
Supplementary Methods for “A worldwide survey of haplotype vari-
ation and linkage disequilibrium in the human genome”

This supplement contains expanded versions of the methods for topics not described in full detail in the
Methods section of the article. Additional results about phasing, recombination rate estimation, haplotype
sharing, and tag SNPs can be found in the Supplementary Note.
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1 Study design

The initial study design involved the genotyping of 1048 distinct individuals and four duplicate DNA samples
for 3024 single-nucleotide polymorphisms (SNPs). The individuals were drawn from the HGDP-CEPH Human
Genome Diversity Cell Line Panel1,2 (the “HGDP” in many places in this supplement), and the set of 1048
distinct individuals was the same as a previously used collection, the H1048 dataset3,4.

We designed a modular sampling strategy for selecting SNPs, with the aim of providing a representative
view of worldwide patterns of long- and short-range linkage disequilibrium (LD) across the human genome.
Each 84-SNP module consists of a “core” region of 60 SNPs spaced at an average of 1.5 kb apart, flanked by
two regions of 12 SNPs at 10 kb average spacing. Thus, each module covers an average of 330 kb. Thirty-six
modules were selected across the genome: 16 from chromosome 21, 8 from ENCODE regions, 8 from random
autosomal regions (not on chromosome 21), and 4 from random regions on the X chromosome.

1.1 Choice of genomic regions

The process for selecting the 36 genomic regions was predicated on a 16-cell block design, in which we would
try to sample as evenly as possible from each quartile of the genomic distribution of recombination rate and
each quartile of the distribution of gene density. The deCODE genetic map5 and the “Known Genes” track of
the UCSC genome browser (October, 2004) were used to generate estimates of recombination rate and gene
density within a grid of 500 kb intervals across the entire genome. All analyses were conducted using the latest
public genome assembly (NCBI 35, UCSC hg17). Prior to calculation of recombination rate, we inspected
the deCODE data for inconsistencies between the physical and genetic map orders of all mappable markers.
In the case of a single-marker conflict we simply discarded the marker; when multiple markers were involved
in map inconsistencies within a small region, we discarded the smallest number of makers necessary to create
a consistent map. These map inconsistencies led to the removal of 42 markers from the deCODE map. Gene
density was estimated by counting the number of records from “Known Genes” with a transcription start site
within each 500 kb window.

Because there were many fixed elements of the study design, our goal was to select from eligible regions
at random in such a way that the result would be a fairly uniform sample from all cells of our block design.
The large number of regions to be selected from chromosome 21 was a particularly influential factor in the
selection of regions; the recombination rate across 21 is much higher than the genome average, and the number
of usable SNPs in gene-rich regions was low.

The distribution of selected autosomal genomic regions across the sampling grid is shown in Table SM.1.
The genomic location and additional properties of each region are in Table SM.2, and the genomic locations
are shown pictorially in Figure SM.1. For the X chromosome, we randomly selected one region from each
quartile of the deCODE recombination rate.

Recombination Rate
Gene density Quartile 1 Quartile 2 Quartile 3 Quartile 4 Total
Quartile 1 4 6 2 2 14
Quartile 2 0 1 2 4 7
Quartile 3 1 1 1 1 4
Quartile 4 3 1 3 0 7
Total 8 9 8 7 32

Table SM.1: Sampling distribution of the autosomal genomic regions used in this study. Columns are quartiles
of genomic recombination rate, and rows are quartiles of genomic gene density.

2



Chromosome Start (bp) End (bp) Region number Number of genes cM/Mb
Random autosomal regions

1 3000000 3500000 1 4 1.11
2 234750000 235250000 28 2 2.49
3 55500000 56000000 2 3 1.9
9 12500000 13000000 3 3 1.37
9 127000000 127500000 34 19 1.19
12 71000000 71500000 4 0 1.40
18 19500000 20000000 5 22 1.37
22 25500000 26000000 6 0 4.77

ENCODE regions
2 51570356 52070355 27 0 0.84
4 118604259 119104258 29 0 0.49
7 26730761 27230760 30 14 0.75
7 89428340 89928339 31 12 0.19
7 126174898 126672039 32 1 0.72
8 118882221 119382220 33 0 0.41
12 38626477 39126476 35 3 0.16
18 23719232 24219731 36 1 0.93

Chromosome 21 regions
21 14500000 15000000 7 8 3.57
21 16500000 17000000 8 0 3.02
21 21500000 22000000 9 0 0.87
21 22500000 23000000 10 0 0.69
21 23500000 24000000 11 0 1.63
21 24500000 25000000 12 1 1.26
21 27000000 27500000 13 3 2.74
21 28500000 29000000 14 1 0.54
21 29000000 29500000 15 13 0
21 29500000 30000000 16 5 0.50
21 30000000 30500000 17 3 0.88
21 30500000 31000000 18 22 1.34
21 36000000 36500000 19 7 1.02
21 38500000 39000000 20 9 1.44
21 40000000 40500000 21 3 3.59
21 44000000 44500000 22 22 0

X chromosome regions
X 8000000 8500000 23 2 1.59
X 32000000 32500000 24 2 2.10
X 78500000 80000000 25 0 0
X 125500000 126000000 26 0 0.64

Table SM.2: Summary of the 36 genomic regions used in the study. Recombination rates in cM/Mb are
obtained from the deCODE map.

3



Chr 1

Chr 2

Chr 3

Chr 4

Chr 5

Chr 6

Chr 7

Chr 8

Chr 9

Chr 10

Chr 11

Chr 12

Chr 13

Chr 14

Chr 15

Chr 16

Chr 17

Chr 18

Chr 19

Chr 20

Chr 21

Chr 22

Chr X

Figure SM.1: Genomic locations of 36 regions. In this schematic diagram, the physical positions of the 36
regions selected for genotyping are depicted with a vertical red line. Centromeres are depicted in purple. In
order to improve visibility, regions are not drawn to scale (some regions are drawn flush against each other).
All positions are based on the NCBI 35 assembly.

1.2 Choice of SNPs

For all genomic regions selected, we screened candidate SNPs on several criteria. All known tri-allelic SNPs
were removed, as were SNPs whose flanking sequence in dbSNP mapped to more than one location in the
genome. For the regions on chromosome 21, we considered only SNPs typed by Patil et al.6 in their study of
20 total chromosomes of multiethnic origin. Use of these SNPs provides a relatively clear understanding of
the SNP ascertainment process, as well as empirical knowledge of the phase of some haplotypes from three
continental groups. For the remaining regions (ENCODE, X, and random autosomal regions), we considered
two types of SNPs in dbSNP for inclusion in our study. All SNPs designated as “two-hit” SNPs were included,
as were all SNPs genotyped by Perlegen Sciences in their latest large data release of 1.5 million genotypes
from 71 individuals, which debuted with dbSNP build 1237.

Quality control: A total of 26,749 candidate SNPs (for all 36 genomic regions) were submitted to Illumina
for quality control. Of these SNPs, Illumina gave 18,020 of them a “high-quality” score (greater than or equal
to 0.6). An additional 2334 SNPs were given a quality score in the range 0.4-0.59, and were considered usable.
The remaining SNPs were unusable. Among the SNPs included finally selected for genotyping, ∼ 95% had a
quality score of at least 0.6, while the other ∼ 5% had scores in the 0.4-0.59 range.

Prioritization: For each region not on chromosome 21, the choice of SNPs (of acceptable quality and at
appropriate spacing within the region) was prioritized in the following way: (i) if available, a Perlegen SNP7

was chosen; (ii) if no Perlegen SNPs were available, a HapMap Phase I SNP was chosen; (iii) if no Perlegen
or HapMap Phase I SNPs were available, a dbSNP “two-hit” SNP was chosen.
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1.3 Summary of SNP design

The final set of 3024 SNPs queued for genotyping consisted of 2433 Perlegen SNPs, with the number of
Perlegen SNPs per genomic region ranging from 31 to 84. The average distance between “core” SNPs was
1499 bp, and the average spacing among flanking SNPs was about 10,100 bp. The average Illumina quality
control score was 0.83. After genotyping was complete, we discovered that some SNPs from three regions
(numbers 30, 31, and 32) had inadvertently been mapped to an alternate chromosome 7 genome assembly
(CRA TCAGchr7.v2). For each of these regions, there are two clusters of SNPs with roughly the same
properties as intended in our original design.

2 Data

SNP genotypes were obtained for 1039 of the 1048 distinct individuals and three of the four duplicates. As
a result of sample failures, the remaining individuals did not produce any genotype data. Of the 3024 SNPs,
poor-quality data were obtained for 115 of them, leaving 2909 SNPs for further study.

2.1 Individuals

Of the 1039 distinct individuals, 22 produced a large amount of missing data due to a failure of a group of
assays that accounted for approximately half of the SNPs. For these individuals, at least 1444 of the 2909 high-
quality SNPs had missing data. These 22 individuals were excluded from consideration, leaving a collection
of 1017 individuals, all of whom had relatively small amounts of missing data (all individuals had ≤ 93
SNPs missing among the 2909 high-quality SNPs). This set of 1017 individuals included 927 individuals from
the H952 dataset4, a collection of individuals not likely to contain any first- or second-degree relationships.
Except where specified, all subsequent analyses utilized this collection of 927 unrelated individuals — 610
males and 317 females. The sample sizes in Africa, Europe, the Middle East, Central/South Asia, East Asia,
Oceania and the Americas were 103, 149, 158, 199, 229, 27 and 62 individuals, respectively.

Apparent heterozygotes among males for X-chromosomal loci were recoded as missing data. With one
exception, all individuals (among the 1039 genotyped) reported to be male had at most six SNPs heterozygous
on the X chromosome. The only exception was that Mozabite #1263 was heterozygous for 34 SNPs, including
32 SNPs in genomic region 23, suggesting that this individual was duplicated for the entire region. All
individuals previously reported to be female had at least 20 SNPs heterozygous on the X chromosome, with
eight exceptions among native Americans, who were expected a priori to be more homozygous than other
populations. Thus, the reported sex information was assumed to be accurate.

Population structure and labeling errors: We used structure 8 to search for potential labeling errors. Our
previous work3,9 showed that individuals in the HGDP can be clustered into groups that reflect geographic
origin. To check that the clustering patterns were similar to those found previously using microsatellites, we
repeated this analysis using the new SNP data. The analysis is not strictly valid with the present data, because
the clustering algorithm assumes linkage equilibrium among all markers8. However it might be expected that
with 36 independent regions there is enough independence in the data that the overall clustering results would
be driven more by population structure than by spurious clustering due to LD between markers.

As can be seen in Figure SM.2, our results broadly recapitulate those from the original analysis of mi-
crosatellites9. To aid the comparison, the full sample of 1017 individuals with nearly complete SNP data and
the same structure settings were used for the SNP analysis as in the original microsatellite analysis, including
the use of the structure admixture model with correlated allele frequencies. One clear difference is that the
data seem more “noisy” with the SNPs, perhaps because the LD among markers diminishes the total amount
of information. Secondly, one cluster at K = 6 is spread across a number of Eurasian populations, rather
than separating out the Kalash population, as was seen for microsatellites.

Perhaps most importantly, there are no cases of individuals whose cluster membership is clearly discrepant
between the microsatellite and SNP datasets (a mislabeled Biaka Pygmy and a mislabeled Japanese individual
in the microsatellite analysis were not among the individuals genotyped with SNPs). This concordance argues
against the presence of serious labeling errors in the SNP data.

2.2 Populations

The two Bantu groups, from Kenya and southern Africa, were combined for data analysis, so that the data
we analyzed consisted of 52 populations. Populations were classified by geographic region in the same manner
as in previous work with the same sample of individuals3,9.
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Figure SM.2: Comparison of structure results based on the same samples, using different genetic markers.
(A) Microsatellites, (B) SNPs. For both microsatellites and SNPs, the panels run from K = 2 clusters (top)
to K = 6 clusters (bottom). Each cluster is represented by a different color, and each individual by a thin
vertical line. An individual’s proportion of membership in each cluster is indicated by the proportion of the
line length that is drawn in each color. The results in part A are taken directly from Figure 1 of Rosenberg
et al.9.
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2.3 SNPs

Monomorphic SNPs: Of the 2909 SNPs with high-quality data, 50 were found to be monomorphic in the
sample of 1017 individuals with low levels of missing data, and were excluded from consideration.

SNPs with missing data: Among the SNPs polymorphic in the set of 1017 individuals, 10 SNPs with at
least 10% missing data were excluded. For autosomal SNPs, the fraction of missing data was calculated as
the total fraction of individuals whose genotypes were missing, whereas for X-chromosomal loci, it was equal
to (2f ′ + m′)/(2f + m), where f , m, f ′, and m′ respectively denote the number of females considered (360),
the number of males considered (657), the number of females with missing genotypes, and the number of
males with missing genotypes.

SNPs were identified for which one or more populations had a sample size fewer than 5 alleles in the
sample of 927 unrelated individuals. One additional polymorphic SNP with this property was then excluded.

