
Haploconfig:
a program for performing haplotype-based neutrality tests

conditional on the number of segregating sites

Kangyu Zhang∗, Paul Marjoram†, and Noah A. Rosenberg‡

∗Program in Molecular and Computational Biology
University of Southern California, 1042 W 36th Place

Los Angeles CA 90089-1113, USA
kangyuzh@usc.edu

†Department of Preventive Medicine
University of Southern California
Los Angeles CA 90089-9011, USA

pmarjora@usc.edu

‡Program in Molecular and Computational Biology
University of Southern California, 1042 W 36th Place

Los Angeles CA 90089-1113, USA
noahr@usc.edu

The haploconfig software is available at
http://www.cmb.usc.edu/∼noahr/haploconfig.html1

March 27, 2005

1haploconfig software and manual copyright c© 2005 Kangyu Zhang, Paul Marjoram, and Noah
A. Rosenberg, University of Southern California.

Contents

1 Introduction 1
1.1 Availability . 2
1.2 Basic overview . 2
1.3 Python . 2
1.4 Included files . 3

2 Running haploconfig 3
2.1 Command-line arguments . 3
2.2 Example . 5
2.3 Output . 5

3 Running haplofreq.py 5
3.1 Command-line arguments . 5
3.2 Example . 6
3.3 Output . 6

4 Final comments 7

References 7

1 Introduction

Innan et al. (2005) describe four statistical tests of neutrality based on the haplotype frequency
distribution (the “haplotype configuration”) in a sample of DNA sequences, conditional on the
number of segregating sites. These include the haplotype configuration test (HCT) — an “exact
test” of the haplotype configuration C — and tests based on three summary statistics (Hudson
et al., 1994; Depaulis and Veuille, 1998; Depaulis et al., 2001; Markovtsova et al., 2001;
Wall and Hudson, 2001): the Hudson et al. haplotype test (HHT) based on the frequency of
the most frequent haplotype (M), the haplotype number test (HNT) based on the number of
haplotypes (K), and the haplotype diversity (HDT) based on the haplotype diversity (H).

This document describes the usage of haploconfig, a software package for implementing
the haplotype tests studied by Innan et al. (2005). The haploconfig package includes two
programs: haploconfig and haplofreq.py. The program haploconfig simulates coalescent
histories conditional on a given population model — possibly including recombination, exponen-
tial population growth, and/or two-population island migration — along with a given number
of segregating sites S and a value of the mutation parameter θ. Either fixed values or uniform
prior distributions can be accommodated for the recombination, growth, migration, and muta-
tion rate parameters. The haploconfig program can also output individual haplotypes as well
as the spatial locations of polymorphisms.

Based on the simulations produced by haploconfig, the processing program haplofreq.py

counts frequencies of the various haplotypes in the simulation output, obtaining approximate

1

HCT, HHT, HNT, and HDT P -values for the various haplotype configurations and possible val-
ues of M , K, and H. Alternatively, haplofreq.py can be used to indicate which configurations
or values of M , K, and H have P -values smaller than a specified cutoff.

1.1 Availability

The haploconfig program was used to generate Figures 2 and 3 and Table 7 in Innan et al.
(2005). The simulation program, haploconfig, was written by Paul Marjoram with modifica-
tions by Kangyu Zhang. The post-processing program, haplofreq.py, was written by Kangyu
Zhang. The software and this document are available at

http://www.cmb.usc.edu/∼noahr/haploconfig.html.
When using haploconfig, please cite Innan et al. (2005).

1.2 Basic overview

The haploconfig program is written in C++, and compiled versions are available for Linux
(haploconfig), Unix (haploconfig unix) and Windows (haploconfig windows). The operat-
ing systems under which the code was compiled were Linux Redhat 3.2.2, Unix Sun Solaris 2.8,
and Windows XP, with gcc version 3.3.2 in Linux/Unix and MC Visual C++ 6.0 in Windows.
The source code is available upon request from Kangyu Zhang (kangyuzh@usc.edu).

The script haplofreq.py is written in python, an interpreted language. Both programs
(haploconfig and haplofreq.py) are executed from a command prompt using command-line
arguments, and the output of both programs is in the form of text files.

1.3 Python

If python (version 2.3 or later) is already installed, the haplofreq.py script can be executed
immediately. For Linux/Unix, it must be verified that the file is executable, using chmod 744

haplofreq.py (similarly chmod 744 haploconfig will make haploconfig executable). Addi-
tionally, the first line of the haplofreq.py program must be edited to let the script know the
location for python in the system. The command which python can be used to find the default
path to python; for example, if the location is /usr/bin/python, the first line of the script
should be #!/usr/bin/python.

In Windows, verify that a path for python.exe exists by typing “path” in a command window
(obtained by running cmd under “Run” in the Start Menu). To add a path for python, right click
the “My Computer” icon, click “Properties” menu and select the “Advanced” tab. Then choose
“Environment Variables” and modify the system variable “path”; alternatively, type path /?

in the command window and follow instructions for adding to the path. If python does not
recognize the input file for haplofreq.py, try placing both haplofreq.py and the input file in
the same directory as python itself.

