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S1 Model fitting
In this section we give details of the fitting procedure and convergence diagnostics for the model of move
choice defined in §5(b). For each of the three strategies discussed in §6, the model was fitted using the
cmdstanr R package, running 4 parallel chains for 10,000 sampling iterations with 2,000 iterations for warm-
up. There were no divergent transitions, and reported E-BFMI values were above 0.85 for all chains, showing
that the models explored the posterior well (Betancourt 2017; Stan Development Team 2022).

Convergence of the chains was confirmed by visual inspection of traceplots and rank histograms, as well
as using the R̂ diagnostic (Gelman and Rubin 1992; Vehtari et al. 2021). The histograms of R̂ values for
all 7k model parameters (where k is the number of strategies) are shown in Figure S1, and all of them are
below 1.01, which is considered sufficient evidence for convergence (Stan Development Team 2022).
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Figure S1: Estimates of R̂ convergence diagnostics for Hamiltonian Monte Carlo model fits. (A) Histogram
of the R̂ values for the 7 ˆ 7 = 49 parameters of the Queen’s Pawn opening model. (B) Histogram of the R̂
values for the 6 ˆ 7 = 42 parameters of the Caro-Kann opening model. (C) Histogram of the R̂ values for
the 10 ˆ 7 = 70 parameters of the Najdorf Sicilian opening model.
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S2 Model input data
Figure S2 shows the data that was input into the model for each of the three strategies discussed in §6: the
raw strategy counts xi

t, strategy counts among the top-50 players, strategy win rates in the total population,
and win rates among the top-50 players.
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Figure S2: Input data for the Dirichlet-multinomial model for the three positions discussed in §6. (A, B,
C) Game counts by strategy for the Queen’s Pawn, Caro-Kann, and Najdorf Sicilian positions respectively.
(D, E, F) Counts of games played by the top-50 players for the Queen’s Pawn, Caro-Kann, and Najdorf
Sicilian positions, respectively. (G, H, I) Win rates for the Queen’s Pawn, Caro-Kann, and Najdorf Sicilian
positions, respectively. (J, K, L) Win rates in games played by the top-50 players for the Queen’s Pawn,
Caro-Kann, and Najdorf Sicilian positions, respectively.
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S3 Coefficient estimates
The estimates of the model parameters fi and βi for the three positions discussed in §6 are presented in
Figure S3 and Figure S4, respectively.

Figure S3: Estimated frequency-dependent fitness functions fi. The black line connects the posterior medians
for the four constant segments, bright purple shows regions containing 60% of the posterior density, and light
purple shows regions containing 98% of the posterior density. (A) Queen’s Pawn, ply 2. (B) Caro-Kann, ply
5. (C) Najdorf Sicilian, ply 11.
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Figure S4: Estimated coefficients βi. A point marks the posterior median, the thick line marks the region
containing 60% of the posterior density, and the thin line shows the region containing 98% of the posterior
density. The coefficients presented are: βwin, the effect of the average outcome of games in the year previous
to that in which a given move was played; βtop50-win, the effect of the average outcome of games involving
players in the top 50 in the previous year; and βtop50-freq, the effect of the frequency of a given move in games
involving players in the top 50 in the previous year (see §5(b)). (A) Queen’s Pawn, ply 2. (B) Caro-Kann,
ply 5. (C) Najdorf Sicilian, ply 11.
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S4 Frequency-dependence characterization
In this section, we describe in detail the procedure used to generate counterfactual predictions for move
choice probability in Figure 7. We sample move choice probabilities for year t + 1 from the posterior for
our model while keeping as many variables as possible constant in year t. We fix the number of games at
Nt = 100, 000 and additionally set the linear features (win rate, win rate among top-50 players, and game
count among top-50 players) to be constant and equal to their time averages,

ryi =
1

40

39
ÿ

t=0

yi
t.

As these linear features were standardized to to have zero mean before being input into the model, we must
have ryi = 0 and therefore exp(βi ¨ ryi) = exp(0) = 1 in eq. (20).

Next, for each strategy i, we generate a sequence of counts xi
t from 0 to Nt. We set the counts of all

other strategies to xj
t = (Nt ´ xi

t)/(k ´ 1), where i ‰ j and k is the number of strategies, which allows for
fractional values. This choice of counts keeps the other strategy counts equal while varying the frequency of
a strategy of interest.

Finally, we use these input data to sample model predictions of move choice probabilities pit from the fitted
posterior distribution. We first sample coefficients cij from the posterior, compute coefficients α using eq. (20),
and then sample move probabilities pt from Dirichlet(α). We repeat this procedure 1,000 times. As a result,
for each strategy i and each initial frequency xi

t, we obtain 1,000 samples of move choice probability pit as
estimated by our model. Recall that when strategies are chosen randomly among games in the previous year,
the probability of choosing strategy i is equal to the frequency of i in the population, xi

t/Nt. Comparing our
estimates of pit to xi

t/Nt, the expectation under random choice, allows us to characterize frequency-dependent
effects in our model.
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S5 Plots of mean fitness f̄t and game sample size Ns

Plots of mean fitness f̄t and game sample size Ns(t) = Ntf̄t (§6(d)) estimated from the Dirichlet-multinomial
model are shown in Figure S5.
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Figure S5: Mean fitness and game sample size estimated by our model for three positions: Queen’s Pawn
opening, Caro-Kann opening, and Najdorf Sicilian. (A) Mean fitness f̄t. (B) Game sample size Ns(t) = Ntf̄t.
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