SNPs not in Hardy-Weinberg equilibrium: From the set of 927 unrelated individuals, three population
groupings with relatively low levels of population structure in previous work9 were constructed: Europeans
excluding the Adygei, Basque, and Sardinian populations (83 individuals); sub-Saharan Africans excluding the
Biaka Pygmy, Mbuti Pygmy and San populations (62 individuals); and East Asians excluding the Cambodian,
Japanese, Lahu, and Yakut populations (159 individuals).

A chi-squared test of the null hypothesis of Hardy-Weinberg equilibrium was performed in each of these
population groups, taking into account the Yates continuity correction10. For X-chromosomal SNPs, males
were ignored in the tabulation of allele frequencies and in the hypothesis test. SNPs that had the following
pair of properties were then discarded: (1) both alleles had at least five copies in at least two of the three
population groups; (2) the chi-squared test statistic was greater than four in at least two of the population
groups for which both alleles had at least five copies. Using these criteria, SNPs for which the minor allele was
very rare in at least two of the three population groups were assumed to be in Hardy-Weinberg equilibrium.

With these criteria for violation of Hardy-Weinberg equilibrium, 20 SNPs were identified. Of these SNPs,
it is noteworthy that six of them were among those that had previously been excluded due to missing data.
Given that only 11 SNPs were discarded on account of missing data, for the six loci that were both in
Hardy-Weinberg disequilibrium and had substantial missing data, it is likely that systematic errors in the
SNP assays were responsible for both problems. If substantial missing data and Hardy-Weinberg violations
were independent phenomena, then the expected number of polymorphic SNPs with both properties would
equal (20)(11)/2859 ≈ 0.08, considerably less than the number observed, namely 6.

Summary of excluded SNPs: In summary, from our initial design of 3024 SNPs, the number we retained
for analysis equaled 2834, or 93.7% of the original SNPs. The discarded SNPs included 115 with data of
sufficiently low quality that no genotypes were reported, 50 monomorphic SNPs, 11 polymorphic SNPs with
high levels of missing data, and 14 polymorphic SNPs with low levels of missing data but with Hardy-Weinberg
disequilibrium. The final set of SNPs for analysis included 2540 autosomal and 294 X-chromosomal SNPs.

2.4 Missing data rate

Of the 2(927)(2540) = 4, 709, 160 autosomal genotypes possible in the sample of 927 distinct individuals, the
number of missing genotypes was 4494. Of the (610 + 2 × 317)(294) = 365, 736 X-chromosomal genotypes
possible, the number missing was 518. Combining all 2834 SNPs, the missing data rate was 0.099%.

2.5 Genotyping error rate

Three duplicate samples were genotyped: Biaka samples #452 and #1087 (male), Han samples #813 and
#1022 (female), and Melanesian samples #657 and #826 (female). Considering all SNPs for which both
individuals in a duplicate pair were genotyped (and excluding X-chromosomal SNPs in male duplicates), only
one discrepancy was observed among 8171 genotypes, a rate of 1.22× 10−4 discrepancies per genotype.

Mendelian error checks were performed by considering 66 parent/offspring pairs and 17 trios included
among the 1039 individuals for which (at least partial) SNP data were obtained4. The fraction of SNP
genotypes with Mendelian incompatibilities was approximately 2 × 10−4 in both of two separate estimates,
one using the parent/offspring pairs and one using the trios.
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3 Haplotype phasing

Haplotype phasing was performed using fastPHASE v. 0.911. We chose to use fastPHASE for several reasons.
The related program PHASE was found to have the best performance in a recent comparison of phasing
methods12. Additionally, fastPHASE produces haplotype inferences that are nearly as accurate as those
produced by PHASE, despite a much smaller computation time11. In our study, the computational speed
is an issue in view of the large number of individuals (PHASE is quadratic in the number of individuals).
Finally, fastPHASE has the added benefit of allowing separate parameters for each population, a feature that
is attractive for our worldwide dataset.

3.1 Phasing strategy

In order to phase this dataset, there were a number of choices that needed to be made, including how to
label and group the population samples, and the choice of K, the number of haplotype clusters to assume.
Several other parameters relating to the details of the phasing also needed to be specified. Our main approach
was to perform a series of fastPHASE runs in which 10% of the genotype data were hidden at random. We
computed the error rates in the genotypes imputed by fastPHASE, and then chose parameter combinations
that minimized the overall error rate. This is essentially the approach suggested by Scheet and Stephens11.

These testing runs used parameters H = 500, T = 20, and C = 25 (the fastPHASE documentation
provides a full description of these parameters), and either K = 10 or K = 20 clusters. These parameter
choices were found to be sensible during a larger set of preliminary runs. When analyzing the full dataset,
we found that using 20 clusters was roughly optimal, giving slightly improved performance compared to a
choice of 10 clusters. However, the smaller number of clusters was better with smaller samples.

A novelty of fastPHASE is that it models haplotypes as being shared across populations, but allows
haplotype frequencies and cluster jump rates to vary across populations. We found that in comparison with
alternative schemes, grouping haplotypes by geographic region in the phasing produced the best results by
most measures (see Supplementary Note). Consequently, the analyses in the main text of the paper rely
on this approach.

3.2 Phasing performance

Phasing performance was assessed in three different ways. First, we masked 10% of the genotypes and then
used fastPHASE to impute the missing data. The error rate in the entire sample, as inferred from the fraction
of missing genotypes correctly imputed, is only 4.4%.

Next, we assessed the error rate for the phasing of pairs of heterozygote SNPs. This analysis was performed
using 42 individuals in the sample of 927 who have a parent or child in the full dataset (although a few
individuals are part of larger families4, this analysis only used parent/offspring pairs.) Suppose that at two
SNPs an individual in the phased sample is a double heterozygote: 0/1, 0/1. If the parent is a double
homozygote (for example 0/0, 0/0) then the parental genotype determines the haplotype phase of the child
(haplotypes 0-0 and 1-1 for the parent above). Using this logic, we determined the error rate for phasing such
genotype configurations. It is worth noting that requiring the parent to be a double homozygote is expected
to shift the allele frequencies somewhat. Keeping this caveat in mind, the procedure provides a simple tool
for assessing phasing accuracy.

Phasing accuracy as assessed by determining the fraction of doubly heterozygous genotypes correctly
resolved is generally very high for SNP pairs within 10 kb (error rates from 0.2% to 6.6% for different
geographic regions), but deteriorates substantially as spacing increases to 50 kb (regional error rates from
1.8% to 18.9%).

Third, we used the trio data from the HapMap to assess the accuracy of fastPHASE at estimating a
measure of pairwise LD, r2. The basic idea was to determine parental haplotypes using the trio data, and
then to estimate the haplotypes using fastPHASE with the offspring genotypes hidden. We find that the
concordance in estimated r2 between the two methods of phase estimation (fastPHASE, and haplotypes
inferred from trios) is extremely high. For example, in both the HapMap CEU and YRI samples, 88% of
SNP pairs with r2 > 0.5 have identical r2 values by both methods.

3.3 Missing data imputation

Because we observed low imputation error rates in our missing data simulations (described above), we have
used fastPHASE to impute all missing genotypes in the dataset. Recall that missing genotypes represent
only 0.1% of the entire dataset. All haplotype-based analyses in the paper are based on this reconstructed
dataset that contains no missing values.
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4 Haplotype visualization

In order to visualize the haplotypes in each genomic region we used the following algorithm. Our method
was conceptually motivated in part by the model developed by Scheet and Stephens11; however, it differs in
being less model-based.

We start by identifying, for each of seven major geographic regions, the single most common haplotype
spanning a genomic region. These seven haplotypes will be called the “template” haplotypes. The assignment
of populations to seven geographic regions is the same as that used by Rosenberg et al.9. Occasionally the
most common haplotype is identical for two or more geographic regions. In that case, we take as one of the
templates the second-place haplotype that is most frequent within its region. Each template is assigned a
distinct color.

Next we color each observed haplotype as a mosaic of the seven templates. We start in the physical center
of the genomic region, and identify the largest segment that exactly matches one template. That segment
is colored according to the color of the template. Next, we move immediately to the right of the colored
segment, and color the largest possible segment that exactly matches one of the templates and that has a
left-hand edge at the right edge of the region that has already been colored. This process is continued until
the right-hand end of the genomic region is reached. An analogous process is then performed to the left of the
central block. Note that sometimes a rare allele is not found on any template. We ignore these rare alleles
when creating the mosaic structure; however one version of our program (not used in the main text) colors
such minor alleles separately in a unique color.

Finally, for each population shown in Figure 1, 20 haplotypes were sampled without replacement from
among the total number for plotting. Surui and Colombians have < 20 total haplotypes, so for these popula-
tions, all haplotypes are shown. For clarity, the plotted chromosomes are sorted by the coloring in the center
of the region.

5 Estimation of recombination rates

The reversible jump Markov Chain Monte Carlo (rjMCMC) method of McVean et al.13 (LDhat v2.0) was
used to estimate maps of the population-genetic recombination rate ρ from the (unphased) SNP data for each
genomic region. This approach uses a method similar to that of Hudson14 to evaluate the likelihood of the
recombination rate between every pair of SNPs, and then computes the product of these likelihoods. This
“composite likelihood” is an approximation to the true likelihood. To allow for variation of the recombination
rate within a genomic region, the method assumes a piecewise block-like structure to the recombination rate
within a region. It then uses rjMCMC to explore a range of rates within these blocks as well as a range of
possible partitions of the region into blocks.

The program requires a choice of value for a smoothing parameter that determines the penalty for in-
troducing a new block; following McVean et al.13, this quantity was set to 20. As the LDhat method uses
unphased genotype data rather than phased data, this analysis used the unphased genotypes and did not
use the data version with missing data imputed. For all results, the mean value of the recombination rate
was obtained over 106 iterations of the MCMC (with a thinning interval of 2000), following a burn-in of 105

iterations. Multiple runs of the algorithm of equally many or larger numbers of iterations, or starting from
different initial maps produced little variation in the final estimated recombination map (results not shown).

We estimated ρ/kb for each population and genomic region by taking the mean map length for each
genomic region and each population and dividing by the total length in kb of the region in that population
(this may vary across populations due to monomorphic SNPs at the edge of the region in some populations).
The average population-genetic recombination rate per kb in region reg and population pop is denoted ρpop,reg.
Genomic region 1 is distal to the first deCODE marker on 1p, so the pedigree-based recombination rate is
unreliable. This genomic region was excluded from the analysis.

The effective size of a population Npop was estimated from the population-genetic recombination rates by
a model that allowed for an error in the pedigree-based estimate of the recombination rate (the most extreme
example of which is the excluded genomic region 1). In this model, we assume

ρpop,reg = 4Npop(dreg + breg) + εpop,reg, (1)

where dreg is deCODE’s pedigree-based estimate of recombination rate per kb estimate for the region, and
breg is the “error” in the pedigree rate estimate for a region when used at a local scale. To constrain this
model, we required that the sum across regions of the values of breg be zero. The model was fitted to
minimize

∑
pop,reg ε2pop,reg by a hill-climbing algorithm, where the sum ranges over 52× 31 population-region

combinations (52 populations, 31 autosomal regions excluding region 1).
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There is good agreement among the recombination maps for different populations. The populations have
much shared history, and therefore, the extent to which this agreement indicates constancy of the present-day
map over populations is difficult to assess. In view of the recent findings of polymorphic hotspots15,16, the
prevalence of some hotspots will probably differ between populations. However in the genomic regions in
our data — in 52 populations with different demographies and varying amounts of shared history — the
significance of any observed differences in recombination maps is hard to assess formally.

6 Haplotype summary statistics

For haplotypes in the genomic core regions and various values of the “window size” w, we computed haplotype
summary statistics based on haplotypes within genomic windows with a specified length w. For these analyses,
the entire window was required to lie within our genomic “core” regions. For each SNP, we defined a haplotype
locus that extended from the position of the SNP (a) along the chromosome to the SNP position plus the
window size (a+w). The haplotype of a particular phased chromosome was then specified by the set of allele
states at all SNPs located between a and a + w (including position a but excluding position a + w). If the
position a + w for a particular haplotype locus was beyond the last SNP of its core region, the haplotype
locus was discarded. For the window size termed “full length,” the window size was set to be one base pair
longer than the full length of each core region (so that both ends would be included in each haplotype locus).
For the analyses of haplotype summary statistics, we subdivided genomic core regions 30, 31 and 32 each
into two core regions, as these regions each contained a large gap (130 kb, 375 kb, and 250 kb, respectively).
Thus, because the four X-chromosomal regions were excluded, the number of genomic core regions used for
these analyses was 35. In the analysis of full-length haplotypes, the number of haplotype loci equaled this
total number of core regions. Haplotypes were considered to be identical if and only if they had the same
genotype for all SNPs with position in [a, a + w). For each value of w, except for the φ statistic (defined in
eq. 7 in the main text), the summary statistics presented are means over all haplotype loci with the given
window size. The φ statistic was computed by averaging across haplotype loci within each of the genomic
core regions and was then averaged across regions. The computations of φ also differed from those of the
other statistics in that estimates involving the HapMap excluded from consideration SNPs not among the
2078 in our dataset that were contained in the HapMap.