If python is not already installed, it can be downloaded from

http://www.python.org/download

2

For Linux/Unix, follow the instructions in the package for compiling (it is necessary to have
administrator privileges in advance); for Windows, a .msi file is distributed for direct instal-
lation. Under Linux/Unix, typing python will enter the interpretive mode, in which python
commands can be executed interactively. To execute a written script such as haplofreq.py,
the command is python script name or simply script name. Introductory documentation for
python is available at http://www.python.org/moin/BeginnersGuide.

Note that if the version of python specified by which python is too old (prior to 2.3), the
command python ./haplofreq.py will produce an error message such as “ImportError: No
module named optparse.” Similarly, if the version specified on the top line of haplofreq.py is
old, the command ./haplofreq.py (omitting python in front) will produce the same error. If
this problem arises, type whereis python to determine if version 2.3 or later is present on the
system. If a recent version is present, replace the first line of haplofreq.py with the appropriate
path, and run the program using ./haplofreq.py (without the leading python). If no recent
version is present, the solution is to install a newer version of python.

For example, on one of the Linux systems that we have used, which python indicates that
the default location for python is /usr/bin/python. The version in /usr/bin/python is out-
dated, and when we run python ./haplofreq.py we obtain an error message, regardless of the
location specified on the first line of haplofreq.py. However, whereis python finds an up-
dated version in /usr/local/bin/python2.3. When the first line of haplofreq.py is modified
to #!/usr/local/bin/python2.3, the command ./haplofreq.py runs the program properly.

1.4 Included files

The haploconfig package includes the following files:

haploconfig (Executable haploconfig program for Linux)

haploconfig unix (Executable haploconfig program for Unix)

haploconfig windows.exe (Executable haploconfig program for Windows)

haploconfig output (Example output file for haploconfig)

haplofreq.py (Executable script for processing output of haploconfig)

haplofreq table (Example output file for haplofreq.py similar to Tables 5 and 6 of Innan
et al. [2005])

haplofreq Kpvalue (Example output file for haplofreq.py listing configurations that are
significant for the haplotype number test below a particular cutoff)

2 Running haploconfig

2.1 Command-line arguments

To run haploconfig, several parameters must be specified on the command line:

3

-a number of accepted configurations

-n sample size (the program does not support sample sizes larger than 300)

-s target number of mutations

-t mutation rate theta (θ = 2Nµ, where N is haploid population size, and µ is DNA se-
quence length times mutation rate per base pair per generation)

It is recommended that an output file name is given; otherwise, the program will output the
results to the screen. A file debug output may also appear; this file may contain information
pertaining to the debugging of the program, and can be ignored.

-o output file name

Specifying the seed of the random number generator is optional, but recommended (otherwise
the program will always use the same seed):

-d seed

To incorporate recombination, exponential population growth, or island migration, additional
parameters can be added. The island migration model has two populations with symmetric
migration, and half of the specified sample size is allocated to each of these populations (half
the sample size plus and minus 1/2 in the case of an odd sample size). The default if no
recombination, growth, or migration parameters are specified is a simulation using a single
constant-size population with no recombination, growth, or migration.

-r recombination rate rho (ρ = 2Nr, where N is haploid population size, and r is DNA
sequence length times recombination rate per base pair per generation)

-g exponential growth rate beta (β is such that at t time units of N generations in the
past, population size was N exp[−βt])

-m migration rate gamma (γ = 2Nm, where N/2 is the haploid population size for each of
the two populations, and m is the fraction of individuals per population who migrate each
generation)

The arguments -t, -r, -g, and -m all utilize a single value of the appropriate parameter. Al-
ternatively, to simulate from a uniform prior distribution for mutation rate, recombination rate,
population growth rate or migration rate, the following arguments can be used:

-p mutation rate lower bound mutation rate upper bound

-q recombination rate lower bound recombination rate upper bound

-e growth rate lower bound growth rate upper bound

-l migration rate lower bound migration rate upper bound

4

There are two final optional arguments that can be specified without numerical parameters. If
-i is specified without also specifying -m or -l, the simulation will be of a single panmictic
population, and the -i option will be ignored:

-h (In addition to the standard output of C, M , K, and H, each individual haplotype and all
locations of polymorphisms, in the interval [0, 1], will be printed)

-i (If specified together with the -m or -l options, a two-population migration model will be
used and the sample size in both of the subpopulations will be binomially distributed with
mean equal to half the sample size)

Simply typing ./haploconfig will display the possible command-line options.

2.2 Example

For example,

./haploconfig -a 10000 -o haploconfig output -n 30 -s 10 -t 1.5 -g 2.0 -q 1 5 -m 5

will generate 10000 genealogies, all of which have sample size n = 30 and s = 10 segregating
sites. The mutation parameter is set at θ = 1.5, the growth parameter is set at β = 2.0, the
recombination parameter ρ is chosen from a uniform distribution on [1, 5], and the migration
parameter γ is set at γ = 5.0. Output will be written to the file haploconfig output.

