalities are strict, to complete Table 3, we identify the equilibria that are stable on the boundaries.931

From Table 5, we see that if C0 = 1 + w
b , then we have for the DFE and EE:

Â =
b

s+ b
− w + b

c

=
b

c

[
C0 −

(
1 +

w

b

)]
= 0.

We have shown that if equality occurs in the sentiment condition in Table 3, then Â = 0, so the DFE932

is equivalent to the DSFE and the EE is equivalent to the SFE. Hence, the equals sign in the sentiment933

condition is assigned to the DSFE and the SFE.934

Similarly, if R0 = 1

1−( v
v+b )( w

w+b )
, then we have

bR0 + v + w = b+ v + w +
vw

b+ v + w
,

and so for the SFE we have:

Î =
b− vŜP
g + b

− b

r

rÎ = R0(b− vŜP )− b

rÎ = R0

[
b− v

bR0 + v + w −
√

(bR0 + v + w)2 − 4vw

2R0v

]
− b

= bR0 − b−
1

2

[
bR0 + v + w −

√
(bR0 + v + w)2 − 4vw

]
= bR0 − b−

1

2

b+ v + w +
vw

b+ v + w
−

√(
b+ v + w − vw

b+ v + w

)2


= 0.

Finally, for the EE, if R0 = 1

1− v
v+b ( s

s+b+
w−s

c )
, then the only nonnegative root of eq. 24 is rÎ = x∗ = 0 (see935

Appendix A), and Î = 0.936

We have shown that if equality occurs in the disease condition in Table 3, then Î = 0, so the SFE is937

equivalent to the DSFE and the EE is equivalent to the DFE. Hence, the equals sign in the disease condition938

is assigned to the DSFE and the DFE.939

Appendix F. Boundary curves for Figure 2940

To generate Figure 2, we rearrange the conditions in Table 3 into the form w = fi(c), where is fi(c) is some941

function of c, i = A for the sentiment condition, and i = I for the disease condition. This rearrangement942

creates boundary curves in the c-w plane, demarcating regions of stability for the equilibria. The sentiment943

conditions for stability in Table 3 result in a boundary curve that determines endemism of the sentiment,944

and the disease conditions in Table 3 result in a boundary curve that determines disease endemism.945

In plotting the c-w plane, note that we have a choice among three pairs of sentiment parameters: c and946

w, s and w, and c and s. Only w appears in all conditions in Table 3, so that w is a natural choice. For947

the other parameter, c provides a complementary perspective on sentiment dynamics: c and w describe the948

two transitions from the U compartment (to A or P , respectively). Using w and s would instead focus on949

transitions to the P compartment (from U and A, respectively), leaving out the important U → A transition.950
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Rearranging the sentiment conditions in Table 3 yields the sentiment endemism boundary curve:951

fA(c) =

(
b

s+ b

)
c− b. (58)

If w < fA(c), then the sentiment is endemic; if w > fA(c), then the sentiment goes extinct. The slope of952

eq. 58 is always positive, and the intercept is always negative, so fA(c) always has the same qualitative shape953

regardless of specific parameter value choices.954

Our analysis of eq. 14 and eq. 15 demonstrates that 1 + v/b is greater than 1/[1− (v/(v+ b))(w/(w+ b))]955

and 1/[1 − (v/(v + b))(s/(s + b) + (w − s)/c)]. Thus, if R0 ≥ 1 + v/b, then the disease is always endemic956

(Table 3), and there is no disease endemism boundary curve.957

In the case where R0 < 1 + v/b, rearranging the disease conditions in Table 3 yields the disease endemism958

boundary curve:959

fI(c) =


vb

v+b
R0
−b − b if c 6 v(s+b)

v+b
R0
−b[

v+b
v

(
1− 1

R0

)
− s

s+b

]
c+ s if c > v(s+b)

v+b
R0
−b .