7 Tag SNP analysis

For analysis of tag SNP portability, we used overlapping SNPs with the HapMap Phase II data (release 19,
http://www.hapmap.org) for 29 regions (X-chromosomal regions 23-26, and regions 30-32 with gaps were
excluded). Of the SNPs typed in the current study, 2078 are present in the phase II HapMap. The HapMap
data were phased with the same protocol used to phase the HGDP-CEPH genotypes; phasing and analysis
were performed together with only the parental genotypes in the case of the CEU and YRI samples (that is,
offspring genotypes were excluded). CHB and JPT samples were combined into one 90-sample population
for phasing and all subsequent analyses. The following sections describe the analyses presented in the main
text; for additional related analyses see the Supplementary Note.

7.1 Tagging strategy

For each HapMap population separately (CEU, YRI, CHB+JPT), we selected 333 LD-based tag SNPs using
a method related to that described by Carlson et al.17 (Supplementary Note). The method of Carlson et
al. is a greedy algorithm that identifies bins of SNPs such that pairwise LD is high for SNPs within bins, but
low for SNPs in different bins. A single tag SNP is selected from each bin. Only “core” SNPs are considered
as potential tag SNPs, but we assess how well each potential tag SNP captures all HapMap variation that
was typed in our HGDP samples. The number of core SNPs present in the HapMap ranges from 27 to 58
per region, out of a total possible 60. A SNP is considered to be “tagged” by another SNP if the r2 value
between the two SNPs is greater than 0.85.

To focus the analysis, we decided to select tag SNPs at a density intermediate to that found on evenly-
spaced 300,000-SNP and 500,000-SNP tagging panels. Using 2.8 Gb as the size of the “genotypable” eu-
chromatic genome, a uniformly spaced 300,000-SNP chip would have an approximate density of 1 SNP per
9333 bp, while a 500,000-SNP chip would have a density of 1 SNP per 5600 bp. For the main analysis, we
settled on a tagging panel size of 333 SNPs. Assuming that the total size of the core regions examined in
this analysis is 2.61 Mb (29 core regions × 90 kb), a set of 333 core SNPs would have a density of 1 SNP per
7800 bp, simulating a chip with a density between those of 300,000-SNP and 500,000-SNP panels.
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7.2 Assessment of tag portability

The central aim of these analyses was to measure the amount of variation indirectly assayed in one population
(the “target”) by typing genetic markers selected in another (the “donor”). We define a simple metric called
the PVT (proportion of variation tagged) as our measure of tag portability:

PV T =
∑n

r=1 tr − sr∑n
r=1 pr − sr

,

where the number of tag SNPs within genomic region r that are polymorphic in the target population is
denoted as sr, the number of SNPs “tagged” (which includes tag SNPs) is tr, the total number of polymorphic
SNPs within region r is pr and the total number of genomic regions is n = 29.

7.3 Sample size correction in computation of PVT

Because sample sizes vary across populations (and geographic regions), it was important to control for the
effect of sample size in our analyses. A linear relationship between PVT and sample size (in the relevant range)
was observed in simulations based on subsampling from large populations (Supplementary Note). Hence,
all PVT scores were adjusted to the mean sample size across HGDP-CEPH populations (36 chromosomes)
using the following procedure. For populations with more than 36 chromosomes, we corrected the PVT score
empirically by resampling 36 chromosomes from the population 30 times and averaging PVT scores across
these subsamples.

For populations with fewer than 36 chromosomes, we used an alternate approach. For each geographic
region, we selected the population with the largest sample size, subsampled this population over a grid of
values of the sample size (30 times for each value) and calculated the average PVT for each subsample size.
We fit a simple linear model to these data (PVT on sample size) and used the estimate of the regression
coefficient as a correction factor for small samples from within the same geographic region. For a population
from geographic region i with n < 36 chromosomes, we calculated a corrected PVT as

PV Tcorrected = PV Traw + (36− n)βi,

where βi is the regression coefficient for geographic region i and n is the number of chromosomes sampled in
the population.
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Supplementary Note for “A worldwide survey of haplotype varia-
tion and linkage disequilibrium in the human genome”

This supplement contains additional results about phasing, recombination rate estimation, haplotype sharing,
tag SNPs, and determinants of tag SNP portability. Additional methods can be found in the Supplementary
Methods.
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1 Haplotype phasing

The primary dataset consists of 2834 genotyped in 927 individuals. These individuals represent a set of
unrelated individuals from the HGDP-CEPH Human Genome Diversity Cell Line Panel (the “HGDP”)
representing 53 human populations (two Bantu groups that were grouped together in other analyses were
kept separate during phasing runs that used population labels).

Also described below are analyses using the CEPH European-American (CEU) and Yoruba (YRI) samples
from the Phase II HapMap for 2078 SNPs that overlap with our data, and analyses of 42 additional parents
or children of individuals in the sample of 927 unrelateds who form our primary data set.

1.1 Phasing performance

A novelty of fastPHASE is that it models haplotypes as being shared across populations, but allows the fre-
quencies and jump rates to vary across populations. Although this feature can be advantageous for phasing
performance, there are many possible ways of grouping the populations for the phasing analysis. We con-
sidered in detail four different methods: (1) no population labels; (2) individuals assigned one of 7 regional
labels: Africa, Europe, Middle East, Central/South Asia, East Asia, Oceania, and the Americas; (3) indi-
viduals assigned one of 53 distinct population labels; (4) each of the 53 populations phased in a completely
separate fastPHASE analysis.

As described below, method 2 (regional labels) had the best performance by most measures, and the main
analyses are based on this method. Method 1 (no labels) tends to underestimate the haplotype differences
between populations, while method 4 (separate analyses) and perhaps also method 3 (population labels) tend
to exaggerate the differences between populations.

Phasing performance was assessed in three different ways, as described in the Supplementary Methods.
First, we masked 10% of the genotypes and then used fastPHASE to impute the missing data. Our results,
shown in Table SN.1, are very similar for the HGDP Europeans to those reported by Scheet and Stephens1

for the HapMap CEU group. Overall the accuracy is high. The error rate in the entire sample, as inferred
from the fraction of missing genotypes correctly imputed, is only 4.4%. As might be expected, the error rates
are highest in the populations with lowest linkage disequilibrium (LD). The error rate in our analysis of the
HapMap samples is slightly higher (6.6%); this result is probably a consequence of the slightly lower SNP
density in the data that we extracted from the HapMap.

Next, we assessed the error rate for the phasing of pairs of heterozygote SNPs by comparing haplotypes
inferred using parent/offspring pairs to those inferred using fastPHASE (Supplementary Methods). Table
SN.2 shows the switch error rates as determined by this method for SNPs within 10 kb of each other; Table
SN.3 shows error rates for SNPs at spacing of 10–50 kb. Phasing accuracy is generally very high at the
shorter distance, but deteriorates substantially at the longer distance (however it is still much better than
random). As expected, phasing accuracy is also generally increased in the populations with higher LD.

No lab. Reg. Pop. SepPops Strawman X chr. HapMap Worst
WORLD 4.9 4.4 4.6 7.1 38.4 2.9 6.6 11.0 (1)
AFRICA 10.2 8.8 9.0 12.5 37.8 6.2 10.5 15.2 (1)
EUROPE 4.0 3.7 4.0 6.8 39.4 2.5 5.3 10.0 (1)

MIDDLE EAST 4.8 4.6 4.6 5.4 40.9 3.5 11.1 (1)
C/S ASIA 4.3 4.2 4.3 6.2 40.7 2.6 10.0 (1)

EAST ASIA 4.0 3.6 4.0 7.8 36.6 2.2 4.7 11.8 (1)
OCEANIA 4.5 3.5 3.5 5.7 33.4 2.6 10.9 (6)
AMERICA 3.2 2.3 2.3 4.1 37.8 2.3 8.7 (6)

Table SN.1: Error rates (percent) for imputing hidden genotypes using fastPHASE. Error rates are shown
both for the entire sample (WORLD) and broken down by region. The first four data columns correspond to
different methods of grouping the data in the fastPHASE analysis (see text). “Strawman” indicates the error
rate when missing data are replaced by the most common genotype in the region; this provides a baseline
for comparison1. Also shown are error rates in the HapMap samples using the set of SNPs that are found in
both the HGDP and HapMap datasets, error rates for the four X chromosome regions (using regional labels),
and the highest observed error rates at any single genomic region (regions 1 and 6).
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No lab. Reg. Pop. SepPops X chr. (Reg.)
AFRICA (6) 3.9 3.7 5.7 11.9 2.2
EUROPE (1) 6.7 6.6 6.7 10.1 0.0

MIDDLE EAST (2) 0.5 0.2 0.2 1.5 0.0
C/S ASIA (2) 7.2 1.6 1.4 1.6 0.0

EAST ASIA (2) 2.2 2.5 2.0 13.6 0.0
OCEANIA (7) 0.8 0.6 0.5 15.4 0.0
AMERICA (22) 1.4 2.0 1.4 7.4 0.5

Table SN.2: Error rates (percent) for estimating the relative phase of pairs of heterozygous SNPs within
10 kb of one another. These error rates are based on parent/offspring pairs present in the full dataset —
note the small sample sizes in some regions, especially in Europe. Random phasing would produce expected
error rates of 50%. The number of parent/offsping pairs for each geographic region is as indicated. See
Supplementary Methods for further explanation.

No lab. Reg. Pop. SepPops X chr. (Reg.)
AFRICA (6) 13.3 14.2 14.6 17.0 16.2
EUROPE (1) 19.6 18.9 19.1 31.9 0.0

MIDDLE EAST (2) 3.7 1.8 2.3 21.4 0.03
C/S ASIA (2) 15.4 5.6 4.4 4.0 —

EAST ASIA (2) 3.8 6.4 6.5 16.4 0.6
OCEANIA (7) 4.2 3.4 2.7 21.4 0.0
AMERICA (22) 4.6 5.1 3.8 13.3 2.2

Table SN.3: Error rates (percent) for estimating the relative phase of pairs of heterozygous SNPs between
10–50 kb of one another. These error rates are based on parent/offspring pairs present in the full dataset —
note the small sample sizes in some regions, especially in Europe. Random phasing would produce expected
error rates of 50%. The number of parent/offsping pairs for each geographic region is as indicated. See
Supplementary Methods for further explanation.

Third, we used the trio data from the HapMap to assess the accuracy of fastPHASE at estimating a
measure of pairwise LD, r2. The basic idea was to determine parental haplotypes using the trio data, and
then to estimate the haplotypes using fastPHASE with the offspring genotypes hidden. Recall that the
HapMap data used for this analysis include only those SNPs that are also in both the HapMap and in our
dataset, and hence the accuracy of the fastPHASE reconstructions is slightly lower for this dataset than for
our HGDP data (Table SN.1).

In order to compare these two phasing methods, we used only genotypes for which phase could be deter-
mined unambiguously from the trios (that is, excluding sites that are triple heterozygotes, and excluding some
missing data configurations). We then estimated haplotypes using fastPHASE, and deleted any genotypes
that were missing from the trio-phased data so that the available genotypes matched exactly across the two
datasets. It is plausible that these procedures of dealing with ambiguities create some bias in r2, but this
should not be of serious concern here, because the main goal is to establish the concordance of r2 between
the two methods of estimation. Finally, r2 was estimated for every pair of SNPs that are in the same one of
our genomic regions, separately for the trio-phased and fastPHASEd datasets.

We find that the concordance in estimated r2 between the two methods of phase estimation is extremely
high (Figures SN.1 and SN.2). It is apparent from the figures that there is a slight downward bias in the
estimates of r2 by fastPHASE; however this is a small effect. For example, 88% of SNP pairs with r2 > 0.5
have identical r2 values by both methods (for both CEU and YRI). In the tag SNP analysis in the paper,
we use fastPHASE results to determine whether r2 exceeds a specified threshold for any given SNP pair.
Among SNP pairs with substantial LD (r2 > 0.5) we find that less than 2% of SNP pairs have r2 > 0.9 by
one phasing method and r2 < 0.9 by the other phasing method (for both CEU and YRI). Hence we conclude
that the phase inference has minimal impact on the results of the tag SNP analysis, and surely much less
impact that the inherent sampling variability of r2 in finite samples.
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Figure SN.1: Comparison of estimates of r2 for pairs of SNPs in the Yoruba HapMap sample, based on
haplotypes from trios and on haplotypes from fastPHASE.
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Figure SN.2: Comparison of estimates of r2 for pairs of SNPs in the CEPH European-American HapMap
sample, based on haplotypes from trios and haplotypes from fastPHASE.

1.2 Summary

We find that fastPHASE provides accurate phase reconstruction for our data over modest distances (less than
10 kb), and somewhat less accurate reconstruction over longer distances (that is, distances at which the data
are presumably uninformative). fastPHASE provides extremely accurate assessments of the actual level of
LD, which is perhaps of most importance for our analyses. Reconstructed haplotypes are likely to be quite
accurate when there is extensive LD, whereas long-range haplotypes in populations with low LD will be less
accurate. However, there is not likely to be a substantial bias in the extent of LD.
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2 Estimation of recombination rates

In this section we describe additional analyses performed in estimating recombination rates and effective
population sizes. We show that our results are robust to the range of sample sizes and number of monomorphic
SNPs found across populations in our data, and to the method used to infer the population recombination
rates. In addition we show that using the X chromosome regions to estimate effective population leads to
similar results to those found using the autosomal regions. Figures showing the estimated recombination maps
and the average population-genetic recombination rates plotted against the pedigree-based rate estimates for
all populations will be made available at http://pritch.bsd.uchicago.edu/dataArchive.html.