2.3 Output

Each genealogy is printed on one line of the output file. Two sample lines are as follows:

GraphNo 29 Theta 1.5 Rho 2.18579 Beta 2 Gamma 5 TimeToGMRCA 1.14694
Config: 4 0 1 1 0 2 1 0 M 7 K 9 H 0.833333

GraphNo 31 Theta 1.5 Rho 4.00198 Beta 2 Gamma 5 TimeToGMRCA 1.34844

Config: 7 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M 12 K 10 H 0.76444

Each quantity is listed after the word describing it. The GraphNo refers to the number of an-
cestral recombination graphs simulated; for example, GraphNo 31 indicates that this is the 31st
ancestral recombination graph that has been simulated. Of these 31, all except two (numbers 29
and 31) have been discarded because they have not had the target number of segregating sites.
The TimeToGMRCA is the time to the grand MRCA of the ancestral recombination graph. The
haplotype configuration is printed as described in Innan et al. (2005), where the ith component
of the configuration vector represents the number of haplotypes with frequency i.

3 Running haplofreq.py

3.1 Command-line arguments

To run haplofreq.py, an input file must be specified. An output file is optional; if no output
file is specified, the program will output results to the screen.

5

-i input file name

-o output file name

The input file for haplofreq.py is an output file from haploconfig. Optionally, a value of α
can be selected, and only those configurations whose P -values are at most α displayed:

-a alpha -s statistic

In this case the “statistic” must be C or c for the haplotype configuration test, M or m for the
Hudson et al. haplotype test, K or k for the haplotype number test, and H or h for the haplotype
diversity test. The test is assumed to be two-tailed, except with the haplotype configuration
test, which is one-tailed.

To display the version of the software, use the following option:

--version will display current version

3.2 Example

For example, in Linux/Unix, the command

./haplofreq.py -i haploconfig output -o haplofreq table

will produce in haplofreq table a table similar to Tables 5 and 6 of Innan et al. (2005).

./haplofreq.py -i haploconfig output -o haplofreq Kpvalue -a 0.05 -s K

will produce in haplofreq Kpvalue a list of all configurations for which the two-tailed P -value
for the haplotype number test is at most 0.05. The corresponding commands in Windows are

python haplofreq.py -i haploconfig output -o haplofreq table

and

python haplofreq.py -i haploconfig output -o haplofreq Kpvalue -a 0.05 -s K

3.3 Output

The top line of the output file from haplofreq.py lists the command used in producing the file,
and the second line specifies the column headings. When the -a and -s options are not used,
the column headings are the same as those in Table 6 of Innan et al. (2005):

Configuration(c) P[C==c] P[C<=c](Cumulative probability)

P[M>=M(c)] P[M<=M(c)] P[K<=K(c)] P[K>=K(c)] P[H<=H(c)] P[H>=H(c)]

Each additional line gives the appropriate probabilities for a single haplotype configuration, and
the lines are sorted by probability of the haplotype configuration:

(1,2,1,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0) 0.0001 0.0638

0.0927 0.9389 0.0099 0.9984 0.0658 0.935

When the -a and -s options are used, the order in which information is printed is somewhat
different. For example:

6

K P[K<=K(c)] P[K>=K(c)] Configuration(c) P[C<=c] M H

Only the configurations with P -values smaller than the specified value of α are shown, and they
are sorted by the value of the statistic specified by the -s option:

4 1.0 0.0001 (0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

0.0001 12 0.677778

4 Final comments

The accepted genealogies produced by haploconfig can be used in a variety of ways, not all of
which will involve haplofreq.py. For example, in Innan et al. (2005), to evaluate the power
of the various tests, output files from haploconfig under models with one or more among
recombination, exponential population growth, and island migration were compared to files
generated without any of these phenomena. With the use of alternative specialized scripts,
haploconfig can aid in such calculations. A C++ program for calculating power is available
upon request from Kangyu Zhang.

References

Depaulis, F., S. Mousset and M. Veuille, 2001 Haplotype tests using coalescent simula-
tions conditional on the number of segregating sites. Mol. Biol. Evol. 18: 1136–1138.

Depaulis, F., and M. Veuille, 1998 Neutrality tests based on the distribution of haplotypes
under an infinite-site model. Mol. Biol. Evol. 15: 1788–1790.

Hudson, R. R., K. Bailey, D. Skarecky, J. Kwiatowski and F. J. Ayala, 1994
Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila
melanogaster. Genetics 136: 1329–1340.

Innan, H., K. Zhang, P. Marjoram, S. Tavaré and N. A. Rosenberg, 2005 Statistical
tests of the coalescent model based on the haplotype frequency distribution and the number
of segregating sites. Genetics 169: xx–xx.

Markovtsova, L., P. Marjoram and S. Tavaré, 2001 On a test of Depaulis and Veuille.
Mol. Biol. Evol. 18: 1132–1133.

Wall, J. D., and R. R. Hudson, 2001 Coalescent simulations and statistical tests of
neutrality. Mol. Biol. Evol. 18: 1134–1135.

7