(59)

If w < fI(c), then the disease is endemic; if w > fI(c), then the disease goes extinct. In contrast to fA(c)960

(eq. 58), fI(c) (eq. 59) has different qualitative shapes for different sets of parameter values. We describe961

these sets in terms of R0 for R0 > 0.962

The shape of fI(c) (eq. 59) has three components: the flat value, the linear slope, and the point of963

intersection between the flat and linear parts. In Figure 2C, the flat value is the value of w separating blue964

from orange, the linear slope is the slope of the line separating red from purple, and the point of intersection965

is the point where all four colors intersect. The flat value is negative for R0 ∈ (0, 1) and zero for R0 = 1. It966

grows without bound as R0 increases from 1 to 1 + v/b. The key value of R0 here is 1.967

The linear slope of fI(c) starts negative for R0 ∈ (0, 1/[1 − sv
(s+b)(v+b) ]), becomes zero for R0 = 1/[1 −968

sv
(s+b)(v+b) ], and becomes positive for R0 > 1/[1− sv

(s+b)(v+b) ]. The key value of R0 here is 1/[1− sv
(s+b)(v+b) ],969

which is between 1 and 1 + v/b. Finally, the point of intersection between the flat and linear parts of fI(c)970

is positive for R0 ∈ (0, 1 + v/b).971

Combining these three components produces the four regimes in Figure 2. First, for R0 ∈ (0, 1), the flat972

part of fI(c) is negative, the linear slope is also negative, and the point of intersection is positive. fI(c) does973

not appear in the positive part of the c-w plane. This situation appears in Figure 2A.974

For R0 = 1, the flat part of fI(c) is zero, the linear slope is negative, and the point of intersection is975

positive. For R0 ∈ (1, 1/[1− sv
(s+b)(v+b) ]), the flat part of fI(c) is now positive, the linear slope is still negative,976

and the point of intersection is positive. This situation appears in Figure 2B. For R0 = 1/[1 − sv
(s+b)(v+b) ],977

the linear slope of fI(c) becomes zero; in particular, fI(c) = s.978

For R0 ∈ (1/[1 − sv
(s+b)(v+b) ], 1 + v/b), the flat part of fI(c) is positive, the linear slope is now positive,979

and the point of intersection is still positive. This situation appears in Figure 2C.980

As R0 →∞, for small s and small b, eq. 59 approaches eq. 58. Therefore, the more infectious the disease,981

the larger the portion of the parameter space where both disease and sentiment are stable or neither disease982

nor sentiment is stable. A larger portion of the parameter space consisting of either dual endemism or no983

endemism indicates a tighter coupling of disease and sentiment stability.984

Appendix G. Numerical methods985

For Figures 4-7, we used the ode function in the R package deSolve with step size 0.1 to numerically solve986

eq. 16. The initial condition for (SU, SA, SP, IU, IA, IP,RU,RA,RP ) in Figures 4-6 is (0.998, 0.001, 0, 0.001, 0, 0, 0, 0, 0).987

For Figure 6, we solved until the time point for introducing the new disease case, then adjusted the com-988

partment frequencies to introduce a new disease case by adding 0.001 to IU and removing 0.001 from SU ,989

then again solving the system but with this adjusted set of compartment frequencies as the initial condition.990
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The initial value for Figure 7A is (0.06375, 0.00525, 0, 0.001, 0, 0, 0, 0.06975, 0.86025). The initial condi-991

tion for Figure 7B is approximately (4.498× 10−5, 0.0653, 4.483× 10−5, 2.001× 10−8, 1.952× 10−4, 1.539×992

10−7, 3.502× 10−9, 0.759, 0.175). Exact values can be obtained from eq. 12.993

Appendix H. Assortative meeting994

New rates of interaction. Assortative meeting changes the rates of interaction between susceptible and

infected individuals. To describe the changes, consider random draws of two individuals from the population.

Consider the infection of an undecided individual. This infection requires the draw of an SU individual and

an I individual. Because U individuals are unaffected by assortativity, if the SU individual is drawn first,

the rate of drawing an I individual is I = IU + IA + IP . If the I individual is drawn first, however, then

under assortativity the only way to draw an SU individual is to have drawn an IU individual. This SU

draw comes from the entire population because U is unaffected by assortativity. For the set of interactions

that infect an SU individual, we have

2(SU)IU = (SU)(IU + IA+ IP ) + (1− α)(IU + IA+ IP )(SU) + α(IU)(SU)

= (SU)(2(IU) + (2− α)(IA+ IP ))

IU = IU +
(

1− α

2

)
(IA+ IP ).