2.1 The average recombination rate in a genomic region

We estimated ρ per kb for each population and genomic region by taking the mean map length for each
genomic region and each population and dividing by the total length in kb of the region in that population
(this may vary across populations due to monomorphic SNPs at the edge of the region in some populations).
To estimate the underlying recombination rate for each genomic region we fitted a log-linear model ρpop,reg =
4Npoprregεpop,reg, where ρpop,reg is the average population-genetic recombination rate per kb in region reg
and population pop, Npop is the effective population size, rreg is a genomic region effect that is free to vary,
and εpop,reg is a multiplicative error term. In Figure SN.3, rreg is plotted against the pedigree-based rate
estimate for each genomic region. The figure indicates a high degree of concordance between the estimated
population-genetic recombination rates and the pedigree-based estimates of recombination rate for each of our
genomic regions. A number of factors can contribute to the “noise” in the correlation between the pedigree-
based estimate of the recombination rate for a genomic region and rreg: for example, the rates are imperfect
estimates of the underlying population-genetic recombination rates, and the pedigree-based estimates are
estimates of the average rate over larger distances than those spanned by our regions. Genomic region
1 clearly has an unusually high estimated population-genetic recombination rate given its pedigree-based
estimate. This genomic region is distal to the first deCODE marker on chromosome 1p, so the pedigree-based
recombination rate is unreliable. Genomic region 1 is therefore considered an outlier, and is excluded from
the analyses presented. The inclusion of region 1 leads to slightly inflated estimates of population sizes for all
populations, but has little effect on the relative order of the estimates across populations (results not shown).
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2.2 Impact of ascertainment scheme

To assess whether using SNPs ascertained in a worldwide panel compared to a mixture of ascertainment
strategies affected our estimates of ρ, we investigated whether there was a systematic difference between
estimates based Patil et al.2 SNPs (regions on chromosome 21) and those based on SNPs in the other
autosomal regions. We regressed the estimates of rreg from the log-linear model described above on the
pedigree-based rates. The difference in mean of the squared residuals between the chromosome 21 regions
and the other regions was calculated. The significance of this difference was then assessed by permuting
chromosome 21 and other autosome labels 10, 000 times among genomic regions and determining how often
the difference observed in the data was exceeded in the permuted data sets. This process yielded a P -value
of 0.38. To assess whether the variance of our ρ estimates was affected by the difference in ascertainment
between chromosome 21 and the other autosomes, we applied a similar procedure with the difference in the
variance of the residuals between chromosome 21 and the other autosomes, obtaining P = 0.39. Thus, there
is no appreciable difference in estimated recombination rate between the mixed ascertainment SNPs and the
SNPs ascertained in the global panel.

2.3 Impact of gene density

To assess whether gene density had an affect on our rate estimates, we calculated the Spearman rank corre-
lation coefficient between the residuals of the regression of rreg on the pedigree-based estimates and the gene
density of each region. A Spearman rank correlation coefficient of −0.27 was found. The significance of this
correlation was assessed by permuting the gene densities across regions and determining how often a more
negative correlation was observed. This correlation was found to have a suggestive P -value of 0.07, consistent
with the idea that increased gene density might lead to a small local reduction of effective population size
via natural selection.

2.4 Estimating effective population sizes from recombination rates

Two similar strategies were used to estimate the effective population size Npop for each population. In the
first method (method 1) the pedigree-based rate estimate was assumed to be correct, and the population size
was simply estimated by fitting a linear model (with an intercept of zero) of ρ/kb for a genomic region from
a population against the pedigree-based estimated rate for the region. The Npop value estimated from this
first method is plotted against the microsatellite heterozygosity for each population in Figure SN.4B.

The second method (method 2) was inspired by the observation from Figure SN.3 that the pedigree-based
estimate of the recombination rate for a region is in some cases a relatively poor predictor of ρ/kb over
populations (the most extreme example of which is the excluded region 1). In the second model, we assume

ρpop,reg = 4Npop(dreg + breg) + εpop,reg (1)

where ρpop,reg is the average population-genetic recombination rate per kb in region reg and population pop,
dreg is the pedigree rate estimate for the region, and breg is the “error” in the pedigree-based rate estimate
for a region when used at a local scale. To constrain this model, we require that the sum of breg across regions
is zero. This model was fitted to minimize

∑
pop,reg ε2pop,reg by a hill-climbing algorithm. Different initial

conditions for the values of Npop and breg led to very similar results, and there was good agreement between
the two different methods of estimating Npop. The second method is based on a more appropriate model,
and therefore was used to estimate the effective population sizes used in Figure 5 of the main paper (shown
again in Figure SN.4A). The Npop values estimated by method 2, along with the Spearman rank correlations
between the population-genetic and pedigree-based estimates, are given in Tables SN.4 and SN.5.

2.5 Robustness of estimates to changes in SNP spacing

The SNPs placed in each genomic region were designed around a core of 60 SNPs with an average spacing
of 1.5 kb between SNPs to have two flanking regions of 120 kb with an average spacing of 10 kb between
SNPs. The fitting of rate variation by LDhat might be affected by this SNP layout, so we re-estimated the
recombination rates using only the core SNPs for each genomic region (note that the unusual spacing of SNPs
in genomic regions 30-32 meant that these regions were excluded from the analysis). This procedure will lead
to a better estimate of ρ per kb, as the core regions have a higher density of SNPs. However, the pedigree-
based estimates are likely to be less appropriate for these smaller regions. The values of Npop (estimated
with method 2 using only the core of each genomic region) are plotted against microsatellite heterozygosity
in Figure SN.4C. There is a slight tendency for the values of Npop estimated from the core of each genomic
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Figure SN.4: Npop, estimated in four different ways, plotted against microsatellite heterozygosity. (A)
Method 2. (B) Method 1. (C) Only the SNPs from the core regions, using method 2. (D) The average of
reduced samples and SNP sets, using method 1 (see text).

region to be higher than those estimated from the whole region. The sparse SNP spacing in the flanking
region presumably leads LDhat to place relatively few changes of rate within these flanking regions, producing
a slightly lower recombination rate estimate and hence a slightly lower Npop on average. Our results remain
reasonably consistent whether the complete region or only the core regions are used, although the values of
Npop seem somewhat more variable across populations when considering only the core region.

2.6 Robustness of estimates to changes in sample size

A concern is that since LDhat penalizes the likelihood of changes in rate, populations with larger sample
size and more polymorphic SNPs might be able to introduce more changes in rate than those with smaller
samples and more monomorphic SNPs. Populations with smaller samples and fewer SNPs might therefore
be biased toward constancy and toward the background rate, because they cannot overcome the penalty for
introducing additional variation in the recombination rate. Many of the populations that have low estimates
of Npop also have small sample size and a large number of monomorphic SNPs.

To investigate this problem, all population samples were dropped to a sample size of 8 individuals, the
Surui sample size. The Surui sample was chosen as a basis for this analysis as they have among the lowest
estimated Npop and the most monomorphic SNPs. Then, for each sample, each genomic region had SNPs
removed at random until it had the same number, or fewer, SNPs than the Surui sample for this genomic
region (note that some populations had fewer SNPs than the Surui for particular regions). This procedure
was performed 10 times. Method 1 was used to estimate Npop for each of these reduced data sets, as it allows
us to estimate Npop for each reduced data set separately, rather than requiring estimates over populations.
The average Npop estimates from the 10 reduced data sets are plotted against microsatellite heterozygosity
in Figure SN.4D. Whereas the populations with either larger sample sizes or more polymorphic SNPs are
biased down by this reduction in sample size and SNP number, the relative order of the population estimates
is robust to the effects of sample size and numbers of monomorphic SNPs.

7



2.7 Robustness of estimates to changes in the LDhat smoothing parameter

We also tried several values of the LDhat smoothing parameter for a subset of populations with a range of
estimated Npop (results not shown). Larger values of the smoothing parameter in general led to somewhat
lower estimates of ρ per kb, as less variation in the rates would be permitted. These lower values in turn
resulted in smaller estimates of Npop. However, different values of the smoothing parameter made little
difference to the relative ordering of the Npop values across populations, and thus, our qualitative results are
robust to the smoothing parameter used.

2.8 Alternative methods for estimating population-genetic recombination rates

The recombination estimation methods maxdip 3 and PHASE v2.14 were also applied to the unphased data
(without imputing missing data) to estimate population-genetic recombination rates for all the autosomal
genomic regions and all populations (to reduce the computational load we excluded a number of East Asian
populations — Miao, Oroqen, Daur, Mongola, Hezhen, Xibo, Dai, Lahu, She, Naxi, and Tu). The maxdip
program assumes a constant rate across the whole region, while PHASE assumes that every interval between
SNPs has a separate rate. The estimates of Npop from maxdip and PHASE (calculated by method 2)
are plotted against microsatellite heterozygosity in Figure SN.5. The estimates of Npop based on maxdip
tend to be lower than those from either PHASE or LDhat, presumably because by estimating a constant
rate for a region, the rates are biased towards the background rate for the region. The Spearman rank
correlation coefficients between quantities estimated by the three methods are given in Table SN.6. The
correlations between the estimates obtained by the three methods are reasonably high, and the qualitative
picture of the relationship between Npop and microsatellite heterozygosity can be seen to hold irrespective of
the recombination estimation method used.
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Figure SN.5: Npop, estimated in two different ways, plotted against microsatellite heterozygosity. (A) Esti-
mates based on maxdip. (B) Estimates based on PHASE v2.1. The coloring of populations follows the same
scheme as in Figure SN.4.
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2.9 Recombination rates for X-chromosomal regions

Four of our genomic regions are located on the X chromosome. LDhat v2.0 does not allow a mixture of geno-
type information and known haplotype information. Therefore, for this analysis the haplotypes were obtained
by fastPHASE (with missing data imputed) and the LDhat method was used assuming these haplotypes to
be known. Because males have only one copy of the X chromosome, this procedure leads to a substantial
drop in the sample size for some populations. To estimate Npop from the X chromosome we assumed that

ρpop,reg = 2Npop(dreg + breg) + εpop,reg. (2)

We fit this model as in the autosomal case using a hill-climbing algorithm, with the constraint
∑

reg breg = 0.
The effective population sizes for populations with 15 or more haplotypes are plotted against microsatellite
heterozygosity in Figure SN.6. The relationship between Npop and microsatellite heterozygosity can be seen
to hold for the X chromosome as on the autosomes.
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Figure SN.6: Npop, estimated for the X chromosome, plotted against microsatellite heterozygosity. Only
populations samples with 15 or more haplotypes are shown. The coloring of populations follows the same
scheme as in Figure SN.4.
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Population Npop Spearman P -value
Brahui 6872 0.58 0.00082
Balochi 8104 0.62 0.00026
Hazara 6954 0.58 0.00076
Makrani 7726 0.49 0.0057
Sindhi 7332 0.44 0.013
Pathan 9452 0.51 0.0037
Kalash 4439 0.49 0.0058
Burusho 7056 0.57 0.00088

Mbuti Pygmy 7609 0.59 0.00058
Biaka Pygmy 7469 0.36 0.045
Melanesian 4939 0.14 0.47

French 9298 0.6 0.00048
Papuan 5920 0.57 0.00099
Druze 7524 0.52 0.0031

Bedouin 8428 0.59 0.00058
Sardinian 7220 0.58 0.00071
Palestinian 9014 0.51 0.0039
Colombian 2500 0.43 0.018
Cambodian 5433 0.5 0.0045
Japanese 9867 0.55 0.0014

Han 10256 0.55 0.0016
Orcadian 5364 0.41 0.024

Surui 1303 0.21 0.26
Maya 6374 0.54 0.0022

Russian 9576 0.62 0.00024
Mandenka 13082 0.5 0.0044
Yoruba 12968 0.52 0.0028
Yakut 8200 0.61 0.00035
San 6268 0.48 0.007

Karitiana 1240 0.26 0.15
Pima 2215 0.34 0.062
Tujia 11352 0.15 0.42
Italian 8844 0.63 0.00023
Tuscan 6350 0.63 0.00018

Table SN.4: The estimated effective population size of each of the 52 populations, estimated using method
2. The Spearman rank correlation coefficient between the pedigree-based rate estimate and the LDhat ρ/kb
estimate for each genomic region, and the P -value of the correlation coefficient, are also shown.
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Population Npop Spearman P -value
Yi 6407 0.30 0.10

Miao 8731 0.6 0.0004
Oroqen 5887 0.5 0.0049
Daur 6631 0.48 0.0075

Mongola 5732 0.40 0.025
Hezhen 4973 0.44 0.014
Xibo 5936 0.45 0.012

Mozabite 6839 0.61 0.00038
Han (N. China) 6171 0.55 0.0015

Uygur 6624 0.63 0.00022
Dai 8920 0.53 0.0027

Lahu 4077 0.23 0.20
She 6093 0.25 0.17
Naxi 6014 0.58 0.00074
Tu 11128 0.54 0.0022

Basque 6494 0.53 0.0023
Adygei 7137 0.54 0.002
Bantu 12559 0.54 0.0018

Table SN.5: The estimated effective population size of each of the 52 populations, estimated using method
2 (continued). The Spearman rank correlation coefficient between the pedigree-based rate estimate and the
LDhat ρ/kb estimate for each genomic region, and the P -value of the correlation coefficient, are also shown.