Now consider the infection of an anti-vaccine individual. This infection requires the draw of an SA995

individual and an I individual. If the SA individual is drawn first, then under assortativity, an IA individual996

must be drawn from the A pool. If an IU individual is drawn first, assortativity has no effect. If an IA997

individual is drawn first, then under assortativity, the SA individual must be drawn from the A pool. If an998

IP individual is drawn first, then an SA individual cannot be drawn under assortativity. We have999

2(SA)IA = (SA)

[
(1− α)(IU + IA+ IP ) + α

IA

A

]
+ (IU)(SA) + (IA)

[
(1− α)(SA) + α

(SA)

A

]
+(IP )(1− α)(SA)

= (SA)

[
(2− α)(IU) +

(
2
(

1− α+
α

A

))
(IA) + 2(1− α)(IP )

]
IA =

(
1− α

2

)
(IU) +

(
1 + α

1−A
A

)
(IA) + (1− α)(IP ).

Because assortativity works in the same way for pro-vaccine individuals as it does for anti-vaccine individ-1000

uals, infection of a pro-vaccine individual is analogous to the infection of an anti-vaccine individual, except1001

the roles of A and P are switched.1002

2(SP )IP = (SP )

[
(1− α)(IU + IA+ IP ) + α

IP

P

]
+ (IU)(SP ) + (IA)(1− α)(SP )

+(IP )

[
(1− α)(SP ) + α

(SP )

P

]
= (SP )

[
(2− α)(IU) + 2(1− α)(IA) +

(
2
(

1− α+
α

P

))
(IP )

]
IP =

(
1− α

2

)
(IU) + (1− α)(IA) +

(
1 + α

1− P
P

)
(IP ).
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Changes to equilibria. In the assortative meeting model (eq. 16), analytical equilibria for the SFE and

the EE are not feasible to obtain. The DSFE is unchanged (eq. 6) and the DFE is now:

ŜU =
s+ b

c
(
1− α

2

)
ŜA =

b

s+ b
− w + b

c
(
1− α

2

)
ŜP =

bs

(s+ b)(v + b)
+

b(w − s)
c
(
1− α

2

)
(v + b)

R̂P =
vs

(s+ b)(v + b)
+

v(w − s)
c
(
1− α

2

)
(v + b)

.

Increasing assortativity therefore increases the equilibrium frequency of the SU class and decreases that of1003

the SA class. These results accord with the expectation that assortativity makes sentiment more difficult to1004

transmit, because A× U interactions decrease in frequency in favor of A×A interactions.1005

The sentiment stability boundary from eq. 58 becomes

w =
b

s+ b

(
1− α

2

)
c− b.

Increasing assortativity decreases the slope of this line, decreasing the area of parameter space where senti-1006

ment is endemic.1007

Initial rate of increase. We now investigate the effect of assortativity when introducing an infected1008

individual into a population without endemic disease. The quantity dI
dt = I ′ determines the rate of change of1009

disease frequency. We are interested in how adding a single infected individual to the population affects how1010

quickly the disease increases (or decreases). If we add an infected individual of sentiment type i = U,A, P ,1011

then the “direction” we perturb the system is given by1012

vU =

(
−1

2
, 0, 0,

1

2
, 0, 0, 0, 0, 0

)
vA =

(
0,−1

2
, 0, 0,

1

2
, 0, 0, 0, 0

)
vP =

(
0, 0,−1

2
, 0, 0,

1

2
, 0, 0, 0

)
.

(60)

The direction vectors vU , vA, and vP in eq. 60 correspond to transferring a small frequency of susceptible1013

individuals of type i to infected individuals of type i. They therefore represent the infection of an individual1014

from either the SU , SA, or SP classes, respectively, in the limit of an infinite population.1015

To obtain the effect that perturbing the system in direction vi (eq. 60) has on the speed at which the1016

disease frequency increases or decreases, we compute the directional derivative DiI
′ of I ′ with respect to the1017

vector vi for i = U , A, and P , respectively. For instance, increasing DUI
′ increases the rate that the disease1018

spreads if an IU individual is introduced in the population.1019
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Computing directional derivatives with respect to the three vectors in eq. 60 requires the gradient of I ′.1020

Because the last three terms in the vectors are all zero, we only need the first six partial derivatives:1021

∂I ′

∂(SU)
= r

(
(IU) +

(
1− α

2

)
(IA+ IP )

)
∂I ′

∂(SA)
= r

[(
1− α

2

)
(IU) + (1− α)(IP ) + (IA)

(
1 + α

1−A
A
− α (SA)

A2

)]
∂I ′

∂(SP )
= r

[(
1− α

2

)
(IU) + (1− α)(IA) + (IP )

(
1 + α

1− P
P
− α (SP )

P 2

)]
∂I ′

∂(IU)
= r

[
SU +

(
1− α

2

)
(SA+ SP )

]
− (g + b)

∂I ′

∂(IA)
= r

[(
1− α

2

)
(SU) + (1− α)(SP ) + (SA)

(
1 + α

1−A
A
− α (IA)

A2

)]
− (g + b)

∂I ′

∂(IP )
= r

[(
1− α

2

)
(SU) + (1− α)(SA) + (SP )

(
1 + α

1− P
P
− α (IP )

P 2

)]
− (g + b).

(61)

The directional derivative is the dot product of the gradient of I ′ (eq. 61) with a direction vector vi (eq. 60).1022

The first three partial derivatives in eq. 61 are all zero when evaluated at a disease-free starting condition, so1023

the sign of the directional derivative is determined by the sign of the last three partial derivatives in eq. 61.1024

Once we have the directional derivatives, we can analyze the effect that increasing α has on the effect of1025

adding a new infection case by observing the sign of the coefficient of α in the directional derivative. If the1026

sign is positive, then assortativity increases the effect of a new infection, and if the sign is negative, then1027

assortativity decreases the effect of a new infection.1028

We focus here on disease-free situations so that we can directly study the effect of α on the rate of increase1029

of the disease without also studying the effect of α on the equilibrium frequency of the disease in the first1030

place, as the initial increase rate depends on the equilibrium frequency.1031

For vU , the infection occurs in the SU population. The directional derivative is

DUI
′ =

r

2

(
S − α

2
[S − (SU)]− 1

R0

)
.

Thus, the rate of initial increase of the epidemic decreases with increasing assortativity when the epidemic1032

starts with an undecided individual.1033

For vA, the infection occurs in the SA population. The directional derivative is

DAI
′ =

r

2

[
S + α

(
(SA)

A
− S +

1

2
(SU)

)
− 1

R0

]
.

For both a new disease (S = 1) and at the DFE (S < 1), A = (SI), so this equation becomes

DAI
′ =

r

2

[
S + α

(
1− S +

1

2
(SU)

)
− 1

R0

]
.

Assortativity increases the initial rate of increase when the epidemic starts in an anti-vaccine individual.1034

For vP , the infection occurs in the SP population. The directional derivative is

DP I
′ =

r

2

[
S + α

(
(SP )

P
− S +

1

2
(SU)

)
− 1

R0

]
.

In the case of a new disease (S = 1), P = (SP ), so we have

DP I
′ =

r

2

[
1 + α

(
1− S +

1

2
(SU)

)
− 1

R0

]
.
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Assortativity also increases the initial rate of increase of a new disease when the epidemic starts in a pro-1035

vaccine individual in the case of a new disease. However, at the DFE, we have1036

DP I
′ =

r

2

[
S + α

(
(SP )

(SP ) + (RP )
− S +

1

2
(SU)

)
− 1

R0

]
. (62)

At the DFE, SP
SP+RP = b

v+b , so the condition for the sign of α to be positive is

b

v + b
> S − 1

2
(SU).

This condition reduces to

1 6
(s+ b)[(s+ b)(v + b)− 2sv]

2bv(c− w)
.

For s = 0, it becomes

1 6
b(v + b)

2v(c− w)
.

At the DFE, with s = 0, c− w > b, so we have1037

b(v + b)

2v(c− w)
6

1

2
+

b

2v
. (63)

A requirement for the condition eq. 63 is b > v, which is unlikely in practice. We therefore expect the1038

coefficient of α in eq. 62 to be negative; assortativity in general decreases the rate of initial increase of an1039

epidemic at the DFE when the epidemic starts in a pro-vaccine individual.1040
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