LDhat maxdip PHASE
LDhat 0.69 (2× 10−16) 0.70 (2× 10−16)
maxdip 0.73 (4× 10−7) 0.74 (2× 10−16)
PHASE 0.79 (8× 10−8) 0.83 (5× 10−9)

Table SN.6: The Spearman rank correlation coefficient between recombination rate estimates for different
estimation methods. The correlation is computed based on estimates for the autosomal regions, excluding
region 1. The P -value of the Spearman rank correlation coefficient is given in parentheses. The upper
triangular matrix contains the Spearman rank correlation coefficient between two methods in the average
estimated rate for each genomic region and each population. The lower triangular matrix contains the
Spearman rank correlation coefficient between two methods for the Npop values calculated from their rates
using method 2 (see text).
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3 Haplotype sharing

Averaging across haplotype loci within genomic regions — and then averaging across the regions — we
computed a sample-size corrected statistic φ

(j)
g,c,j′ that measures the fraction of the common haplotypes in a

population j that have the property of being common in population j′ (see the “Methods” section of the main
text). The value of c denotes the frequency threshold above which haplotypes are considered to be common,
and the value of g is a parameter that allows the effect of sample size to be examined.

Using the φ statistic, we calculated the fraction of common haplotypes in each HGDP population that
were also common in the HapMap populations (CEU, YRI, and CHB+JPT). Thus, j ranged over the HGDP
populations and j′ ranged over the HapMap populations. This analysis was performed for several choices of
the window size for haplotype loci. To explore the effect of sample size on the results, we considered four
ways of choosing the parameter g. These methods were as follows: (1) set g in all populations to the smallest
number of sampled haplotypes studied in any population, or 12; (2) for each population, set g to the smallest
number of haplotypes in the geographic region in which the population originated; (3) set g to 20, and exclude
populations with sample size < 20; (4) set g individually for each population to g = min(Nj , Nj′), where Nj

and Nj′ respectively denote the numbers of sampled haplotypes in populations j and j′. Because the HapMap
populations had larger sample sizes than the HGDP populations, this approach always led to g = Nj .

Estimates of φ, using common allele thresholds of c = 0.05 and c = 0.1, were very similar for these
four approaches to choosing g (results not shown). We present results only for method 4, which uses the
full samples from individual populations to identify common haplotypes. For each population, and for six
different haplotype window sizes, Tables SN.7-SN.12 show the fractions of common haplotypes found to be
common in the most similar of the HapMap populations. Table SN.13 then presents the average across HGDP
populations of these proportions, and Table SN.14 shows the largest value across populations of the fraction
of common haplotypes not found in the most similar HapMap population.

Several conclusions can be drawn from these tables. First, fairly similar results are obtained for cutoff
values of 0.05 and 0.1. Second, for both thresholds and most combinations of populations and window sizes,
the HapMap population with the greatest fraction of common alleles matches well with previous estimates
of population structure. For populations from Europe, the Middle East, and Central/South Asia, the CEU
sample generally has the largest fraction of common alleles among HapMap samples; for populations from
Africa, the YRI sample has the largest fraction; and for populations from East Asia, Oceania, and the
Americas, the CHB+JPT sample has the largest fraction.

Third, the coverage of common haplotypes by the most similar haplotype is extremely high in nearly all
populations for short haplotypes (length 5kb or less). As the haplotype length increases, the fraction of hap-
lotypes present in the HapMap decreases considerably, so that at length 50kb, the most distant populations
have less than half of their common haplotypes present in the HapMap. In general, the populations whose
common haplotypes are least contained in the HapMap are African populations such as San and Mbuti,
populations from Oceania and the Americas, which are not represented in the Hapmap, and relatively dis-
tinctive Eurasian populations such as Kalash and Uygur. In the case of the Uygur it is possible that ancient
admixture between populations more similar to CEU and populations more similar to CHB+JPT subdivided
many of the haplotypes common in one but not the other of the main ancestral groups, so that many of the
common haplotypes in Uygur could represent mosaics of common haplotypes from these ancestors.
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Table SN.7: The fraction of common SNPs (equal to a window size of 1 bp) in HGDP populations that are
also common in the most similar HapMap population. The most similar HapMap population is denoted by
1 = CEU, 2 = YRI and 3 = CHB+JPT. Common haplotypes were defined by having a frequency c > 5% or
c > 10%.

HGDP population c > 0.05 HapMap c > 0.1 HapMap
Bantu 0.9836 2 0.9726 2
Yoruba 0.9917 2 0.9781 2
Mandenka 0.9876 2 0.9802 2
San 0.9860 2 0.9698 2
Mbuti Pygmy 0.9877 2 0.9608 2
Biaka Pygmy 0.9890 2 0.9616 2
Orcadian 0.9835 1 0.9669 1
Adygei 0.9751 1 0.9578 1
Russian 0.9920 1 0.9758 1
Basque 0.9837 1 0.9835 1
French 0.9837 1 0.9747 1
Italian 0.9863 1 0.9769 1
Sardinian 0.9884 1 0.9773 1
Tuscan 0.9872 1 0.9843 1
Mozabite 0.9540 1 0.9519 1
Bedouin 0.9716 1 0.9580 1
Druze 0.9797 1 0.9774 1
Palestinian 0.9725 1 0.9564 1
Balochi 0.9778 1 0.9590 1
Brahui 0.9823 1 0.9735 1
Makrani 0.9745 1 0.9591 1
Sindhi 0.9742 1 0.9547 1
Pathan 0.9809 1 0.9606 1
Burusho 0.9783 1 0.9678 1
Hazara 0.9871 1 0.9673 1
Uygur 0.9645 1 0.9487 1
Kalash 0.9820 1 0.9675 1
Han 0.9961 3 0.9888 3
Han (N. China) 0.9798 3 0.9784 3
Dai 0.9767 3 0.9752 3
Daur 0.9743 1 0.9729 3
Hezhen 0.9768 3 0.9812 3
Lahu 0.9897 3 0.9781 3
Miao 0.9825 3 0.9797 3
Oroqen 0.9736 1 0.9900 3
She 0.9901 3 0.9699 3
Tu 0.9693 1 0.9633 3
Tujia 0.9811 3 0.9808 3
Xibo 0.9707 3 0.9766 3
Yi 0.9746 3 0.9663 3
Mongola 0.9755 3 0.9644 3
Naxi 0.9853 3 0.9820 3
Cambodian 0.9770 3 0.9709 3
Japanese 0.9942 3 0.9815 3
Yakut 0.9746 3 0.9699 3
Melanesian 0.9818 3 0.9715 3
Papuan 0.9837 3 0.9788 3
Karitiana 0.9820 1 0.9574 3
Surui 0.9849 1 0.9693 1
Colombian 0.9786 1 0.9621 1
Maya 0.9747 1 0.9551 1
Pima 0.9834 1 0.9634 1
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Table SN.8: The fraction of common haplotypes in HGDP populations that are also common in the most
similar HapMap population. The window size was 1 kb and there are on average 1.85 SNPs in such a
window. The most similar HapMap population is denoted by 1 = CEU, 2 = YRI and 3 = CHB+JPT.
Common haplotypes were defined by having a frequency c > 5% or c > 10%.

HGDP population c > 0.05 HapMap c > 0.1 HapMap
Bantu 0.9716 2 0.9619 2
Yoruba 0.9850 2 0.9694 2
Mandenka 0.9814 2 0.9734 2
San 0.9699 2 0.9476 2
Mbuti Pygmy 0.9745 2 0.9354 2
Biaka Pygmy 0.9733 2 0.9425 2
Orcadian 0.9743 1 0.9535 1
Adygei 0.9665 1 0.9432 1
Russian 0.9866 1 0.9682 1
Basque 0.9795 1 0.9775 1
French 0.9780 1 0.9608 1
Italian 0.9786 1 0.9636 1
Sardinian 0.9833 1 0.9698 1
Tuscan 0.9788 1 0.9727 1
Mozabite 0.9316 2 0.9307 1
Bedouin 0.9580 1 0.9415 1
Druze 0.9715 1 0.9678 1
Palestinian 0.9601 1 0.9402 1
Balochi 0.9653 1 0.9463 1
Brahui 0.9755 1 0.9626 1
Makrani 0.9639 1 0.9459 1
Sindhi 0.9645 1 0.9395 1
Pathan 0.9738 1 0.9473 1
Burusho 0.9707 1 0.9537 1
Hazara 0.9794 1 0.9549 1
Uygur 0.9498 1 0.9298 1
Kalash 0.9722 1 0.9520 1
Han 0.9937 3 0.9851 3
Han (N. China) 0.9685 3 0.9693 3
Dai 0.9673 3 0.9658 3
Daur 0.9592 1 0.9606 3
Hezhen 0.9705 3 0.9735 3
Lahu 0.9822 3 0.9674 3
Miao 0.9729 3 0.9720 3
Oroqen 0.9586 1 0.9774 3
She 0.9829 3 0.9573 3
Tu 0.9567 3 0.9523 3
Tujia 0.9718 3 0.9736 3
Xibo 0.9568 3 0.9662 3
Yi 0.9605 3 0.9537 3
Mongola 0.9612 3 0.9492 3
Naxi 0.9740 3 0.9710 3
Cambodian 0.9619 3 0.9618 3
Japanese 0.9896 3 0.9754 3
Yakut 0.9643 3 0.9568 3
Melanesian 0.9750 3 0.9557 3
Papuan 0.9732 3 0.9662 3
Karitiana 0.9738 1 0.9437 3
Surui 0.9764 1 0.9531 1
Colombian 0.9694 1 0.9458 3
Maya 0.9661 1 0.9371 1
Pima 0.9766 1 0.9519 3
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Table SN.9: The fraction of common haplotypes in HGDP populations that are also common in the most
similar HapMap population. The window size was 2 kb and there are on average 2.66 SNPs in such a
window. The most similar HapMap population is denoted by 1 = CEU, 2 = YRI and 3 = CHB+JPT.
Common haplotypes were defined by having a frequency c > 5% or c > 10%.

HGDP population c > 0.05 HapMap c > 0.1 HapMap
Bantu 0.9599 2 0.9532 2
Yoruba 0.9773 2 0.9627 2
Mandenka 0.9746 2 0.9677 2
San 0.9502 2 0.9251 2
Mbuti Pygmy 0.9601 2 0.9141 2
Biaka Pygmy 0.9577 2 0.9269 2
Orcadian 0.9662 1 0.9428 1
Adygei 0.9571 1 0.9281 1
Russian 0.9825 1 0.9600 1
Basque 0.9720 1 0.9660 1
French 0.9712 1 0.9520 1
Italian 0.9718 1 0.9519 1
Sardinian 0.9752 1 0.9614 1
Tuscan 0.9701 1 0.9619 1
Mozabite 0.9131 2 0.9086 1
Bedouin 0.9440 1 0.9264 1
Druze 0.9618 1 0.9604 1
Palestinian 0.9480 1 0.9282 1
Balochi 0.9558 1 0.9333 1
Brahui 0.9669 1 0.9521 1
Makrani 0.9542 1 0.9326 1
Sindhi 0.9544 1 0.9258 1
Pathan 0.9626 1 0.9349 1
Burusho 0.9617 1 0.9366 1
Hazara 0.9698 1 0.9434 1
Uygur 0.9352 1 0.9109 1
Kalash 0.9617 1 0.9379 1
Han 0.9920 3 0.9828 3
Han (N. China) 0.9584 3 0.9582 3
Dai 0.9604 3 0.9573 3
Daur 0.9448 3 0.9493 3
Hezhen 0.9654 3 0.9659 3
Lahu 0.9735 3 0.9595 3
Miao 0.9682 3 0.9641 3
Oroqen 0.9425 1 0.9696 3
She 0.9742 3 0.9474 3
Tu 0.9468 3 0.9412 3
Tujia 0.9630 3 0.9659 3
Xibo 0.9468 3 0.9563 3
Yi 0.9472 3 0.9447 3
Mongola 0.9499 3 0.9352 3
Naxi 0.9671 3 0.9651 3
Cambodian 0.9519 3 0.9546 3
Japanese 0.9871 3 0.9697 3
Yakut 0.9578 3 0.9479 3
Melanesian 0.9689 3 0.9450 3
Papuan 0.9627 3 0.9569 3
Karitiana 0.9659 1 0.9302 3
Surui 0.9681 1 0.9353 1
Colombian 0.9567 1 0.9316 3
Maya 0.9566 1 0.9238 1
Pima 0.9659 1 0.9424 3
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Table SN.10: The fraction of common haplotypes in HGDP populations that are also common in the most
similar HapMap population. The window size was 5 kb and there are on average 4.72 SNPs in such a
window. The most similar HapMap population is denoted by 1 = CEU, 2 = YRI and 3 = CHB+JPT.
Common haplotypes were defined by having a frequency c > 5% or c > 10%.

HGDP population c > 0.05 HapMap c > 0.1 HapMap
Bantu 0.9301 2 0.9304 2
Yoruba 0.9640 2 0.9462 2
Mandenka 0.9586 2 0.9503 2
San 0.8924 2 0.8708 2
Mbuti Pygmy 0.9150 2 0.8553 2
Biaka Pygmy 0.9215 2 0.8810 2
Orcadian 0.9496 1 0.9198 1
Adygei 0.9293 1 0.8940 1
Russian 0.9694 1 0.9405 1
Basque 0.9528 1 0.9444 1
French 0.9479 1 0.9305 1
Italian 0.9530 1 0.9225 1
Sardinian 0.9571 1 0.9394 1
Tuscan 0.9440 1 0.9414 1
Mozabite 0.8801 2 0.8669 1
Bedouin 0.9150 1 0.8947 1
Druze 0.9418 1 0.9341 1
Palestinian 0.9211 1 0.8973 1
Balochi 0.9293 1 0.9021 1
Brahui 0.9475 1 0.9206 1
Makrani 0.9337 1 0.8968 1
Sindhi 0.9273 1 0.8864 1
Pathan 0.9397 1 0.9074 1
Burusho 0.9392 1 0.9065 1
Hazara 0.9525 1 0.9072 1
Uygur 0.8958 1 0.8686 1
Kalash 0.9367 1 0.8980 1
Han 0.9829 3 0.9745 3
Han (N. China) 0.9343 3 0.9463 3
Dai 0.9369 3 0.9385 3
Daur 0.9166 3 0.9307 3
Hezhen 0.9432 3 0.9489 3
Lahu 0.9539 3 0.9395 3
Miao 0.9438 3 0.9461 3
Oroqen 0.9037 1 0.9526 3
She 0.9571 3 0.9262 3
Tu 0.9176 3 0.9232 3
Tujia 0.9390 3 0.9453 3
Xibo 0.9233 3 0.9383 3
Yi 0.9237 3 0.9267 3
Mongola 0.9175 3 0.9126 3
Naxi 0.9450 3 0.9517 3
Cambodian 0.9216 3 0.9423 3
Japanese 0.9790 3 0.9600 3
Yakut 0.9383 3 0.9317 3
Melanesian 0.9485 3 0.9148 3
Papuan 0.9345 3 0.9286 3
Karitiana 0.9404 1 0.9004 3
Surui 0.9468 1 0.9061 3
Colombian 0.9269 1 0.9078 3
Maya 0.9339 1 0.9017 3
Pima 0.9448 1 0.9196 3
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Table SN.11: The fraction of common haplotypes in HGDP populations that are also common in the most
similar HapMap population. The window size was 20 kb and there are on average 12.82 SNPs in such a
window. The most similar HapMap population is denoted by 1 = CEU, 2 = YRI and 3 = CHB+JPT.
Common haplotypes were defined by having a frequency c > 5% or c > 10%.

HGDP population c > 0.05 HapMap c > 0.1 HapMap
Bantu 0.7868 2 0.8145 2
Yoruba 0.8841 2 0.8577 2
Mandenka 0.8720 2 0.8455 2
San 0.6585 2 0.6125 2
Mbuti Pygmy 0.6999 2 0.5967 2
Biaka Pygmy 0.7663 2 0.6861 2
Orcadian 0.8968 1 0.8564 1
Adygei 0.8491 1 0.8118 1
Russian 0.9212 1 0.8838 1
Basque 0.8831 1 0.8887 1
French 0.8882 1 0.8796 1
Italian 0.9000 1 0.8372 1
Sardinian 0.8853 1 0.8791 1
Tuscan 0.8435 1 0.8808 1
Mozabite 0.7621 1 0.7937 1
Bedouin 0.8397 1 0.8360 1
Druze 0.8798 1 0.8784 1
Palestinian 0.8550 1 0.8468 1
Balochi 0.8630 1 0.8320 1
Brahui 0.8701 1 0.8387 1
Makrani 0.8584 1 0.8088 1
Sindhi 0.8601 1 0.8098 1
Pathan 0.8630 1 0.8358 1
Burusho 0.8603 1 0.8252 1
Hazara 0.8841 1 0.8283 3
Uygur 0.7566 1 0.7460 3
Kalash 0.8548 1 0.7899 1
Han 0.9376 3 0.9293 3
Han (N. China) 0.8066 3 0.8672 3
Dai 0.8260 3 0.8626 3
Daur 0.7745 3 0.8456 3
Hezhen 0.8252 3 0.8660 3
Lahu 0.8572 3 0.8465 3
Miao 0.8336 3 0.8623 3
Oroqen 0.7917 3 0.8568 3
She 0.8513 3 0.8319 3
Tu 0.8123 3 0.8320 3
Tujia 0.8284 3 0.8598 3
Xibo 0.8090 3 0.8589 3
Yi 0.8084 3 0.8388 3
Mongola 0.7919 3 0.8303 3
Naxi 0.8374 3 0.8705 3
Cambodian 0.7919 3 0.8731 3
Japanese 0.9182 3 0.9052 3
Yakut 0.8666 3 0.8769 3
Melanesian 0.8503 3 0.7920 3
Papuan 0.7964 3 0.7830 3
Karitiana 0.8193 1 0.7571 3
Surui 0.8449 1 0.7800 3
Colombian 0.7986 1 0.7735 3
Maya 0.8243 1 0.7951 3
Pima 0.8305 1 0.8116 3
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Table SN.12: The fraction of common haplotypes in HGDP populations that are also common in the most
similar HapMap population. The window size was 50 kb and there are on average 27.45 SNPs in such a
window. The most similar HapMap population is denoted by 1 = CEU, 2 = YRI and 3 = CHB+JPT.
Common haplotypes were defined by having a frequency c > 5% or c > 10%.

HGDP population c > 0.05 HapMap c > 0.1 HapMap
Bantu 0.5756 2 0.6484 2
Yoruba 0.7264 2 0.7620 2
Mandenka 0.7381 2 0.6951 2
San 0.3667 2 0.3299 2
Mbuti Pygmy 0.4230 2 0.3338 2
Biaka Pygmy 0.5517 2 0.5451 2
Orcadian 0.8154 1 0.7532 1
Adygei 0.7611 1 0.7083 1
Russian 0.8531 1 0.7813 1
Basque 0.7971 1 0.8189 1
French 0.8189 1 0.8036 1
Italian 0.8228 1 0.7555 1
Sardinian 0.8155 1 0.7741 1
Tuscan 0.6900 1 0.7683 1
Mozabite 0.6513 1 0.7146 1
Bedouin 0.7578 1 0.7034 1
Druze 0.8061 1 0.8026 1
Palestinian 0.7975 1 0.7588 1
Balochi 0.7666 1 0.7344 1
Brahui 0.7571 1 0.7330 1
Makrani 0.7406 1 0.7062 1
Sindhi 0.7818 1 0.7028 1
Pathan 0.7758 1 0.7485 1
Burusho 0.7589 1 0.7179 1
Hazara 0.7804 1 0.7724 3
Uygur 0.5887 1 0.6289 3
Kalash 0.7351 1 0.6347 1
Han 0.8657 3 0.8658 3
Han (N. China) 0.6478 3 0.7400 3
Dai 0.6645 3 0.7546 3
Daur 0.6105 3 0.7417 3
Hezhen 0.6763 3 0.7449 3
Lahu 0.7085 3 0.7307 3
Miao 0.6782 3 0.7449 3
Oroqen 0.6487 3 0.7372 3
She 0.7084 3 0.7146 3
Tu 0.6443 3 0.7043 3
Tujia 0.6617 3 0.7367 3
Xibo 0.6579 3 0.7535 3
Yi 0.6603 3 0.7185 3
Mongola 0.6267 3 0.7178 3
Naxi 0.6963 3 0.7919 3
Cambodian 0.6349 3 0.7781 3
Japanese 0.8030 3 0.8456 3
Yakut 0.7779 3 0.7877 3
Melanesian 0.7154 3 0.6316 3
Papuan 0.6670 3 0.6268 3
Karitiana 0.6280 1 0.5968 3
Surui 0.6658 3 0.6333 3
Colombian 0.6054 3 0.6424 3
Maya 0.6864 1 0.6412 3
Pima 0.6822 3 0.6575 3
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Table SN.13: The fraction of haplotypes common in a randomly chosen HGDP population that are also
common in the most similar HapMap population. Common haplotypes were defined by having a frequency
c > 5% or c > 10%.

window size c > 0.05 c > 0.1
1 0.9807 0.9702
1000 0.9708 0.9576
2000 0.9611 0.9463
5000 0.9365 0.9205
20000 0.8360 0.8270
50000 0.7014 0.7091

Table SN.14: The maximum across HGDP populations of the fraction of common haplotypes absent from
the most similar HapMap population. Common haplotypes were defined by having a frequency c > 5% or
c > 10%.

window size c > 0.05 c > 0.1
1 0.0460 0.0513
1000 0.0684 0.0702
2000 0.0869 0.0914
5000 0.1199 0.1447
20000 0.3415 0.4033
50000 0.6333 0.6701
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4 Tag SNP analysis

The ongoing HapMap Project has generated a tremendous empirical description of linkage disequilibrium
across the human genome. One of the principal motivations for the HapMap Project is to enable researchers
to efficiently select genetic markers for genome-wide association studies that (a) maximize coverage of the
genomic regions of interest and (b) minimize the amount of information shared between markers. The current
scope of the HapMap Project involves genotypes from four populations. Therefore, it is important for studies
of non-HapMap populations to find a reasonable way to connect the genetics of their samples to the data
gathered in HapMap populations or other populations studied at a similar density as in the HapMap5.
Because it represents a broad sample of human populations, the HGDP-CEPH Diversity Panel presents an
opportunity to refine the understanding of how patterns of LD are shared among groups.

We set out to identify which of the HapMap populations is the most appropriate for selecting tag SNPs
for LD-based population-genetic analysis in each of the HGDP populations. In an ideal situation, researchers
would have the ability to tailor their genome-wide marker panel to the specific patterns of LD in a population of
interest. As many preselected SNP panels are already commercially available as part of large-scale genotyping
platforms, it seems likely that many researchers will be analyzing SNPs selected without regard to LD
considerations. Therefore, we also examined the amount of information about non-genotyped variation that
is captured using random panels of SNPs, and compared this level of information to that captured by LD-
directed tag SNPs.

4.1 LD-based tag selection

For each population, we selected LD-based tag SNPs using the method described in Carlson et al.6. We only
considered “core” SNPs as potential tag SNPs, but we assessed how well each potential tag SNP captured all
HapMap variation that was typed in our HGDP samples. The number of core SNPs present in the HapMap
ranges from 27 to 58 per region, out of a total possible 60. For each region, we used the following algorithm
to select tag SNPs:

1. Calculate pairwise r2 between each core SNP and each of the rest of the SNPs in the region.

2. Select the core SNP with the most pairwise r2 values above a tagging threshold, record the identification
number (rs#) of this SNP and the number of SNPs that it tags (its “object SNPs”), and remove this
SNP and its object SNPs from consideration.

3. If there are no core SNPs remaining, stop.

4. Return to step 1.

We ran this algorithm on each genomic region separately. We then compiled results across all regions, ranking
tag SNPs based on their number of “hits” (pairwise r2 values above the specified threshold), and we then
selected tag SNPs sequentially from the ordered list until the desired SNP density was reached. We did not
require that each region have a tag SNP.

In order to explore appropriate tagging thresholds, we estimated the total number of SNPs required to
tag all core HapMap SNPs at a given level of r2 (Table SN.15). Qualitatively similar results were obtained
with different thresholds, and in the end we settled on an r2 threshold of 0.85.

HapMap population r2 = 0.95 r2 = 0.90 r2 = 0.80 Total core
CEU 510 451 378 952
YRI 689 641 558 986
CHB+JPT 452 392 328 906

Table SN.15: Number of SNPs required to capture common variation as function of tagging threshold.
For three values of r2, we report the number of tag SNPs required to tag all common core SNP variation
(minor allele frequency > 0.05) in the HapMap populations. “Total core”: total number of core SNPs with
MAF > 0.05 in each HapMap population.
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4.2 Impact of sample size

There is considerable variation in the sample sizes of the populations in the 927 individuals studied from the
HGDP, ranging from 6 individuals (San, Tuscans) to 45 (Bedouin). To make cross-population comparisons
of tag SNP portability and the extent of LD, it is important to understand the effect of sample size on
these analyses, and if necessary, to account for it. Therefore, we have investigated the effects of sampling
on r2 and on the tag portability of LD-based tags selected in each of the three HapMap populations, as
measured by PVT, the proportion of variation tagged (described in the “Methods” in the main text and in
the Supplementary Methods).

First, we conducted a preliminary tag SNP analysis of the total HGDP using a set of tag SNPs chosen
in the HapMap CEU sample, and examined the results for any obvious sample size effects. The correlation
coefficient between sample size and the percent of untyped variation tagged was -0.36, suggesting a substantial
sample size effect. Fitting a simple linear model to these variables (PVT vs. sample size) yielded a regression
coefficient of -0.003, or a 3% decrease in variation tagged for every 10 haplotypes added to a population
sample. If this relationship held true for all populations, Bedouin (n = 90 haplotypes and PVT=0.44) would
have a PVT of 0.674 at n = 12, while San (n = 12 and PVT=0.489) would have a PVT of 0.255 if we could
increase their sample size to n = 90.

This analysis does not address the fact that we have an a priori expectation for several populations with
a small n in the HGDP to be well-tagged regardless of sample size. To explore the effect of sample size more
carefully, our strategy was to select the HGDP population with the largest sample size from each of the 7
geographic regions, and to assess sampling effects within each of these populations by subsampling real data
in a Monte Carlo fashion. The actual subsample sizes selected in each case depend on the total sample size
of the population, but were selected to be roughly comparable.

For each subsample size “ss”, we analyzed tag SNP portability just as in the original (full-data) analysis,
using only ss haplotypes from the original 90 individuals and the set of tag SNPs from the appropriate
HapMap donor population. This process was repeated 30 times and the results for each ss averaged together.
These results clearly display a linear trend between sample size and PVT (Table SN.16). This trend suggests
that a sensible approach to populations with smaller than average sample sizes would be to apply a correction
factor based on extrapolation from simulations with genetically similar populations but larger sample sizes.

To estimate an appropriate correction factor, we fit a simple linear model to each set of resampling data
and recorded the regression coefficient. As can be seen in Table SN.16, the slopes are similar across many
populations.

In all subsequent analyses (unless otherwise mentioned), we adjusted all PVT scores to the mean HGDP
sample size, 36 chromosomes. For populations with fewer than 36 chromosomes, we applied a correction
factor (estimated from the relevant geographic region) to the PVT score.

PV Tcorrected = PV Traw + (36− n)βi,

where βi is the regression coefficient for geographic region i and n is the number of chromosomes sampled in the
population. For samples larger than 36 chromosomes, we corrected the PVT score empirically, by resampling
36 chromosomes from the population 30 times and averaging PVT scores across these subsamples.

Population β R2 P -value
Makrani −0.0016 0.90 0.009
Maya −0.001 0.97 0.01
Biaka −0.0024 0.96 0.012
Bedouin −0.0012 0.59 0.146
French −0.004 0.93 0.004
Papuan −0.004 0.79 0.074
Han −0.001 0.78 0.004

Table SN.16: Linear modeling of sample size on proportion of variation tagged. β: slope from least squares
regression of PVT on sample size; R2: the fraction of variance explained by the model; P -value: P -value
testing the null model that β = 0.
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4.3 Performance of alternate tag panels

For each of the HGDP populations, we scored what proportion of the “untyped” variation in the core regions
would be captured by tag SNPs chosen in each of the HapMap populations (Tables SN.17 and SN.18).
Overwhelmingly, haplotype variation from populations with the same geographic “region” label is best-
represented by the same tag SNP set (CEU, YRI, or CHB+JPT).

Is there a “universal tag donor”? Our results clearly indicate that the best tag SNP set varies by geographic
region. This observation suggests the next question, “In what geographic region does selecting the correct
tag donor matter most?” On average, East Asian populations are most affected by tag donor selection; the
average difference in PVT between the best- and worst-performing SNP sets for these populations is 26%.
These are followed by the African populations, with approximately 21% difference between best and worst
sets. C/S Asian and Middle-Eastern populations tend to be the least affected in this analysis; the average
differences between the best and worst sets are 13.9% and 14.25%, respectively.

It may be the case that selecting the “nearest” (in terms of genetic distance) HapMap population as the
source of tag SNPs for a given HGDP population may not be the most effective way of using the HapMap data
(see also “Determinants of tag SNP portability” section). We tried a simple strategy of designing tag panels
using each possible pair of HapMap populations, as well as a cosmopolitan set of 360 HapMap haplotypes
(120 from each population), choosing the best 333 SNPs as before. The PVT improves for many of the
genetically intermediate populations in C/S Asia and the Middle East (Supplementary Figure 1).

4.4 Impact of tagging threshold

Despite the simplicity of the concept of tag SNP analysis, the process of selecting tag SNPs and measuring
their portability required many choices about the details of the analysis. In the following sections we analyze
the effect of these choices on the conclusions that we draw in the main paper.

Tagging threshold is one highly visible parameter in our analysis. To evaluate the role of this parameter,
we conducted a tag SNP analysis with tagging threshold 0.95 and a 452 tag SNP panel, which corresponds to
the density of a 500,000-SNP chip. The qualitative results are very similar to the analysis with r2 threshold
of 0.85. The best tag donor is the same for each HGDP population, with the exception that with the 0.95
threshold the Mozabite population is best tagged by CEU. We have also performed numerous analyses with
the popular r2 threshold of 0.8. In one example using the same tagging density as the main analysis, we
observed a slight departure from the trend of the “nearest” HapMap population as the best tag donor (Tables
SN.19 and SN.20).

One possible limitation to the generality of these results is the manner in which the tag SNPs were selected
in each HapMap population. By prioritizing tag SNPs that capture the most variation across all regions, we
are emphasizing regions that have high LD and probably also those that have low recombination rates. A
more balanced analysis might be to select the best N tag SNPs from each of the 29 regions. Our analysis of
this alternate study design, with N = 6, indicates that although the proportion of variation tagged in each
case drops across all comparisons, the ordering of which HapMap population is the best tag donor does not
change (results not shown). The only exceptions are that in this new analysis, using an r2 threshold of 0.95
and comparing the results to those obtained with our primary tag selection strategy, the Bedouin, Mozabite,
and Sindhi populations are now best tagged by the YRI tag panel rather than by the CEU panel.
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Tagging set
Region Population N CEU YRI CHB+JPT

Bantu 38 0.252 0.421 0.196
Biaka Pygmy 46 0.218 0.393 0.220

AFRICA Mandenka 42 0.352 0.493 0.284
Mbuti Pygmy 24 0.268 0.357 0.175
San 12 0.195 0.386 0.179
Yoruba 44 0.299 0.527 0.256
Colombian 14 0.769 0.684 0.838
Karitiana 28 0.823 0.660 0.827

AMERICAS Maya 42 0.740 0.596 0.726
Pima 24 0.831 0.672 0.831
Surui 16 0.881 0.722 0.908
Balochi 48 0.671 0.555 0.505
Brahui 48 0.620 0.516 0.472
Burusho 46 0.660 0.541 0.500
Hazara 44 0.653 0.497 0.553

C/S ASIA Kalash 46 0.728 0.583 0.587
Makrani 50 0.678 0.530 0.531
Pathan 48 0.684 0.558 0.531
Sindhi 48 0.616 0.532 0.497
Uygur 20 0.671 0.533 0.552
Cambodian 16 0.636 0.559 0.746
Dai 20 0.734 0.539 0.801
Daur 20 0.736 0.544 0.798
Han 68 0.708 0.562 0.883
Han (N. China) 20 0.694 0.529 0.834
Hezhen 18 0.713 0.545 0.840
Japanese 58 0.671 0.541 0.819
Lahu 16 0.706 0.604 0.848
Miao 20 0.717 0.510 0.858

E ASIA Mongola 20 0.669 0.520 0.799
Naxi 16 0.725 0.507 0.767
Oroqen 18 0.603 0.502 0.758
She 20 0.688 0.571 0.860
Tu 20 0.704 0.546 0.778
Tujia 20 0.689 0.511 0.785
Xibo 18 0.726 0.533 0.757
Yakut 50 0.696 0.578 0.769
Yi 20 0.696 0.566 0.833

Table SN.17: Summary of Phase II HapMap tag portability. Tagging threshold is r2 = 0.85. Each tagging
set contains 333 SNPs selected on the basis of Phase II HapMap data. The best portability score for each
population (PVT) is set in boldface. These boldface values of PVT are the ones used to construct Figure 7A
in the main text. N : number of haplotypes in the HGDP sample.
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Tagging set
Region Population N CEU YRI CHB+JPT

Adygei 30 0.673 0.518 0.495
Basque 48 0.802 0.576 0.595
French 56 0.749 0.568 0.542

EUROPE Italian 24 0.636 0.480 0.450
Orcadian 26 0.651 0.531 0.433
Russian 48 0.791 0.546 0.566
Sardinian 54 0.759 0.540 0.549
Tuscan 12 0.728 0.509 0.520
Bedouin 90 0.586 0.516 0.439

MIDDLE EAST Druze 82 0.701 0.538 0.557
Mozabite 56 0.513 0.518 0.400
Palestinian 88 0.618 0.526 0.451
Melanesian 22 0.657 0.543 0.768

OCEANIA Papuan 32 0.704 0.565 0.752

Table SN.18: Summary of Phase II HapMap tag portability (continued). Tagging threshold is r2 = 0.85.
Each tagging set contains 333 SNPs selected on the basis of Phase II HapMap data. The best portability score
for each population (PVT) is set in boldface. These boldface values of PVT are the ones used to construct
Figure 7A in the main text. N : number of haplotypes in the HGDP sample.
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Tagging set
Region Population N CEU YRI CHB+JPT

Bantu (Kenya) 22 0.298 0.464 0.241
Bantu (southern Africa) 16 0.276 0.415 0.198
Biaka Pygmy 46 0.273 0.413 0.214

AFRICA Mandenka 42 0.380 0.535 0.28
Mbuti Pygmy 24 0.269 0.416 0.186
San 12 0.209 0.391 0.134
Yoruba 44 0.337 0.569 0.274
Colombian 14 0.814 0.688 0.794
Karitiana 28 0.814 0.713 0.873

AMERICA Maya 42 0.747 0.639 0.694
Pima 24 0.855 0.746 0.843
Surui 16 0.880 0.757 0.913
Balochi 48 0.717 0.598 0.505
Brahui 38 0.276 0.459 0.214
Brahui 48 0.665 0.567 0.466
Burusho 46 0.676 0.588 0.499
Hazara 44 0.733 0.550 0.541

C/S ASIA Kalash 46 0.762 0.633 0.584
Makrani 50 0.700 0.584 0.515
Pathan 48 0.691 0.613 0.518
Sindhi 48 0.678 0.590 0.480
Uygur 20 0.742 0.575 0.526
Cambodian 16 0.621 0.593 0.688
Dai 20 0.779 0.598 0.804
Daur 20 0.787 0.605 0.785
Han 68 0.742 0.612 0.857
Han (N. China) 20 0.761 0.601 0.882
Hezhen 18 0.765 0.581 0.862
Japanese 58 0.716 0.600 0.827
Lahu 16 0.720 0.636 0.839
Miao 20 0.754 0.592 0.876

E ASIA Mongola 20 0.691 0.577 0.788
Naxi 16 0.734 0.536 0.734
Oroqen 18 0.649 0.553 0.745
She 20 0.718 0.619 0.851
Tu 20 0.721 0.603 0.811
Tujia 20 0.782 0.611 0.845
Xibo 18 0.754 0.579 0.762
Yakut 50 0.709 0.625 0.728
Yi 20 0.727 0.613 0.800

Table SN.19: Summary of Phase II HapMap tag portability, alternate threshold. Tagging threshold is
r2 = 0.80. Each tagging set contains 327 SNPs selected on the basis of Phase II HapMap data. The best
portability score for each population (PVT) is set in boldface. N : number of haplotypes in the HGDP sample.
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Tagging set
Region Population N CEU YRI CHB+JPT

Adygei 30 0.702 0.551 0.525
Basque 48 0.839 0.619 0.62
French 56 0.793 0.612 0.534

EUROPE Italian 24 0.735 0.585 0.493
Orcadian 26 0.689 0.588 0.448
Russian 48 0.837 0.601 0.559
Sardinian 54 0.787 0.589 0.581
Tuscan 12 0.708 0.545 0.490
Bedouin 90 0.628 0.564 0.465

MIDDLE EAST Druze 82 0.733 0.588 0.552
Mozabite 56 0.541 0.574 0.442
Palestinian 88 0.652 0.571 0.475
Melanesian 22 0.688 0.622 0.769

OCEANIA Papuan 32 0.727 0.610 0.744

Table SN.20: Summary of Phase II HapMap tag portability, alternate threshold (continued). Tagging thresh-
old is r2 = 0.80. Each tagging set contains 327 SNPs selected on the basis of Phase II HapMap data. The
best portability score for each population (PVT) is set in boldface. N : number of haplotypes in the HGDP
sample.
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4.5 Impact of ascertainment scheme

To address the impact of different ascertainment strategies on studies of SNP and haplotype variation, we
explicitly designed our genotyping panel to consist of SNPs from two general classes of ascertainment. SNPs
from 16 of our regions were ascertained by resequencing of a multiethnic panel in Patil et al.2, while SNPs
typed in the other regions follow an ascertainment strategy that might be more representative of all SNPs in
dbSNP.

A point of primary interest was the effect of ascertainment on our conclusions about tag portability. For
each of our three primary tag panels (based on CEU,YRI, and CHB+JPT haplotypes), we measured the
difference in mean PVT for the “Patil” regions and “non-Patil” regions separately (using an r2 threshold of
0.85), and estimated the variance in this difference with 10,000 bootstrap replicates per HGDP population.
The results are displayed as box-whisker plots in Supplementary Figure 2, Figure SN.7, and Supplemen-
tary Figure 3. Although there are definite trends for each tag panel (described in the “Worldwide portability
of the HapMap” section of the main text), the bootstrap 95% confidence intervals typically contain the value
of “no difference” for each HGDP population.

                East Asian tags
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Figure SN.7: Difference in PVT between Patil and Non-Patil regions, East Asian tags. Bootstrap resampling
was used to assess the difference in mean PVT of Patil regions and non-Patil Regions. Ten thousand bootstrap
replicates were generated for each HGDP population, and are depicted here as box-whisker plots.
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4.6 Impact of allele frequency

A mildly surprising result is that American and Oceanic populations, which show extensive LD in our model-
based analyses, are not tagged more effectively by all tag sets. This result may be partly explained by the
fact that numerous tag SNPs selected in HapMap populations are simply monomorphic in American and
Oceanic populations.

We quantified the relative effects of LD and allele frequency on tag portability with an analysis of variance.
We estimated what fraction of variance in PVT among populations was due to differences in Ne (as estimated
from ρ) and to differences in the number of monomorphic tag SNPs. This analysis used 452 tag SNPs based
on an r2 threshold of 0.95. Whereas Ne was found to have a very significant effect (P < 0.003), number of
monomorphic tag SNPs did not have a significant effect.

Nonetheless, we observed a slight negative correlation (-0.12) between the number of monomorphic SNPs
and PVT. Given this result, we were interested to determine if alterations to our tag SNP selection algorithm
that weighed minor allele frequency (MAF) in the selection process could improve tag SNP portability, at least
in the Oceanic and American populations. While the correlations in MAF between East Asian populations
and populations from Oceania and America are not extremely high, there is enough shared information to
believe such a modification might be successful (Figure SN.8). As a simple exploration of this principle, we
again performed the tag analysis with the method of Carlson et al.6, with the modification that the core SNP
with highest MAF within a bin is selected as the tag SNP for that bin.

The results of this analysis, using the CHB+JPT HapMap population as the donor, are presented for a
sample of populations in Table SN.21. The conclusion is that the algorithm which uses frequency information
performs (just slightly) worse in most populations, including those from America and Oceania. The two
tagging approaches selected 417/452 SNPs in common. The frequency-based algorithm basically produces
the same number of monomorphic tag SNPs in the Americas as the original approach, while actually increasing
the number of monomorphic tag sites in the Maya by 1. This reflects the fact that SNPs with very high r2

tend to have correlated histories; if a SNP is fixed during a bottleneck, other SNPs in high LD with that SNP
are likely to have been fixed as well.
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Figure SN.8: Minor allele frequency correlation between populations. Each panel displays a scatter plot of
Han MAF against MAF from a second population. In the first panel at the upper left, the Han MAFs are
plotted against MAFs from a pooled set of 124 chromosomes from various East Asian populations. All other
panels show Han MAF against a single American population MAF. The value of the Pearson correlation
coefficient between each set of MAFs is displayed above each panel.
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Frequency information No frequency information
Population PVT % polymorphic PVT % polymorphic
Russian 0.779 0.967 0.760 0.967
Basque 0.750 0.947 0.717 0.947
Sardinian 0.742 0.942 0.732 0.942
Orcadian 0.721 0.918 0.694 0.918
Kalash 0.719 0.938 0.692 0.938
Brahui 0.576 0.962 0.546 0.962
Druze 0.639 0.960 0.621 0.960
Sindhi 0.538 0.989 0.504 0.989
Biaka Pygmy 0.372 0.894 0.350 0.894
Mbuti Pygmy 0.442 0.774 0.442 0.774
Yoruba 0.502 0.916 0.464 0.916
Mandenka 0.452 0.907 0.441 0.907
Papuan 0.801 0.874 0.786 0.874
Maya 0.734 0.912 0.668 0.909
Colombian 0.908 0.803 0.908 0.803
Karitiana 0.878 0.739 0.872 0.739
Pima 0.908 0.777 0.905 0.777
Surui 0.936 0.646 0.936 0.646
Han 0.840 0.998 0.831 0.998
Japanese 0.839 1.000 0.787 1.000
Yakut 0.715 0.982 0.627 0.982
Melanesian 0.871 0.852 0.871 0.852
Mongola 0.890 0.978 0.881 0.978

Table SN.21: Frequency-based and LD-based tag SNP performance. Proportion of variation tagged (PVT)
by SNPs selected in CHB+JPT, using the method of Carlson, et al.6 (no frequency information) or a modified
version that uses frequency information. Tagging threshold is r2 = 0.95. The fraction of all tags polymorphic
within each population is also listed. PVT values in this table are not sample-size corrected.

4.7 Summary

The results of these analyses, although by no means comprehensive, provide an overview both of how one
might incorporate information from the HapMap when designing studies of SNP variation in non-HapMap
populations, and of the types of issues that are likely to arise in the process. In general, the HapMap
population “closest” to the study population should be used to design tags for a given target population. There
will clearly be opportunities to leverage the HapMap in different ways in the design of tagging sets, possibly
by combining information across HapMap populations. One possible example of this use of population-genetic
data is for admixture mapping.

Sample size is a concern when measuring how well a tag SNP set represents variation in any given
population; as the number of haplotypes sampled from a population increases, the number of sites tagged in
that sample decreases. Coalescent theory predicts that this effect will reach an asymptote as the sample size
of the target population is increased. The rate at which this asymptote is approached will depend on the
effective population size (Ne) of the target population.

One idea that has emerged during our tag SNP analysis is that there are three central forms of information
captured from the donor population when designing tag SNPs: which SNPs are likely to be polymorphic in
neighboring populations, which regions of the genome have low LD (and thus require fewer tag SNPs), and
the specific LD relationships between individual SNPs. Optimal tagging strategies will at least indirectly
capture these three forms of information.

The first of these three factors has not been carefully considered in most tagging strategies. We observe
a loss of tagging power in some bottlenecked populations, such as those in the Americas and Oceania, as a
result of many tag SNPs being monomorphic in those populations. Within our current tagging scheme it is
difficult to adjust for this by exploiting information about HapMap allele frequencies. It seems likely that
with a lower tagging threshold there will be a larger range of MAFs from which to select tags, and thus, allele
frequency may have a larger effect on tagging performance (possibly at the expense of linkage information).

Finally, although we have not explored multi-marker methods for tag SNP selection, we expect that results
from such an approach to be qualitatively similar to the ones presented here.
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5 Determinants of tag SNP portability

In the same manner as described under “Determinants of tag SNP portability” in the main text, we performed
additional computations of the relationships between proportion of variation tagged (PVT) and the r2-decay
distance d∗, and between PVT and FST genetic distance to the HapMap population with highest PVT. To
investigate whether SNP ascertainment had an effect on these relationships, we plotted PVT vs. d∗ and PVT
vs. FST , restricting attention to only the chromosome 21 SNPs (Supplementary Figure 4A, 4B), and
to only the autosomal SNPs not on chromosome 21 (Supplementary Figure 4C, 4D). In both of these
supplementary figures, the correlations between PVT and d∗ and between PVT and FST were similar to the
case in which all SNPs were used (Figure 8).

To assess whether the relationship held when allowing tag panels to be determined by combinations of
HapMap populations rather than individual populations (see Supplementary Figure 1), we repeated the
analysis using FST distance to the HapMap population or combination of HapMap populations that produced
the highest portability. Supplementary Figure 5 provides plots of PVT vs. d∗ and PVT vs. FST for all
SNPs, chromosome 21 SNPs only (“Patil SNPs”) and SNPs not on chromosome 21 only (“non-Patil SNPs”).
The correlations were similar for all SNP sets, and were also similar to the setting in which only three rather
than seven tag SNP panels were considered (see Table SN.22).

Finally, we investigated the robustness of the correlation between PVT and distance d∗ by varying the
minor allele frequency cutoff m, the r2 cutoff c, and the percentage p of SNPs with r2 > c. None of these
variables had a sizeable impact on d∗, or on the qualitative nature of the relationship between PVT and d∗

(results not shown).

Figure Tag set Genomic
regions

PVT correlation
with r2

PVT correlation
with FST

Supplementary Figure 4A, 4B 3-HapMap Patil 0.66 -0.23
Supplementary Figure 4C, 4D 3-HapMap Non-Patil 0.65 -0.16
Supplementary Figure 5A, 5B 7-HapMap All 0.71 -0.11
Supplementary Figure 5C, 5D 7-HapMap Patil 0.69 -0.23
Supplementary Figure 5E, 5F 7-HapMap Non-Patil 0.62 -0.13

Table SN.22: Spearman rank correlation coefficients between tag portability (PVT) and (i) the distance at
which r2 decays below 0.5, and (ii) the FST genetic distance to the HapMap population that produces the
highest tag portability. Each line corresponds to different sets of supplementary figures (“Figure”). Tag SNPs
are chosen using either the 3 HapMap populations separately (“3-HapMap”) or using the best of 7 possible
combinations (“7-HapMap”). The data are taken either from all regions, or from the Patil (chromosome 21)
or non-Patil (autosomal non-21) regions only.
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Supplementary Figure 1. Portability of tag SNPs from 7 different panels. (A) The first 7 panels show for
each of 52 populations and each tag panel the proportion of polymorphic non-tag SNPs that have r2 > 0.85
with at least one tag SNP. Panels were designed using haplotypes from a single HapMap population (CEU,
YRI, CHB+JPT), pairs of HapMap populations, or 360 haplotypes from all three populations (ALL). For
each population, the grey bar indicates which tag SNP set is best. (B) Estimated worldwide population
structure based on microsatellite data from individuals in our study. For each population, the horizontal bar
is split into colored segments with lengths proportional to the estimated membership of the population in
each of 5 clusters identified by the program structure (Rosenberg et al. 2002).
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Supplementary Figure 2. Difference in PVT between Patil and Non-Patil regions, using CEU tags.

Bootstrap resampling was used to assess the difference in mean PVT of Patil regions and non-Patil regions.

Ten thousand bootstrap replicates were generated for each HGDP population, and are depicted here as

box-whisker plots. Further details are provided in the Supplementary Note.
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Supplementary Figure 3. Difference in PVT between Patil and non-Patil regions, using YRI tags. Boot-

strap resampling was used to assess the difference in mean PVT of Patil regions and non-Patil regions. Ten

thousand bootstrap replicates were generated for each HGDP population, and are depicted here as box-

whisker plots. Further details are provided in the Supplementary Note.



0 10 20 30 40 50 60 70 80 90
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

French

Mozabite

Hazara
Kalash

MelanesianPapuan

Colombian
Karitiana Surui

Maya

Pima

Bantu

Yoruba

Biaka Pygmy

Mbuti Pygmy

San

Han

Uygur

distance at which r2 decays below 0.5 (kb)

p
o

rt
a

b
ili

ty
 o

f 
H

a
p

M
a

p
-b

a
se

d
 t

a
g

 S
N

P
s 

(P
V

T
)

0 0.05 0.1 0.15 0.2

French

Mozabite

Hazara
Kalash

Melanesian Papuan

Colombian
Karitiana

Surui

Maya

Pima

Bantu

Yoruba

Biaka Pygmy

Mbuti Pygmy

San

Han

Uygur

FST

Africa

Oceania
Americas

East Asia

Europe

C/S Asia
Middle East

A B

0 10 20 30 40 50 60 70 80 90
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

French

MozabiteHazara

Kalash

Melanesian

Papuan

Colombian

Karitiana

Surui

Maya

Pima

Bantu

Yoruba

Biaka Pygmy

Mbuti Pygmy
San

Han

Uygur

distance at which r2 decays below 0.5 (kb)

p
o

rt
a

b
ili

ty
 o

f 
H

a
p

M
a

p
-b

a
se

d
 t

a
g

 S
N

P
s 

(P
V

T
)

0 0.05 0.1 0.15 0.2

French

MozabiteHazara

Kalash

Melanesian

Papuan

Colombian

Karitiana

Surui

Maya

Pima

Bantu

Yoruba

Biaka Pygmy Mbuti Pygmy

San

Han

Uygur

FST

C D

Supplementary Figure 4. The relationships between [First column] tag portability and the distance

at which the r
2 measure of linkage disequilibrium decays below 0.5, and between [Second column] tag

portability and FST genetic distance to the HapMap population that produces the highest tag portability.

For each population, tag portability is computed as the maximum of the three PVT values in Figure 7A.

(A),(B): Only SNPs from the Patil regions (chromosome 21) were used. (C), (D): Only SNPs from the non-

Patil regions (autosomal non-chromosome 21) were used. Further details are provided in the Supplementary

Note.
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Supplementary Figure 5. The relationships between [First column] tag portability and the distance

at which the r
2 measure of linkage disequilibrium decays below 0.5, and [Second column] tag portability

and FST genetic distance to the HapMap population that produces the highest tag portability. For each

population, tag portability was computed as the maximum of the seven PVT values in Supplementary Figure

1. (A), (B): All autosomal regions were used. (C), (D): Only SNPs from the Patil regions (chromosome

21) were used. (E), (F): Only SNPs from the non-Patil regions (autosomal non-chromosome 21) were used.

Further details are provided in the Supplementary Note.


